// SPDX-License-Identifier: GPL-2.0-only /* * linux/mm/swap.c * * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds */ /* * This file contains the default values for the operation of the * Linux VM subsystem. Fine-tuning documentation can be found in * Documentation/admin-guide/sysctl/vm.rst. * Started 18.12.91 * Swap aging added 23.2.95, Stephen Tweedie. * Buffermem limits added 12.3.98, Rik van Riel. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "internal.h" #define CREATE_TRACE_POINTS #include /* How many pages do we try to swap or page in/out together? */ int page_cluster; /* Protecting only lru_rotate.pvec which requires disabling interrupts */ struct lru_rotate { local_lock_t lock; struct pagevec pvec; }; static DEFINE_PER_CPU(struct lru_rotate, lru_rotate) = { .lock = INIT_LOCAL_LOCK(lock), }; /* * The following struct pagevec are grouped together because they are protected * by disabling preemption (and interrupts remain enabled). */ struct lru_pvecs { local_lock_t lock; struct pagevec lru_add; struct pagevec lru_deactivate_file; struct pagevec lru_deactivate; struct pagevec lru_lazyfree; #ifdef CONFIG_SMP struct pagevec activate_page; #endif }; static DEFINE_PER_CPU(struct lru_pvecs, lru_pvecs) = { .lock = INIT_LOCAL_LOCK(lock), }; /* * This path almost never happens for VM activity - pages are normally freed * via pagevecs. But it gets used by networking - and for compound pages. */ static void __page_cache_release(struct page *page) { if (PageLRU(page)) { struct folio *folio = page_folio(page); struct lruvec *lruvec; unsigned long flags; lruvec = folio_lruvec_lock_irqsave(folio, &flags); del_page_from_lru_list(page, lruvec); __clear_page_lru_flags(page); unlock_page_lruvec_irqrestore(lruvec, flags); } /* See comment on PageMlocked in release_pages() */ if (unlikely(PageMlocked(page))) { int nr_pages = thp_nr_pages(page); __ClearPageMlocked(page); mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages); count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages); } __ClearPageWaiters(page); } static void __put_single_page(struct page *page) { __page_cache_release(page); mem_cgroup_uncharge(page_folio(page)); free_unref_page(page, 0); } static void __put_compound_page(struct page *page) { /* * __page_cache_release() is supposed to be called for thp, not for * hugetlb. This is because hugetlb page does never have PageLRU set * (it's never listed to any LRU lists) and no memcg routines should * be called for hugetlb (it has a separate hugetlb_cgroup.) */ if (!PageHuge(page)) __page_cache_release(page); destroy_compound_page(page); } void __put_page(struct page *page) { if (is_zone_device_page(page)) { put_dev_pagemap(page->pgmap); /* * The page belongs to the device that created pgmap. Do * not return it to page allocator. */ return; } if (unlikely(PageCompound(page))) __put_compound_page(page); else __put_single_page(page); } EXPORT_SYMBOL(__put_page); /** * put_pages_list() - release a list of pages * @pages: list of pages threaded on page->lru * * Release a list of pages which are strung together on page.lru. */ void put_pages_list(struct list_head *pages) { struct page *page, *next; list_for_each_entry_safe(page, next, pages, lru) { if (!put_page_testzero(page)) { list_del(&page->lru); continue; } if (PageHead(page)) { list_del(&page->lru); __put_compound_page(page); continue; } /* Cannot be PageLRU because it's passed to us using the lru */ __ClearPageWaiters(page); } free_unref_page_list(pages); INIT_LIST_HEAD(pages); } EXPORT_SYMBOL(put_pages_list); /* * get_kernel_pages() - pin kernel pages in memory * @kiov: An array of struct kvec structures * @nr_segs: number of segments to pin * @write: pinning for read/write, currently ignored * @pages: array that receives pointers to the pages pinned. * Should be at least nr_segs long. * * Returns number of pages pinned. This may be fewer than the number * requested. If nr_pages is 0 or negative, returns 0. If no pages * were pinned, returns -errno. Each page returned must be released * with a put_page() call when it is finished with. */ int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write, struct page **pages) { int seg; for (seg = 0; seg < nr_segs; seg++) { if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE)) return seg; pages[seg] = kmap_to_page(kiov[seg].iov_base); get_page(pages[seg]); } return seg; } EXPORT_SYMBOL_GPL(get_kernel_pages); static void pagevec_lru_move_fn(struct pagevec *pvec, void (*move_fn)(struct page *page, struct lruvec *lruvec)) { int i; struct lruvec *lruvec = NULL; unsigned long flags = 0; for (i = 0; i < pagevec_count(pvec); i++) { struct page *page = pvec->pages[i]; struct folio *folio = page_folio(page); /* block memcg migration during page moving between lru */ if (!TestClearPageLRU(page)) continue; lruvec = folio_lruvec_relock_irqsave(folio, lruvec, &flags); (*move_fn)(page, lruvec); SetPageLRU(page); } if (lruvec) unlock_page_lruvec_irqrestore(lruvec, flags); release_pages(pvec->pages, pvec->nr); pagevec_reinit(pvec); } static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec) { struct folio *folio = page_folio(page); if (!folio_test_unevictable(folio)) { lruvec_del_folio(lruvec, folio); folio_clear_active(folio); lruvec_add_folio_tail(lruvec, folio); __count_vm_events(PGROTATED, folio_nr_pages(folio)); } } /* return true if pagevec needs to drain */ static bool pagevec_add_and_need_flush(struct pagevec *pvec, struct page *page) { bool ret = false; if (!pagevec_add(pvec, page) || PageCompound(page) || lru_cache_disabled()) ret = true; return ret; } /* * Writeback is about to end against a folio which has been marked for * immediate reclaim. If it still appears to be reclaimable, move it * to the tail of the inactive list. * * folio_rotate_reclaimable() must disable IRQs, to prevent nasty races. */ void folio_rotate_reclaimable(struct folio *folio) { if (!folio_test_locked(folio) && !folio_test_dirty(folio) && !folio_test_unevictable(folio) && folio_test_lru(folio)) { struct pagevec *pvec; unsigned long flags; folio_get(folio); local_lock_irqsave(&lru_rotate.lock, flags); pvec = this_cpu_ptr(&lru_rotate.pvec); if (pagevec_add_and_need_flush(pvec, &folio->page)) pagevec_lru_move_fn(pvec, pagevec_move_tail_fn); local_unlock_irqrestore(&lru_rotate.lock, flags); } } void lru_note_cost(struct lruvec *lruvec, bool file, unsigned int nr_pages) { do { unsigned long lrusize; /* * Hold lruvec->lru_lock is safe here, since * 1) The pinned lruvec in reclaim, or * 2) From a pre-LRU page during refault (which also holds the * rcu lock, so would be safe even if the page was on the LRU * and could move simultaneously to a new lruvec). */ spin_lock_irq(&lruvec->lru_lock); /* Record cost event */ if (file) lruvec->file_cost += nr_pages; else lruvec->anon_cost += nr_pages; /* * Decay previous events * * Because workloads change over time (and to avoid * overflow) we keep these statistics as a floating * average, which ends up weighing recent refaults * more than old ones. */ lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) + lruvec_page_state(lruvec, NR_ACTIVE_ANON) + lruvec_page_state(lruvec, NR_INACTIVE_FILE) + lruvec_page_state(lruvec, NR_ACTIVE_FILE); if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) { lruvec->file_cost /= 2; lruvec->anon_cost /= 2; } spin_unlock_irq(&lruvec->lru_lock); } while ((lruvec = parent_lruvec(lruvec))); } void lru_note_cost_folio(struct folio *folio) { lru_note_cost(folio_lruvec(folio), folio_is_file_lru(folio), folio_nr_pages(folio)); } static void __folio_activate(struct folio *folio, struct lruvec *lruvec) { if (!folio_test_active(folio) && !folio_test_unevictable(folio)) { long nr_pages = folio_nr_pages(folio); lruvec_del_folio(lruvec, folio); folio_set_active(folio); lruvec_add_folio(lruvec, folio); trace_mm_lru_activate(folio); __count_vm_events(PGACTIVATE, nr_pages); __count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE, nr_pages); } } #ifdef CONFIG_SMP static void __activate_page(struct page *page, struct lruvec *lruvec) { return __folio_activate(page_folio(page), lruvec); } static void activate_page_drain(int cpu) { struct pagevec *pvec = &per_cpu(lru_pvecs.activate_page, cpu); if (pagevec_count(pvec)) pagevec_lru_move_fn(pvec, __activate_page); } static bool need_activate_page_drain(int cpu) { return pagevec_count(&per_cpu(lru_pvecs.activate_page, cpu)) != 0; } static void folio_activate(struct folio *folio) { if (folio_test_lru(folio) && !folio_test_active(folio) && !folio_test_unevictable(folio)) { struct pagevec *pvec; folio_get(folio); local_lock(&lru_pvecs.lock); pvec = this_cpu_ptr(&lru_pvecs.activate_page); if (pagevec_add_and_need_flush(pvec, &folio->page)) pagevec_lru_move_fn(pvec, __activate_page); local_unlock(&lru_pvecs.lock); } } #else static inline void activate_page_drain(int cpu) { } static void folio_activate(struct folio *folio) { struct lruvec *lruvec; if (folio_test_clear_lru(folio)) { lruvec = folio_lruvec_lock_irq(folio); __folio_activate(folio, lruvec); unlock_page_lruvec_irq(lruvec); folio_set_lru(folio); } } #endif static void __lru_cache_activate_folio(struct folio *folio) { struct pagevec *pvec; int i; local_lock(&lru_pvecs.lock); pvec = this_cpu_ptr(&lru_pvecs.lru_add); /* * Search backwards on the optimistic assumption that the page being * activated has just been added to this pagevec. Note that only * the local pagevec is examined as a !PageLRU page could be in the * process of being released, reclaimed, migrated or on a remote * pagevec that is currently being drained. Furthermore, marking * a remote pagevec's page PageActive potentially hits a race where * a page is marked PageActive just after it is added to the inactive * list causing accounting errors and BUG_ON checks to trigger. */ for (i = pagevec_count(pvec) - 1; i >= 0; i--) { struct page *pagevec_page = pvec->pages[i]; if (pagevec_page == &folio->page) { folio_set_active(folio); break; } } local_unlock(&lru_pvecs.lock); } /* * Mark a page as having seen activity. * * inactive,unreferenced -> inactive,referenced * inactive,referenced -> active,unreferenced * active,unreferenced -> active,referenced * * When a newly allocated page is not yet visible, so safe for non-atomic ops, * __SetPageReferenced(page) may be substituted for mark_page_accessed(page). */ void folio_mark_accessed(struct folio *folio) { if (!folio_test_referenced(folio)) { folio_set_referenced(folio); } else if (folio_test_unevictable(folio)) { /* * Unevictable pages are on the "LRU_UNEVICTABLE" list. But, * this list is never rotated or maintained, so marking an * evictable page accessed has no effect. */ } else if (!folio_test_active(folio)) { /* * If the page is on the LRU, queue it for activation via * lru_pvecs.activate_page. Otherwise, assume the page is on a * pagevec, mark it active and it'll be moved to the active * LRU on the next drain. */ if (folio_test_lru(folio)) folio_activate(folio); else __lru_cache_activate_folio(folio); folio_clear_referenced(folio); workingset_activation(folio); } if (folio_test_idle(folio)) folio_clear_idle(folio); } EXPORT_SYMBOL(folio_mark_accessed); /** * folio_add_lru - Add a folio to an LRU list. * @folio: The folio to be added to the LRU. * * Queue the folio for addition to the LRU. The decision on whether * to add the page to the [in]active [file|anon] list is deferred until the * pagevec is drained. This gives a chance for the caller of folio_add_lru() * have the folio added to the active list using folio_mark_accessed(). */ void folio_add_lru(struct folio *folio) { struct pagevec *pvec; VM_BUG_ON_FOLIO(folio_test_active(folio) && folio_test_unevictable(folio), folio); VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); folio_get(folio); local_lock(&lru_pvecs.lock); pvec = this_cpu_ptr(&lru_pvecs.lru_add); if (pagevec_add_and_need_flush(pvec, &folio->page)) __pagevec_lru_add(pvec); local_unlock(&lru_pvecs.lock); } EXPORT_SYMBOL(folio_add_lru); /** * lru_cache_add_inactive_or_unevictable * @page: the page to be added to LRU * @vma: vma in which page is mapped for determining reclaimability * * Place @page on the inactive or unevictable LRU list, depending on its * evictability. */ void lru_cache_add_inactive_or_unevictable(struct page *page, struct vm_area_struct *vma) { VM_BUG_ON_PAGE(PageLRU(page), page); if (unlikely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED)) mlock_new_page(page); else lru_cache_add(page); } /* * If the page can not be invalidated, it is moved to the * inactive list to speed up its reclaim. It is moved to the * head of the list, rather than the tail, to give the flusher * threads some time to write it out, as this is much more * effective than the single-page writeout from reclaim. * * If the page isn't page_mapped and dirty/writeback, the page * could reclaim asap using PG_reclaim. * * 1. active, mapped page -> none * 2. active, dirty/writeback page -> inactive, head, PG_reclaim * 3. inactive, mapped page -> none * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim * 5. inactive, clean -> inactive, tail * 6. Others -> none * * In 4, why it moves inactive's head, the VM expects the page would * be write it out by flusher threads as this is much more effective * than the single-page writeout from reclaim. */ static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec) { bool active = PageActive(page); int nr_pages = thp_nr_pages(page); if (PageUnevictable(page)) return; /* Some processes are using the page */ if (page_mapped(page)) return; del_page_from_lru_list(page, lruvec); ClearPageActive(page); ClearPageReferenced(page); if (PageWriteback(page) || PageDirty(page)) { /* * PG_reclaim could be raced with end_page_writeback * It can make readahead confusing. But race window * is _really_ small and it's non-critical problem. */ add_page_to_lru_list(page, lruvec); SetPageReclaim(page); } else { /* * The page's writeback ends up during pagevec * We move that page into tail of inactive. */ add_page_to_lru_list_tail(page, lruvec); __count_vm_events(PGROTATED, nr_pages); } if (active) { __count_vm_events(PGDEACTIVATE, nr_pages); __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_pages); } } static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec) { if (PageActive(page) && !PageUnevictable(page)) { int nr_pages = thp_nr_pages(page); del_page_from_lru_list(page, lruvec); ClearPageActive(page); ClearPageReferenced(page); add_page_to_lru_list(page, lruvec); __count_vm_events(PGDEACTIVATE, nr_pages); __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_pages); } } static void lru_lazyfree_fn(struct page *page, struct lruvec *lruvec) { if (PageAnon(page) && PageSwapBacked(page) && !PageSwapCache(page) && !PageUnevictable(page)) { int nr_pages = thp_nr_pages(page); del_page_from_lru_list(page, lruvec); ClearPageActive(page); ClearPageReferenced(page); /* * Lazyfree pages are clean anonymous pages. They have * PG_swapbacked flag cleared, to distinguish them from normal * anonymous pages */ ClearPageSwapBacked(page); add_page_to_lru_list(page, lruvec); __count_vm_events(PGLAZYFREE, nr_pages); __count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE, nr_pages); } } /* * Drain pages out of the cpu's pagevecs. * Either "cpu" is the current CPU, and preemption has already been * disabled; or "cpu" is being hot-unplugged, and is already dead. */ void lru_add_drain_cpu(int cpu) { struct pagevec *pvec = &per_cpu(lru_pvecs.lru_add, cpu); if (pagevec_count(pvec)) __pagevec_lru_add(pvec); pvec = &per_cpu(lru_rotate.pvec, cpu); /* Disabling interrupts below acts as a compiler barrier. */ if (data_race(pagevec_count(pvec))) { unsigned long flags; /* No harm done if a racing interrupt already did this */ local_lock_irqsave(&lru_rotate.lock, flags); pagevec_lru_move_fn(pvec, pagevec_move_tail_fn); local_unlock_irqrestore(&lru_rotate.lock, flags); } pvec = &per_cpu(lru_pvecs.lru_deactivate_file, cpu); if (pagevec_count(pvec)) pagevec_lru_move_fn(pvec, lru_deactivate_file_fn); pvec = &per_cpu(lru_pvecs.lru_deactivate, cpu); if (pagevec_count(pvec)) pagevec_lru_move_fn(pvec, lru_deactivate_fn); pvec = &per_cpu(lru_pvecs.lru_lazyfree, cpu); if (pagevec_count(pvec)) pagevec_lru_move_fn(pvec, lru_lazyfree_fn); activate_page_drain(cpu); mlock_page_drain(cpu); } /** * deactivate_file_page - forcefully deactivate a file page * @page: page to deactivate * * This function hints the VM that @page is a good reclaim candidate, * for example if its invalidation fails due to the page being dirty * or under writeback. */ void deactivate_file_page(struct page *page) { /* * In a workload with many unevictable page such as mprotect, * unevictable page deactivation for accelerating reclaim is pointless. */ if (PageUnevictable(page)) return; if (likely(get_page_unless_zero(page))) { struct pagevec *pvec; local_lock(&lru_pvecs.lock); pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate_file); if (pagevec_add_and_need_flush(pvec, page)) pagevec_lru_move_fn(pvec, lru_deactivate_file_fn); local_unlock(&lru_pvecs.lock); } } /* * deactivate_page - deactivate a page * @page: page to deactivate * * deactivate_page() moves @page to the inactive list if @page was on the active * list and was not an unevictable page. This is done to accelerate the reclaim * of @page. */ void deactivate_page(struct page *page) { if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) { struct pagevec *pvec; local_lock(&lru_pvecs.lock); pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate); get_page(page); if (pagevec_add_and_need_flush(pvec, page)) pagevec_lru_move_fn(pvec, lru_deactivate_fn); local_unlock(&lru_pvecs.lock); } } /** * mark_page_lazyfree - make an anon page lazyfree * @page: page to deactivate * * mark_page_lazyfree() moves @page to the inactive file list. * This is done to accelerate the reclaim of @page. */ void mark_page_lazyfree(struct page *page) { if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) && !PageSwapCache(page) && !PageUnevictable(page)) { struct pagevec *pvec; local_lock(&lru_pvecs.lock); pvec = this_cpu_ptr(&lru_pvecs.lru_lazyfree); get_page(page); if (pagevec_add_and_need_flush(pvec, page)) pagevec_lru_move_fn(pvec, lru_lazyfree_fn); local_unlock(&lru_pvecs.lock); } } void lru_add_drain(void) { local_lock(&lru_pvecs.lock); lru_add_drain_cpu(smp_processor_id()); local_unlock(&lru_pvecs.lock); } /* * It's called from per-cpu workqueue context in SMP case so * lru_add_drain_cpu and invalidate_bh_lrus_cpu should run on * the same cpu. It shouldn't be a problem in !SMP case since * the core is only one and the locks will disable preemption. */ static void lru_add_and_bh_lrus_drain(void) { local_lock(&lru_pvecs.lock); lru_add_drain_cpu(smp_processor_id()); local_unlock(&lru_pvecs.lock); invalidate_bh_lrus_cpu(); } void lru_add_drain_cpu_zone(struct zone *zone) { local_lock(&lru_pvecs.lock); lru_add_drain_cpu(smp_processor_id()); drain_local_pages(zone); local_unlock(&lru_pvecs.lock); } #ifdef CONFIG_SMP static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work); static void lru_add_drain_per_cpu(struct work_struct *dummy) { lru_add_and_bh_lrus_drain(); } /* * Doesn't need any cpu hotplug locking because we do rely on per-cpu * kworkers being shut down before our page_alloc_cpu_dead callback is * executed on the offlined cpu. * Calling this function with cpu hotplug locks held can actually lead * to obscure indirect dependencies via WQ context. */ inline void __lru_add_drain_all(bool force_all_cpus) { /* * lru_drain_gen - Global pages generation number * * (A) Definition: global lru_drain_gen = x implies that all generations * 0 < n <= x are already *scheduled* for draining. * * This is an optimization for the highly-contended use case where a * user space workload keeps constantly generating a flow of pages for * each CPU. */ static unsigned int lru_drain_gen; static struct cpumask has_work; static DEFINE_MUTEX(lock); unsigned cpu, this_gen; /* * Make sure nobody triggers this path before mm_percpu_wq is fully * initialized. */ if (WARN_ON(!mm_percpu_wq)) return; /* * Guarantee pagevec counter stores visible by this CPU are visible to * other CPUs before loading the current drain generation. */ smp_mb(); /* * (B) Locally cache global LRU draining generation number * * The read barrier ensures that the counter is loaded before the mutex * is taken. It pairs with smp_mb() inside the mutex critical section * at (D). */ this_gen = smp_load_acquire(&lru_drain_gen); mutex_lock(&lock); /* * (C) Exit the draining operation if a newer generation, from another * lru_add_drain_all(), was already scheduled for draining. Check (A). */ if (unlikely(this_gen != lru_drain_gen && !force_all_cpus)) goto done; /* * (D) Increment global generation number * * Pairs with smp_load_acquire() at (B), outside of the critical * section. Use a full memory barrier to guarantee that the new global * drain generation number is stored before loading pagevec counters. * * This pairing must be done here, before the for_each_online_cpu loop * below which drains the page vectors. * * Let x, y, and z represent some system CPU numbers, where x < y < z. * Assume CPU #z is in the middle of the for_each_online_cpu loop * below and has already reached CPU #y's per-cpu data. CPU #x comes * along, adds some pages to its per-cpu vectors, then calls * lru_add_drain_all(). * * If the paired barrier is done at any later step, e.g. after the * loop, CPU #x will just exit at (C) and miss flushing out all of its * added pages. */ WRITE_ONCE(lru_drain_gen, lru_drain_gen + 1); smp_mb(); cpumask_clear(&has_work); for_each_online_cpu(cpu) { struct work_struct *work = &per_cpu(lru_add_drain_work, cpu); if (force_all_cpus || pagevec_count(&per_cpu(lru_pvecs.lru_add, cpu)) || data_race(pagevec_count(&per_cpu(lru_rotate.pvec, cpu))) || pagevec_count(&per_cpu(lru_pvecs.lru_deactivate_file, cpu)) || pagevec_count(&per_cpu(lru_pvecs.lru_deactivate, cpu)) || pagevec_count(&per_cpu(lru_pvecs.lru_lazyfree, cpu)) || need_activate_page_drain(cpu) || need_mlock_page_drain(cpu) || has_bh_in_lru(cpu, NULL)) { INIT_WORK(work, lru_add_drain_per_cpu); queue_work_on(cpu, mm_percpu_wq, work); __cpumask_set_cpu(cpu, &has_work); } } for_each_cpu(cpu, &has_work) flush_work(&per_cpu(lru_add_drain_work, cpu)); done: mutex_unlock(&lock); } void lru_add_drain_all(void) { __lru_add_drain_all(false); } #else void lru_add_drain_all(void) { lru_add_drain(); } #endif /* CONFIG_SMP */ atomic_t lru_disable_count = ATOMIC_INIT(0); /* * lru_cache_disable() needs to be called before we start compiling * a list of pages to be migrated using isolate_lru_page(). * It drains pages on LRU cache and then disable on all cpus until * lru_cache_enable is called. * * Must be paired with a call to lru_cache_enable(). */ void lru_cache_disable(void) { atomic_inc(&lru_disable_count); #ifdef CONFIG_SMP /* * lru_add_drain_all in the force mode will schedule draining on * all online CPUs so any calls of lru_cache_disabled wrapped by * local_lock or preemption disabled would be ordered by that. * The atomic operation doesn't need to have stronger ordering * requirements because that is enforced by the scheduling * guarantees. */ __lru_add_drain_all(true); #else lru_add_and_bh_lrus_drain(); #endif } /** * release_pages - batched put_page() * @pages: array of pages to release * @nr: number of pages * * Decrement the reference count on all the pages in @pages. If it * fell to zero, remove the page from the LRU and free it. */ void release_pages(struct page **pages, int nr) { int i; LIST_HEAD(pages_to_free); struct lruvec *lruvec = NULL; unsigned long flags = 0; unsigned int lock_batch; for (i = 0; i < nr; i++) { struct page *page = pages[i]; struct folio *folio = page_folio(page); /* * Make sure the IRQ-safe lock-holding time does not get * excessive with a continuous string of pages from the * same lruvec. The lock is held only if lruvec != NULL. */ if (lruvec && ++lock_batch == SWAP_CLUSTER_MAX) { unlock_page_lruvec_irqrestore(lruvec, flags); lruvec = NULL; } page = &folio->page; if (is_huge_zero_page(page)) continue; if (is_zone_device_page(page)) { if (lruvec) { unlock_page_lruvec_irqrestore(lruvec, flags); lruvec = NULL; } /* * ZONE_DEVICE pages that return 'false' from * page_is_devmap_managed() do not require special * processing, and instead, expect a call to * put_page_testzero(). */ if (page_is_devmap_managed(page)) { put_devmap_managed_page(page); continue; } if (put_page_testzero(page)) put_dev_pagemap(page->pgmap); continue; } if (!put_page_testzero(page)) continue; if (PageCompound(page)) { if (lruvec) { unlock_page_lruvec_irqrestore(lruvec, flags); lruvec = NULL; } __put_compound_page(page); continue; } if (PageLRU(page)) { struct lruvec *prev_lruvec = lruvec; lruvec = folio_lruvec_relock_irqsave(folio, lruvec, &flags); if (prev_lruvec != lruvec) lock_batch = 0; del_page_from_lru_list(page, lruvec); __clear_page_lru_flags(page); } /* * In rare cases, when truncation or holepunching raced with * munlock after VM_LOCKED was cleared, Mlocked may still be * found set here. This does not indicate a problem, unless * "unevictable_pgs_cleared" appears worryingly large. */ if (unlikely(PageMlocked(page))) { __ClearPageMlocked(page); dec_zone_page_state(page, NR_MLOCK); count_vm_event(UNEVICTABLE_PGCLEARED); } __ClearPageWaiters(page); list_add(&page->lru, &pages_to_free); } if (lruvec) unlock_page_lruvec_irqrestore(lruvec, flags); mem_cgroup_uncharge_list(&pages_to_free); free_unref_page_list(&pages_to_free); } EXPORT_SYMBOL(release_pages); /* * The pages which we're about to release may be in the deferred lru-addition * queues. That would prevent them from really being freed right now. That's * OK from a correctness point of view but is inefficient - those pages may be * cache-warm and we want to give them back to the page allocator ASAP. * * So __pagevec_release() will drain those queues here. __pagevec_lru_add() * and __pagevec_lru_add_active() call release_pages() directly to avoid * mutual recursion. */ void __pagevec_release(struct pagevec *pvec) { if (!pvec->percpu_pvec_drained) { lru_add_drain(); pvec->percpu_pvec_drained = true; } release_pages(pvec->pages, pagevec_count(pvec)); pagevec_reinit(pvec); } EXPORT_SYMBOL(__pagevec_release); static void __pagevec_lru_add_fn(struct folio *folio, struct lruvec *lruvec) { int was_unevictable = folio_test_clear_unevictable(folio); long nr_pages = folio_nr_pages(folio); VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); folio_set_lru(folio); /* * Is an smp_mb__after_atomic() still required here, before * folio_evictable() tests PageMlocked, to rule out the possibility * of stranding an evictable folio on an unevictable LRU? I think * not, because __munlock_page() only clears PageMlocked while the LRU * lock is held. * * (That is not true of __page_cache_release(), and not necessarily * true of release_pages(): but those only clear PageMlocked after * put_page_testzero() has excluded any other users of the page.) */ if (folio_evictable(folio)) { if (was_unevictable) __count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages); } else { folio_clear_active(folio); folio_set_unevictable(folio); /* * folio->mlock_count = !!folio_test_mlocked(folio)? * But that leaves __mlock_page() in doubt whether another * actor has already counted the mlock or not. Err on the * safe side, underestimate, let page reclaim fix it, rather * than leaving a page on the unevictable LRU indefinitely. */ folio->mlock_count = 0; if (!was_unevictable) __count_vm_events(UNEVICTABLE_PGCULLED, nr_pages); } lruvec_add_folio(lruvec, folio); trace_mm_lru_insertion(folio); } /* * Add the passed pages to the LRU, then drop the caller's refcount * on them. Reinitialises the caller's pagevec. */ void __pagevec_lru_add(struct pagevec *pvec) { int i; struct lruvec *lruvec = NULL; unsigned long flags = 0; for (i = 0; i < pagevec_count(pvec); i++) { struct folio *folio = page_folio(pvec->pages[i]); lruvec = folio_lruvec_relock_irqsave(folio, lruvec, &flags); __pagevec_lru_add_fn(folio, lruvec); } if (lruvec) unlock_page_lruvec_irqrestore(lruvec, flags); release_pages(pvec->pages, pvec->nr); pagevec_reinit(pvec); } /** * folio_batch_remove_exceptionals() - Prune non-folios from a batch. * @fbatch: The batch to prune * * find_get_entries() fills a batch with both folios and shadow/swap/DAX * entries. This function prunes all the non-folio entries from @fbatch * without leaving holes, so that it can be passed on to folio-only batch * operations. */ void folio_batch_remove_exceptionals(struct folio_batch *fbatch) { unsigned int i, j; for (i = 0, j = 0; i < folio_batch_count(fbatch); i++) { struct folio *folio = fbatch->folios[i]; if (!xa_is_value(folio)) fbatch->folios[j++] = folio; } fbatch->nr = j; } /** * pagevec_lookup_range - gang pagecache lookup * @pvec: Where the resulting pages are placed * @mapping: The address_space to search * @start: The starting page index * @end: The final page index * * pagevec_lookup_range() will search for & return a group of up to PAGEVEC_SIZE * pages in the mapping starting from index @start and upto index @end * (inclusive). The pages are placed in @pvec. pagevec_lookup() takes a * reference against the pages in @pvec. * * The search returns a group of mapping-contiguous pages with ascending * indexes. There may be holes in the indices due to not-present pages. We * also update @start to index the next page for the traversal. * * pagevec_lookup_range() returns the number of pages which were found. If this * number is smaller than PAGEVEC_SIZE, the end of specified range has been * reached. */ unsigned pagevec_lookup_range(struct pagevec *pvec, struct address_space *mapping, pgoff_t *start, pgoff_t end) { pvec->nr = find_get_pages_range(mapping, start, end, PAGEVEC_SIZE, pvec->pages); return pagevec_count(pvec); } EXPORT_SYMBOL(pagevec_lookup_range); unsigned pagevec_lookup_range_tag(struct pagevec *pvec, struct address_space *mapping, pgoff_t *index, pgoff_t end, xa_mark_t tag) { pvec->nr = find_get_pages_range_tag(mapping, index, end, tag, PAGEVEC_SIZE, pvec->pages); return pagevec_count(pvec); } EXPORT_SYMBOL(pagevec_lookup_range_tag); /* * Perform any setup for the swap system */ void __init swap_setup(void) { unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT); /* Use a smaller cluster for small-memory machines */ if (megs < 16) page_cluster = 2; else page_cluster = 3; /* * Right now other parts of the system means that we * _really_ don't want to cluster much more */ }