// SPDX-License-Identifier: GPL-2.0-only /* * linux/mm/swap.c * * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds */ /* * This file contains the default values for the operation of the * Linux VM subsystem. Fine-tuning documentation can be found in * Documentation/admin-guide/sysctl/vm.rst. * Started 18.12.91 * Swap aging added 23.2.95, Stephen Tweedie. * Buffermem limits added 12.3.98, Rik van Riel. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "internal.h" #define CREATE_TRACE_POINTS #include /* How many pages do we try to swap or page in/out together? */ int page_cluster; /* Protecting only lru_rotate.pvec which requires disabling interrupts */ struct lru_rotate { local_lock_t lock; struct pagevec pvec; }; static DEFINE_PER_CPU(struct lru_rotate, lru_rotate) = { .lock = INIT_LOCAL_LOCK(lock), }; /* * The following struct pagevec are grouped together because they are protected * by disabling preemption (and interrupts remain enabled). */ struct lru_pvecs { local_lock_t lock; struct pagevec lru_add; struct pagevec lru_deactivate_file; struct pagevec lru_deactivate; struct pagevec lru_lazyfree; #ifdef CONFIG_SMP struct pagevec activate_page; #endif }; static DEFINE_PER_CPU(struct lru_pvecs, lru_pvecs) = { .lock = INIT_LOCAL_LOCK(lock), }; /* * This path almost never happens for VM activity - pages are normally * freed via pagevecs. But it gets used by networking. */ static void __page_cache_release(struct page *page) { if (PageLRU(page)) { pg_data_t *pgdat = page_pgdat(page); struct lruvec *lruvec; unsigned long flags; spin_lock_irqsave(&pgdat->lru_lock, flags); lruvec = mem_cgroup_page_lruvec(page, pgdat); VM_BUG_ON_PAGE(!PageLRU(page), page); __ClearPageLRU(page); del_page_from_lru_list(page, lruvec, page_off_lru(page)); spin_unlock_irqrestore(&pgdat->lru_lock, flags); } __ClearPageWaiters(page); } static void __put_single_page(struct page *page) { __page_cache_release(page); mem_cgroup_uncharge(page); free_unref_page(page); } static void __put_compound_page(struct page *page) { /* * __page_cache_release() is supposed to be called for thp, not for * hugetlb. This is because hugetlb page does never have PageLRU set * (it's never listed to any LRU lists) and no memcg routines should * be called for hugetlb (it has a separate hugetlb_cgroup.) */ if (!PageHuge(page)) __page_cache_release(page); destroy_compound_page(page); } void __put_page(struct page *page) { if (is_zone_device_page(page)) { put_dev_pagemap(page->pgmap); /* * The page belongs to the device that created pgmap. Do * not return it to page allocator. */ return; } if (unlikely(PageCompound(page))) __put_compound_page(page); else __put_single_page(page); } EXPORT_SYMBOL(__put_page); /** * put_pages_list() - release a list of pages * @pages: list of pages threaded on page->lru * * Release a list of pages which are strung together on page.lru. Currently * used by read_cache_pages() and related error recovery code. */ void put_pages_list(struct list_head *pages) { while (!list_empty(pages)) { struct page *victim; victim = lru_to_page(pages); list_del(&victim->lru); put_page(victim); } } EXPORT_SYMBOL(put_pages_list); /* * get_kernel_pages() - pin kernel pages in memory * @kiov: An array of struct kvec structures * @nr_segs: number of segments to pin * @write: pinning for read/write, currently ignored * @pages: array that receives pointers to the pages pinned. * Should be at least nr_segs long. * * Returns number of pages pinned. This may be fewer than the number * requested. If nr_pages is 0 or negative, returns 0. If no pages * were pinned, returns -errno. Each page returned must be released * with a put_page() call when it is finished with. */ int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write, struct page **pages) { int seg; for (seg = 0; seg < nr_segs; seg++) { if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE)) return seg; pages[seg] = kmap_to_page(kiov[seg].iov_base); get_page(pages[seg]); } return seg; } EXPORT_SYMBOL_GPL(get_kernel_pages); /* * get_kernel_page() - pin a kernel page in memory * @start: starting kernel address * @write: pinning for read/write, currently ignored * @pages: array that receives pointer to the page pinned. * Must be at least nr_segs long. * * Returns 1 if page is pinned. If the page was not pinned, returns * -errno. The page returned must be released with a put_page() call * when it is finished with. */ int get_kernel_page(unsigned long start, int write, struct page **pages) { const struct kvec kiov = { .iov_base = (void *)start, .iov_len = PAGE_SIZE }; return get_kernel_pages(&kiov, 1, write, pages); } EXPORT_SYMBOL_GPL(get_kernel_page); static void pagevec_lru_move_fn(struct pagevec *pvec, void (*move_fn)(struct page *page, struct lruvec *lruvec)) { int i; struct pglist_data *pgdat = NULL; struct lruvec *lruvec; unsigned long flags = 0; for (i = 0; i < pagevec_count(pvec); i++) { struct page *page = pvec->pages[i]; struct pglist_data *pagepgdat = page_pgdat(page); if (pagepgdat != pgdat) { if (pgdat) spin_unlock_irqrestore(&pgdat->lru_lock, flags); pgdat = pagepgdat; spin_lock_irqsave(&pgdat->lru_lock, flags); } lruvec = mem_cgroup_page_lruvec(page, pgdat); (*move_fn)(page, lruvec); } if (pgdat) spin_unlock_irqrestore(&pgdat->lru_lock, flags); release_pages(pvec->pages, pvec->nr); pagevec_reinit(pvec); } static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec) { if (PageLRU(page) && !PageUnevictable(page)) { del_page_from_lru_list(page, lruvec, page_lru(page)); ClearPageActive(page); add_page_to_lru_list_tail(page, lruvec, page_lru(page)); __count_vm_events(PGROTATED, thp_nr_pages(page)); } } /* * Writeback is about to end against a page which has been marked for immediate * reclaim. If it still appears to be reclaimable, move it to the tail of the * inactive list. * * rotate_reclaimable_page() must disable IRQs, to prevent nasty races. */ void rotate_reclaimable_page(struct page *page) { if (!PageLocked(page) && !PageDirty(page) && !PageUnevictable(page) && PageLRU(page)) { struct pagevec *pvec; unsigned long flags; get_page(page); local_lock_irqsave(&lru_rotate.lock, flags); pvec = this_cpu_ptr(&lru_rotate.pvec); if (!pagevec_add(pvec, page) || PageCompound(page)) pagevec_lru_move_fn(pvec, pagevec_move_tail_fn); local_unlock_irqrestore(&lru_rotate.lock, flags); } } void lru_note_cost(struct lruvec *lruvec, bool file, unsigned int nr_pages) { do { unsigned long lrusize; struct pglist_data *pgdat = lruvec_pgdat(lruvec); spin_lock_irq(&pgdat->lru_lock); /* Record cost event */ if (file) lruvec->file_cost += nr_pages; else lruvec->anon_cost += nr_pages; /* * Decay previous events * * Because workloads change over time (and to avoid * overflow) we keep these statistics as a floating * average, which ends up weighing recent refaults * more than old ones. */ lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) + lruvec_page_state(lruvec, NR_ACTIVE_ANON) + lruvec_page_state(lruvec, NR_INACTIVE_FILE) + lruvec_page_state(lruvec, NR_ACTIVE_FILE); if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) { lruvec->file_cost /= 2; lruvec->anon_cost /= 2; } spin_unlock_irq(&pgdat->lru_lock); } while ((lruvec = parent_lruvec(lruvec))); } void lru_note_cost_page(struct page *page) { lru_note_cost(mem_cgroup_page_lruvec(page, page_pgdat(page)), page_is_file_lru(page), thp_nr_pages(page)); } static void __activate_page(struct page *page, struct lruvec *lruvec) { if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) { int lru = page_lru_base_type(page); int nr_pages = thp_nr_pages(page); del_page_from_lru_list(page, lruvec, lru); SetPageActive(page); lru += LRU_ACTIVE; add_page_to_lru_list(page, lruvec, lru); trace_mm_lru_activate(page); __count_vm_events(PGACTIVATE, nr_pages); __count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE, nr_pages); } } #ifdef CONFIG_SMP static void activate_page_drain(int cpu) { struct pagevec *pvec = &per_cpu(lru_pvecs.activate_page, cpu); if (pagevec_count(pvec)) pagevec_lru_move_fn(pvec, __activate_page); } static bool need_activate_page_drain(int cpu) { return pagevec_count(&per_cpu(lru_pvecs.activate_page, cpu)) != 0; } static void activate_page(struct page *page) { page = compound_head(page); if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) { struct pagevec *pvec; local_lock(&lru_pvecs.lock); pvec = this_cpu_ptr(&lru_pvecs.activate_page); get_page(page); if (!pagevec_add(pvec, page) || PageCompound(page)) pagevec_lru_move_fn(pvec, __activate_page); local_unlock(&lru_pvecs.lock); } } #else static inline void activate_page_drain(int cpu) { } static void activate_page(struct page *page) { pg_data_t *pgdat = page_pgdat(page); page = compound_head(page); spin_lock_irq(&pgdat->lru_lock); __activate_page(page, mem_cgroup_page_lruvec(page, pgdat)); spin_unlock_irq(&pgdat->lru_lock); } #endif static void __lru_cache_activate_page(struct page *page) { struct pagevec *pvec; int i; local_lock(&lru_pvecs.lock); pvec = this_cpu_ptr(&lru_pvecs.lru_add); /* * Search backwards on the optimistic assumption that the page being * activated has just been added to this pagevec. Note that only * the local pagevec is examined as a !PageLRU page could be in the * process of being released, reclaimed, migrated or on a remote * pagevec that is currently being drained. Furthermore, marking * a remote pagevec's page PageActive potentially hits a race where * a page is marked PageActive just after it is added to the inactive * list causing accounting errors and BUG_ON checks to trigger. */ for (i = pagevec_count(pvec) - 1; i >= 0; i--) { struct page *pagevec_page = pvec->pages[i]; if (pagevec_page == page) { SetPageActive(page); break; } } local_unlock(&lru_pvecs.lock); } /* * Mark a page as having seen activity. * * inactive,unreferenced -> inactive,referenced * inactive,referenced -> active,unreferenced * active,unreferenced -> active,referenced * * When a newly allocated page is not yet visible, so safe for non-atomic ops, * __SetPageReferenced(page) may be substituted for mark_page_accessed(page). */ void mark_page_accessed(struct page *page) { page = compound_head(page); if (!PageReferenced(page)) { SetPageReferenced(page); } else if (PageUnevictable(page)) { /* * Unevictable pages are on the "LRU_UNEVICTABLE" list. But, * this list is never rotated or maintained, so marking an * evictable page accessed has no effect. */ } else if (!PageActive(page)) { /* * If the page is on the LRU, queue it for activation via * lru_pvecs.activate_page. Otherwise, assume the page is on a * pagevec, mark it active and it'll be moved to the active * LRU on the next drain. */ if (PageLRU(page)) activate_page(page); else __lru_cache_activate_page(page); ClearPageReferenced(page); workingset_activation(page); } if (page_is_idle(page)) clear_page_idle(page); } EXPORT_SYMBOL(mark_page_accessed); /** * lru_cache_add - add a page to a page list * @page: the page to be added to the LRU. * * Queue the page for addition to the LRU via pagevec. The decision on whether * to add the page to the [in]active [file|anon] list is deferred until the * pagevec is drained. This gives a chance for the caller of lru_cache_add() * have the page added to the active list using mark_page_accessed(). */ void lru_cache_add(struct page *page) { struct pagevec *pvec; VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page); VM_BUG_ON_PAGE(PageLRU(page), page); get_page(page); local_lock(&lru_pvecs.lock); pvec = this_cpu_ptr(&lru_pvecs.lru_add); if (!pagevec_add(pvec, page) || PageCompound(page)) __pagevec_lru_add(pvec); local_unlock(&lru_pvecs.lock); } EXPORT_SYMBOL(lru_cache_add); /** * lru_cache_add_inactive_or_unevictable * @page: the page to be added to LRU * @vma: vma in which page is mapped for determining reclaimability * * Place @page on the inactive or unevictable LRU list, depending on its * evictability. */ void lru_cache_add_inactive_or_unevictable(struct page *page, struct vm_area_struct *vma) { bool unevictable; VM_BUG_ON_PAGE(PageLRU(page), page); unevictable = (vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED; if (unlikely(unevictable) && !TestSetPageMlocked(page)) { int nr_pages = thp_nr_pages(page); /* * We use the irq-unsafe __mod_zone_page_stat because this * counter is not modified from interrupt context, and the pte * lock is held(spinlock), which implies preemption disabled. */ __mod_zone_page_state(page_zone(page), NR_MLOCK, nr_pages); count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages); } lru_cache_add(page); } /* * If the page can not be invalidated, it is moved to the * inactive list to speed up its reclaim. It is moved to the * head of the list, rather than the tail, to give the flusher * threads some time to write it out, as this is much more * effective than the single-page writeout from reclaim. * * If the page isn't page_mapped and dirty/writeback, the page * could reclaim asap using PG_reclaim. * * 1. active, mapped page -> none * 2. active, dirty/writeback page -> inactive, head, PG_reclaim * 3. inactive, mapped page -> none * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim * 5. inactive, clean -> inactive, tail * 6. Others -> none * * In 4, why it moves inactive's head, the VM expects the page would * be write it out by flusher threads as this is much more effective * than the single-page writeout from reclaim. */ static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec) { int lru; bool active; int nr_pages = thp_nr_pages(page); if (!PageLRU(page)) return; if (PageUnevictable(page)) return; /* Some processes are using the page */ if (page_mapped(page)) return; active = PageActive(page); lru = page_lru_base_type(page); del_page_from_lru_list(page, lruvec, lru + active); ClearPageActive(page); ClearPageReferenced(page); if (PageWriteback(page) || PageDirty(page)) { /* * PG_reclaim could be raced with end_page_writeback * It can make readahead confusing. But race window * is _really_ small and it's non-critical problem. */ add_page_to_lru_list(page, lruvec, lru); SetPageReclaim(page); } else { /* * The page's writeback ends up during pagevec * We moves tha page into tail of inactive. */ add_page_to_lru_list_tail(page, lruvec, lru); __count_vm_events(PGROTATED, nr_pages); } if (active) { __count_vm_events(PGDEACTIVATE, nr_pages); __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_pages); } } static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec) { if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) { int lru = page_lru_base_type(page); int nr_pages = thp_nr_pages(page); del_page_from_lru_list(page, lruvec, lru + LRU_ACTIVE); ClearPageActive(page); ClearPageReferenced(page); add_page_to_lru_list(page, lruvec, lru); __count_vm_events(PGDEACTIVATE, nr_pages); __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_pages); } } static void lru_lazyfree_fn(struct page *page, struct lruvec *lruvec) { if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) && !PageSwapCache(page) && !PageUnevictable(page)) { bool active = PageActive(page); int nr_pages = thp_nr_pages(page); del_page_from_lru_list(page, lruvec, LRU_INACTIVE_ANON + active); ClearPageActive(page); ClearPageReferenced(page); /* * Lazyfree pages are clean anonymous pages. They have * PG_swapbacked flag cleared, to distinguish them from normal * anonymous pages */ ClearPageSwapBacked(page); add_page_to_lru_list(page, lruvec, LRU_INACTIVE_FILE); __count_vm_events(PGLAZYFREE, nr_pages); __count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE, nr_pages); } } /* * Drain pages out of the cpu's pagevecs. * Either "cpu" is the current CPU, and preemption has already been * disabled; or "cpu" is being hot-unplugged, and is already dead. */ void lru_add_drain_cpu(int cpu) { struct pagevec *pvec = &per_cpu(lru_pvecs.lru_add, cpu); if (pagevec_count(pvec)) __pagevec_lru_add(pvec); pvec = &per_cpu(lru_rotate.pvec, cpu); /* Disabling interrupts below acts as a compiler barrier. */ if (data_race(pagevec_count(pvec))) { unsigned long flags; /* No harm done if a racing interrupt already did this */ local_lock_irqsave(&lru_rotate.lock, flags); pagevec_lru_move_fn(pvec, pagevec_move_tail_fn); local_unlock_irqrestore(&lru_rotate.lock, flags); } pvec = &per_cpu(lru_pvecs.lru_deactivate_file, cpu); if (pagevec_count(pvec)) pagevec_lru_move_fn(pvec, lru_deactivate_file_fn); pvec = &per_cpu(lru_pvecs.lru_deactivate, cpu); if (pagevec_count(pvec)) pagevec_lru_move_fn(pvec, lru_deactivate_fn); pvec = &per_cpu(lru_pvecs.lru_lazyfree, cpu); if (pagevec_count(pvec)) pagevec_lru_move_fn(pvec, lru_lazyfree_fn); activate_page_drain(cpu); } /** * deactivate_file_page - forcefully deactivate a file page * @page: page to deactivate * * This function hints the VM that @page is a good reclaim candidate, * for example if its invalidation fails due to the page being dirty * or under writeback. */ void deactivate_file_page(struct page *page) { /* * In a workload with many unevictable page such as mprotect, * unevictable page deactivation for accelerating reclaim is pointless. */ if (PageUnevictable(page)) return; if (likely(get_page_unless_zero(page))) { struct pagevec *pvec; local_lock(&lru_pvecs.lock); pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate_file); if (!pagevec_add(pvec, page) || PageCompound(page)) pagevec_lru_move_fn(pvec, lru_deactivate_file_fn); local_unlock(&lru_pvecs.lock); } } /* * deactivate_page - deactivate a page * @page: page to deactivate * * deactivate_page() moves @page to the inactive list if @page was on the active * list and was not an unevictable page. This is done to accelerate the reclaim * of @page. */ void deactivate_page(struct page *page) { if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) { struct pagevec *pvec; local_lock(&lru_pvecs.lock); pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate); get_page(page); if (!pagevec_add(pvec, page) || PageCompound(page)) pagevec_lru_move_fn(pvec, lru_deactivate_fn); local_unlock(&lru_pvecs.lock); } } /** * mark_page_lazyfree - make an anon page lazyfree * @page: page to deactivate * * mark_page_lazyfree() moves @page to the inactive file list. * This is done to accelerate the reclaim of @page. */ void mark_page_lazyfree(struct page *page) { if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) && !PageSwapCache(page) && !PageUnevictable(page)) { struct pagevec *pvec; local_lock(&lru_pvecs.lock); pvec = this_cpu_ptr(&lru_pvecs.lru_lazyfree); get_page(page); if (!pagevec_add(pvec, page) || PageCompound(page)) pagevec_lru_move_fn(pvec, lru_lazyfree_fn); local_unlock(&lru_pvecs.lock); } } void lru_add_drain(void) { local_lock(&lru_pvecs.lock); lru_add_drain_cpu(smp_processor_id()); local_unlock(&lru_pvecs.lock); } void lru_add_drain_cpu_zone(struct zone *zone) { local_lock(&lru_pvecs.lock); lru_add_drain_cpu(smp_processor_id()); drain_local_pages(zone); local_unlock(&lru_pvecs.lock); } #ifdef CONFIG_SMP static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work); static void lru_add_drain_per_cpu(struct work_struct *dummy) { lru_add_drain(); } /* * Doesn't need any cpu hotplug locking because we do rely on per-cpu * kworkers being shut down before our page_alloc_cpu_dead callback is * executed on the offlined cpu. * Calling this function with cpu hotplug locks held can actually lead * to obscure indirect dependencies via WQ context. */ void lru_add_drain_all(void) { /* * lru_drain_gen - Global pages generation number * * (A) Definition: global lru_drain_gen = x implies that all generations * 0 < n <= x are already *scheduled* for draining. * * This is an optimization for the highly-contended use case where a * user space workload keeps constantly generating a flow of pages for * each CPU. */ static unsigned int lru_drain_gen; static struct cpumask has_work; static DEFINE_MUTEX(lock); unsigned cpu, this_gen; /* * Make sure nobody triggers this path before mm_percpu_wq is fully * initialized. */ if (WARN_ON(!mm_percpu_wq)) return; /* * Guarantee pagevec counter stores visible by this CPU are visible to * other CPUs before loading the current drain generation. */ smp_mb(); /* * (B) Locally cache global LRU draining generation number * * The read barrier ensures that the counter is loaded before the mutex * is taken. It pairs with smp_mb() inside the mutex critical section * at (D). */ this_gen = smp_load_acquire(&lru_drain_gen); mutex_lock(&lock); /* * (C) Exit the draining operation if a newer generation, from another * lru_add_drain_all(), was already scheduled for draining. Check (A). */ if (unlikely(this_gen != lru_drain_gen)) goto done; /* * (D) Increment global generation number * * Pairs with smp_load_acquire() at (B), outside of the critical * section. Use a full memory barrier to guarantee that the new global * drain generation number is stored before loading pagevec counters. * * This pairing must be done here, before the for_each_online_cpu loop * below which drains the page vectors. * * Let x, y, and z represent some system CPU numbers, where x < y < z. * Assume CPU #z is is in the middle of the for_each_online_cpu loop * below and has already reached CPU #y's per-cpu data. CPU #x comes * along, adds some pages to its per-cpu vectors, then calls * lru_add_drain_all(). * * If the paired barrier is done at any later step, e.g. after the * loop, CPU #x will just exit at (C) and miss flushing out all of its * added pages. */ WRITE_ONCE(lru_drain_gen, lru_drain_gen + 1); smp_mb(); cpumask_clear(&has_work); for_each_online_cpu(cpu) { struct work_struct *work = &per_cpu(lru_add_drain_work, cpu); if (pagevec_count(&per_cpu(lru_pvecs.lru_add, cpu)) || data_race(pagevec_count(&per_cpu(lru_rotate.pvec, cpu))) || pagevec_count(&per_cpu(lru_pvecs.lru_deactivate_file, cpu)) || pagevec_count(&per_cpu(lru_pvecs.lru_deactivate, cpu)) || pagevec_count(&per_cpu(lru_pvecs.lru_lazyfree, cpu)) || need_activate_page_drain(cpu)) { INIT_WORK(work, lru_add_drain_per_cpu); queue_work_on(cpu, mm_percpu_wq, work); __cpumask_set_cpu(cpu, &has_work); } } for_each_cpu(cpu, &has_work) flush_work(&per_cpu(lru_add_drain_work, cpu)); done: mutex_unlock(&lock); } #else void lru_add_drain_all(void) { lru_add_drain(); } #endif /* CONFIG_SMP */ /** * release_pages - batched put_page() * @pages: array of pages to release * @nr: number of pages * * Decrement the reference count on all the pages in @pages. If it * fell to zero, remove the page from the LRU and free it. */ void release_pages(struct page **pages, int nr) { int i; LIST_HEAD(pages_to_free); struct pglist_data *locked_pgdat = NULL; struct lruvec *lruvec; unsigned long flags; unsigned int lock_batch; for (i = 0; i < nr; i++) { struct page *page = pages[i]; /* * Make sure the IRQ-safe lock-holding time does not get * excessive with a continuous string of pages from the * same pgdat. The lock is held only if pgdat != NULL. */ if (locked_pgdat && ++lock_batch == SWAP_CLUSTER_MAX) { spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags); locked_pgdat = NULL; } page = compound_head(page); if (is_huge_zero_page(page)) continue; if (is_zone_device_page(page)) { if (locked_pgdat) { spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags); locked_pgdat = NULL; } /* * ZONE_DEVICE pages that return 'false' from * page_is_devmap_managed() do not require special * processing, and instead, expect a call to * put_page_testzero(). */ if (page_is_devmap_managed(page)) { put_devmap_managed_page(page); continue; } if (put_page_testzero(page)) put_dev_pagemap(page->pgmap); continue; } if (!put_page_testzero(page)) continue; if (PageCompound(page)) { if (locked_pgdat) { spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags); locked_pgdat = NULL; } __put_compound_page(page); continue; } if (PageLRU(page)) { struct pglist_data *pgdat = page_pgdat(page); if (pgdat != locked_pgdat) { if (locked_pgdat) spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags); lock_batch = 0; locked_pgdat = pgdat; spin_lock_irqsave(&locked_pgdat->lru_lock, flags); } lruvec = mem_cgroup_page_lruvec(page, locked_pgdat); VM_BUG_ON_PAGE(!PageLRU(page), page); __ClearPageLRU(page); del_page_from_lru_list(page, lruvec, page_off_lru(page)); } __ClearPageWaiters(page); list_add(&page->lru, &pages_to_free); } if (locked_pgdat) spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags); mem_cgroup_uncharge_list(&pages_to_free); free_unref_page_list(&pages_to_free); } EXPORT_SYMBOL(release_pages); /* * The pages which we're about to release may be in the deferred lru-addition * queues. That would prevent them from really being freed right now. That's * OK from a correctness point of view but is inefficient - those pages may be * cache-warm and we want to give them back to the page allocator ASAP. * * So __pagevec_release() will drain those queues here. __pagevec_lru_add() * and __pagevec_lru_add_active() call release_pages() directly to avoid * mutual recursion. */ void __pagevec_release(struct pagevec *pvec) { if (!pvec->percpu_pvec_drained) { lru_add_drain(); pvec->percpu_pvec_drained = true; } release_pages(pvec->pages, pagevec_count(pvec)); pagevec_reinit(pvec); } EXPORT_SYMBOL(__pagevec_release); static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec) { enum lru_list lru; int was_unevictable = TestClearPageUnevictable(page); int nr_pages = thp_nr_pages(page); VM_BUG_ON_PAGE(PageLRU(page), page); /* * Page becomes evictable in two ways: * 1) Within LRU lock [munlock_vma_page() and __munlock_pagevec()]. * 2) Before acquiring LRU lock to put the page to correct LRU and then * a) do PageLRU check with lock [check_move_unevictable_pages] * b) do PageLRU check before lock [clear_page_mlock] * * (1) & (2a) are ok as LRU lock will serialize them. For (2b), we need * following strict ordering: * * #0: __pagevec_lru_add_fn #1: clear_page_mlock * * SetPageLRU() TestClearPageMlocked() * smp_mb() // explicit ordering // above provides strict * // ordering * PageMlocked() PageLRU() * * * if '#1' does not observe setting of PG_lru by '#0' and fails * isolation, the explicit barrier will make sure that page_evictable * check will put the page in correct LRU. Without smp_mb(), SetPageLRU * can be reordered after PageMlocked check and can make '#1' to fail * the isolation of the page whose Mlocked bit is cleared (#0 is also * looking at the same page) and the evictable page will be stranded * in an unevictable LRU. */ SetPageLRU(page); smp_mb__after_atomic(); if (page_evictable(page)) { lru = page_lru(page); if (was_unevictable) __count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages); } else { lru = LRU_UNEVICTABLE; ClearPageActive(page); SetPageUnevictable(page); if (!was_unevictable) __count_vm_events(UNEVICTABLE_PGCULLED, nr_pages); } add_page_to_lru_list(page, lruvec, lru); trace_mm_lru_insertion(page, lru); } /* * Add the passed pages to the LRU, then drop the caller's refcount * on them. Reinitialises the caller's pagevec. */ void __pagevec_lru_add(struct pagevec *pvec) { pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn); } /** * pagevec_lookup_entries - gang pagecache lookup * @pvec: Where the resulting entries are placed * @mapping: The address_space to search * @start: The starting entry index * @nr_entries: The maximum number of pages * @indices: The cache indices corresponding to the entries in @pvec * * pagevec_lookup_entries() will search for and return a group of up * to @nr_pages pages and shadow entries in the mapping. All * entries are placed in @pvec. pagevec_lookup_entries() takes a * reference against actual pages in @pvec. * * The search returns a group of mapping-contiguous entries with * ascending indexes. There may be holes in the indices due to * not-present entries. * * Only one subpage of a Transparent Huge Page is returned in one call: * allowing truncate_inode_pages_range() to evict the whole THP without * cycling through a pagevec of extra references. * * pagevec_lookup_entries() returns the number of entries which were * found. */ unsigned pagevec_lookup_entries(struct pagevec *pvec, struct address_space *mapping, pgoff_t start, unsigned nr_entries, pgoff_t *indices) { pvec->nr = find_get_entries(mapping, start, nr_entries, pvec->pages, indices); return pagevec_count(pvec); } /** * pagevec_remove_exceptionals - pagevec exceptionals pruning * @pvec: The pagevec to prune * * pagevec_lookup_entries() fills both pages and exceptional radix * tree entries into the pagevec. This function prunes all * exceptionals from @pvec without leaving holes, so that it can be * passed on to page-only pagevec operations. */ void pagevec_remove_exceptionals(struct pagevec *pvec) { int i, j; for (i = 0, j = 0; i < pagevec_count(pvec); i++) { struct page *page = pvec->pages[i]; if (!xa_is_value(page)) pvec->pages[j++] = page; } pvec->nr = j; } /** * pagevec_lookup_range - gang pagecache lookup * @pvec: Where the resulting pages are placed * @mapping: The address_space to search * @start: The starting page index * @end: The final page index * * pagevec_lookup_range() will search for & return a group of up to PAGEVEC_SIZE * pages in the mapping starting from index @start and upto index @end * (inclusive). The pages are placed in @pvec. pagevec_lookup() takes a * reference against the pages in @pvec. * * The search returns a group of mapping-contiguous pages with ascending * indexes. There may be holes in the indices due to not-present pages. We * also update @start to index the next page for the traversal. * * pagevec_lookup_range() returns the number of pages which were found. If this * number is smaller than PAGEVEC_SIZE, the end of specified range has been * reached. */ unsigned pagevec_lookup_range(struct pagevec *pvec, struct address_space *mapping, pgoff_t *start, pgoff_t end) { pvec->nr = find_get_pages_range(mapping, start, end, PAGEVEC_SIZE, pvec->pages); return pagevec_count(pvec); } EXPORT_SYMBOL(pagevec_lookup_range); unsigned pagevec_lookup_range_tag(struct pagevec *pvec, struct address_space *mapping, pgoff_t *index, pgoff_t end, xa_mark_t tag) { pvec->nr = find_get_pages_range_tag(mapping, index, end, tag, PAGEVEC_SIZE, pvec->pages); return pagevec_count(pvec); } EXPORT_SYMBOL(pagevec_lookup_range_tag); /* * Perform any setup for the swap system */ void __init swap_setup(void) { unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT); /* Use a smaller cluster for small-memory machines */ if (megs < 16) page_cluster = 2; else page_cluster = 3; /* * Right now other parts of the system means that we * _really_ don't want to cluster much more */ } #ifdef CONFIG_DEV_PAGEMAP_OPS void put_devmap_managed_page(struct page *page) { int count; if (WARN_ON_ONCE(!page_is_devmap_managed(page))) return; count = page_ref_dec_return(page); /* * devmap page refcounts are 1-based, rather than 0-based: if * refcount is 1, then the page is free and the refcount is * stable because nobody holds a reference on the page. */ if (count == 1) free_devmap_managed_page(page); else if (!count) __put_page(page); } EXPORT_SYMBOL(put_devmap_managed_page); #endif