// SPDX-License-Identifier: GPL-2.0-only /* net/atm/common.c - ATM sockets (common part for PVC and SVC) */ /* Written 1995-2000 by Werner Almesberger, EPFL LRC/ICA */ #define pr_fmt(fmt) KBUILD_MODNAME ":%s: " fmt, __func__ #include <linux/module.h> #include <linux/kmod.h> #include <linux/net.h> /* struct socket, struct proto_ops */ #include <linux/atm.h> /* ATM stuff */ #include <linux/atmdev.h> #include <linux/socket.h> /* SOL_SOCKET */ #include <linux/errno.h> /* error codes */ #include <linux/capability.h> #include <linux/mm.h> #include <linux/sched/signal.h> #include <linux/time64.h> /* 64-bit time for seconds */ #include <linux/skbuff.h> #include <linux/bitops.h> #include <linux/init.h> #include <linux/slab.h> #include <net/sock.h> /* struct sock */ #include <linux/uaccess.h> #include <linux/poll.h> #include <linux/atomic.h> #include "resources.h" /* atm_find_dev */ #include "common.h" /* prototypes */ #include "protocols.h" /* atm_init_<transport> */ #include "addr.h" /* address registry */ #include "signaling.h" /* for WAITING and sigd_attach */ struct hlist_head vcc_hash[VCC_HTABLE_SIZE]; EXPORT_SYMBOL(vcc_hash); DEFINE_RWLOCK(vcc_sklist_lock); EXPORT_SYMBOL(vcc_sklist_lock); static ATOMIC_NOTIFIER_HEAD(atm_dev_notify_chain); static void __vcc_insert_socket(struct sock *sk) { struct atm_vcc *vcc = atm_sk(sk); struct hlist_head *head = &vcc_hash[vcc->vci & (VCC_HTABLE_SIZE - 1)]; sk->sk_hash = vcc->vci & (VCC_HTABLE_SIZE - 1); sk_add_node(sk, head); } void vcc_insert_socket(struct sock *sk) { write_lock_irq(&vcc_sklist_lock); __vcc_insert_socket(sk); write_unlock_irq(&vcc_sklist_lock); } EXPORT_SYMBOL(vcc_insert_socket); static void vcc_remove_socket(struct sock *sk) { write_lock_irq(&vcc_sklist_lock); sk_del_node_init(sk); write_unlock_irq(&vcc_sklist_lock); } static bool vcc_tx_ready(struct atm_vcc *vcc, unsigned int size) { struct sock *sk = sk_atm(vcc); if (sk_wmem_alloc_get(sk) && !atm_may_send(vcc, size)) { pr_debug("Sorry: wmem_alloc = %d, size = %d, sndbuf = %d\n", sk_wmem_alloc_get(sk), size, sk->sk_sndbuf); return false; } return true; } static void vcc_sock_destruct(struct sock *sk) { if (atomic_read(&sk->sk_rmem_alloc)) printk(KERN_DEBUG "%s: rmem leakage (%d bytes) detected.\n", __func__, atomic_read(&sk->sk_rmem_alloc)); if (refcount_read(&sk->sk_wmem_alloc)) printk(KERN_DEBUG "%s: wmem leakage (%d bytes) detected.\n", __func__, refcount_read(&sk->sk_wmem_alloc)); } static void vcc_def_wakeup(struct sock *sk) { struct socket_wq *wq; rcu_read_lock(); wq = rcu_dereference(sk->sk_wq); if (skwq_has_sleeper(wq)) wake_up(&wq->wait); rcu_read_unlock(); } static inline int vcc_writable(struct sock *sk) { struct atm_vcc *vcc = atm_sk(sk); return (vcc->qos.txtp.max_sdu + refcount_read(&sk->sk_wmem_alloc)) <= sk->sk_sndbuf; } static void vcc_write_space(struct sock *sk) { struct socket_wq *wq; rcu_read_lock(); if (vcc_writable(sk)) { wq = rcu_dereference(sk->sk_wq); if (skwq_has_sleeper(wq)) wake_up_interruptible(&wq->wait); sk_wake_async_rcu(sk, SOCK_WAKE_SPACE, POLL_OUT); } rcu_read_unlock(); } static void vcc_release_cb(struct sock *sk) { struct atm_vcc *vcc = atm_sk(sk); if (vcc->release_cb) vcc->release_cb(vcc); } static struct proto vcc_proto = { .name = "VCC", .owner = THIS_MODULE, .obj_size = sizeof(struct atm_vcc), .release_cb = vcc_release_cb, }; int vcc_create(struct net *net, struct socket *sock, int protocol, int family, int kern) { struct sock *sk; struct atm_vcc *vcc; sock->sk = NULL; if (sock->type == SOCK_STREAM) return -EINVAL; sk = sk_alloc(net, family, GFP_KERNEL, &vcc_proto, kern); if (!sk) return -ENOMEM; sock_init_data(sock, sk); sk->sk_state_change = vcc_def_wakeup; sk->sk_write_space = vcc_write_space; vcc = atm_sk(sk); vcc->dev = NULL; memset(&vcc->local, 0, sizeof(struct sockaddr_atmsvc)); memset(&vcc->remote, 0, sizeof(struct sockaddr_atmsvc)); vcc->qos.txtp.max_sdu = 1 << 16; /* for meta VCs */ refcount_set(&sk->sk_wmem_alloc, 1); atomic_set(&sk->sk_rmem_alloc, 0); vcc->push = NULL; vcc->pop = NULL; vcc->owner = NULL; vcc->push_oam = NULL; vcc->release_cb = NULL; vcc->vpi = vcc->vci = 0; /* no VCI/VPI yet */ vcc->atm_options = vcc->aal_options = 0; sk->sk_destruct = vcc_sock_destruct; return 0; } static void vcc_destroy_socket(struct sock *sk) { struct atm_vcc *vcc = atm_sk(sk); struct sk_buff *skb; set_bit(ATM_VF_CLOSE, &vcc->flags); clear_bit(ATM_VF_READY, &vcc->flags); if (vcc->dev && vcc->dev->ops->close) vcc->dev->ops->close(vcc); if (vcc->push) vcc->push(vcc, NULL); /* atmarpd has no push */ module_put(vcc->owner); while ((skb = skb_dequeue(&sk->sk_receive_queue)) != NULL) { atm_return(vcc, skb->truesize); kfree_skb(skb); } if (vcc->dev && vcc->dev->ops->owner) { module_put(vcc->dev->ops->owner); atm_dev_put(vcc->dev); } vcc_remove_socket(sk); } int vcc_release(struct socket *sock) { struct sock *sk = sock->sk; if (sk) { lock_sock(sk); vcc_destroy_socket(sock->sk); release_sock(sk); sock_put(sk); } return 0; } void vcc_release_async(struct atm_vcc *vcc, int reply) { struct sock *sk = sk_atm(vcc); set_bit(ATM_VF_CLOSE, &vcc->flags); sk->sk_shutdown |= RCV_SHUTDOWN; sk->sk_err = -reply; clear_bit(ATM_VF_WAITING, &vcc->flags); sk->sk_state_change(sk); } EXPORT_SYMBOL(vcc_release_async); void vcc_process_recv_queue(struct atm_vcc *vcc) { struct sk_buff_head queue, *rq; struct sk_buff *skb, *tmp; unsigned long flags; __skb_queue_head_init(&queue); rq = &sk_atm(vcc)->sk_receive_queue; spin_lock_irqsave(&rq->lock, flags); skb_queue_splice_init(rq, &queue); spin_unlock_irqrestore(&rq->lock, flags); skb_queue_walk_safe(&queue, skb, tmp) { __skb_unlink(skb, &queue); vcc->push(vcc, skb); } } EXPORT_SYMBOL(vcc_process_recv_queue); void atm_dev_signal_change(struct atm_dev *dev, char signal) { pr_debug("%s signal=%d dev=%p number=%d dev->signal=%d\n", __func__, signal, dev, dev->number, dev->signal); /* atm driver sending invalid signal */ WARN_ON(signal < ATM_PHY_SIG_LOST || signal > ATM_PHY_SIG_FOUND); if (dev->signal == signal) return; /* no change */ dev->signal = signal; atomic_notifier_call_chain(&atm_dev_notify_chain, signal, dev); } EXPORT_SYMBOL(atm_dev_signal_change); void atm_dev_release_vccs(struct atm_dev *dev) { int i; write_lock_irq(&vcc_sklist_lock); for (i = 0; i < VCC_HTABLE_SIZE; i++) { struct hlist_head *head = &vcc_hash[i]; struct hlist_node *tmp; struct sock *s; struct atm_vcc *vcc; sk_for_each_safe(s, tmp, head) { vcc = atm_sk(s); if (vcc->dev == dev) { vcc_release_async(vcc, -EPIPE); sk_del_node_init(s); } } } write_unlock_irq(&vcc_sklist_lock); } EXPORT_SYMBOL(atm_dev_release_vccs); static int adjust_tp(struct atm_trafprm *tp, unsigned char aal) { int max_sdu; if (!tp->traffic_class) return 0; switch (aal) { case ATM_AAL0: max_sdu = ATM_CELL_SIZE-1; break; case ATM_AAL34: max_sdu = ATM_MAX_AAL34_PDU; break; default: pr_warn("AAL problems ... (%d)\n", aal); fallthrough; case ATM_AAL5: max_sdu = ATM_MAX_AAL5_PDU; } if (!tp->max_sdu) tp->max_sdu = max_sdu; else if (tp->max_sdu > max_sdu) return -EINVAL; if (!tp->max_cdv) tp->max_cdv = ATM_MAX_CDV; return 0; } static int check_ci(const struct atm_vcc *vcc, short vpi, int vci) { struct hlist_head *head = &vcc_hash[vci & (VCC_HTABLE_SIZE - 1)]; struct sock *s; struct atm_vcc *walk; sk_for_each(s, head) { walk = atm_sk(s); if (walk->dev != vcc->dev) continue; if (test_bit(ATM_VF_ADDR, &walk->flags) && walk->vpi == vpi && walk->vci == vci && ((walk->qos.txtp.traffic_class != ATM_NONE && vcc->qos.txtp.traffic_class != ATM_NONE) || (walk->qos.rxtp.traffic_class != ATM_NONE && vcc->qos.rxtp.traffic_class != ATM_NONE))) return -EADDRINUSE; } /* allow VCCs with same VPI/VCI iff they don't collide on TX/RX (but we may refuse such sharing for other reasons, e.g. if protocol requires to have both channels) */ return 0; } static int find_ci(const struct atm_vcc *vcc, short *vpi, int *vci) { static short p; /* poor man's per-device cache */ static int c; short old_p; int old_c; int err; if (*vpi != ATM_VPI_ANY && *vci != ATM_VCI_ANY) { err = check_ci(vcc, *vpi, *vci); return err; } /* last scan may have left values out of bounds for current device */ if (*vpi != ATM_VPI_ANY) p = *vpi; else if (p >= 1 << vcc->dev->ci_range.vpi_bits) p = 0; if (*vci != ATM_VCI_ANY) c = *vci; else if (c < ATM_NOT_RSV_VCI || c >= 1 << vcc->dev->ci_range.vci_bits) c = ATM_NOT_RSV_VCI; old_p = p; old_c = c; do { if (!check_ci(vcc, p, c)) { *vpi = p; *vci = c; return 0; } if (*vci == ATM_VCI_ANY) { c++; if (c >= 1 << vcc->dev->ci_range.vci_bits) c = ATM_NOT_RSV_VCI; } if ((c == ATM_NOT_RSV_VCI || *vci != ATM_VCI_ANY) && *vpi == ATM_VPI_ANY) { p++; if (p >= 1 << vcc->dev->ci_range.vpi_bits) p = 0; } } while (old_p != p || old_c != c); return -EADDRINUSE; } static int __vcc_connect(struct atm_vcc *vcc, struct atm_dev *dev, short vpi, int vci) { struct sock *sk = sk_atm(vcc); int error; if ((vpi != ATM_VPI_UNSPEC && vpi != ATM_VPI_ANY && vpi >> dev->ci_range.vpi_bits) || (vci != ATM_VCI_UNSPEC && vci != ATM_VCI_ANY && vci >> dev->ci_range.vci_bits)) return -EINVAL; if (vci > 0 && vci < ATM_NOT_RSV_VCI && !capable(CAP_NET_BIND_SERVICE)) return -EPERM; error = -ENODEV; if (!try_module_get(dev->ops->owner)) return error; vcc->dev = dev; write_lock_irq(&vcc_sklist_lock); if (test_bit(ATM_DF_REMOVED, &dev->flags) || (error = find_ci(vcc, &vpi, &vci))) { write_unlock_irq(&vcc_sklist_lock); goto fail_module_put; } vcc->vpi = vpi; vcc->vci = vci; __vcc_insert_socket(sk); write_unlock_irq(&vcc_sklist_lock); switch (vcc->qos.aal) { case ATM_AAL0: error = atm_init_aal0(vcc); vcc->stats = &dev->stats.aal0; break; case ATM_AAL34: error = atm_init_aal34(vcc); vcc->stats = &dev->stats.aal34; break; case ATM_NO_AAL: /* ATM_AAL5 is also used in the "0 for default" case */ vcc->qos.aal = ATM_AAL5; fallthrough; case ATM_AAL5: error = atm_init_aal5(vcc); vcc->stats = &dev->stats.aal5; break; default: error = -EPROTOTYPE; } if (!error) error = adjust_tp(&vcc->qos.txtp, vcc->qos.aal); if (!error) error = adjust_tp(&vcc->qos.rxtp, vcc->qos.aal); if (error) goto fail; pr_debug("VCC %d.%d, AAL %d\n", vpi, vci, vcc->qos.aal); pr_debug(" TX: %d, PCR %d..%d, SDU %d\n", vcc->qos.txtp.traffic_class, vcc->qos.txtp.min_pcr, vcc->qos.txtp.max_pcr, vcc->qos.txtp.max_sdu); pr_debug(" RX: %d, PCR %d..%d, SDU %d\n", vcc->qos.rxtp.traffic_class, vcc->qos.rxtp.min_pcr, vcc->qos.rxtp.max_pcr, vcc->qos.rxtp.max_sdu); if (dev->ops->open) { error = dev->ops->open(vcc); if (error) goto fail; } return 0; fail: vcc_remove_socket(sk); fail_module_put: module_put(dev->ops->owner); /* ensure we get dev module ref count correct */ vcc->dev = NULL; return error; } int vcc_connect(struct socket *sock, int itf, short vpi, int vci) { struct atm_dev *dev; struct atm_vcc *vcc = ATM_SD(sock); int error; pr_debug("(vpi %d, vci %d)\n", vpi, vci); if (sock->state == SS_CONNECTED) return -EISCONN; if (sock->state != SS_UNCONNECTED) return -EINVAL; if (!(vpi || vci)) return -EINVAL; if (vpi != ATM_VPI_UNSPEC && vci != ATM_VCI_UNSPEC) clear_bit(ATM_VF_PARTIAL, &vcc->flags); else if (test_bit(ATM_VF_PARTIAL, &vcc->flags)) return -EINVAL; pr_debug("(TX: cl %d,bw %d-%d,sdu %d; " "RX: cl %d,bw %d-%d,sdu %d,AAL %s%d)\n", vcc->qos.txtp.traffic_class, vcc->qos.txtp.min_pcr, vcc->qos.txtp.max_pcr, vcc->qos.txtp.max_sdu, vcc->qos.rxtp.traffic_class, vcc->qos.rxtp.min_pcr, vcc->qos.rxtp.max_pcr, vcc->qos.rxtp.max_sdu, vcc->qos.aal == ATM_AAL5 ? "" : vcc->qos.aal == ATM_AAL0 ? "" : " ??? code ", vcc->qos.aal == ATM_AAL0 ? 0 : vcc->qos.aal); if (!test_bit(ATM_VF_HASQOS, &vcc->flags)) return -EBADFD; if (vcc->qos.txtp.traffic_class == ATM_ANYCLASS || vcc->qos.rxtp.traffic_class == ATM_ANYCLASS) return -EINVAL; if (likely(itf != ATM_ITF_ANY)) { dev = try_then_request_module(atm_dev_lookup(itf), "atm-device-%d", itf); } else { dev = NULL; mutex_lock(&atm_dev_mutex); if (!list_empty(&atm_devs)) { dev = list_entry(atm_devs.next, struct atm_dev, dev_list); atm_dev_hold(dev); } mutex_unlock(&atm_dev_mutex); } if (!dev) return -ENODEV; error = __vcc_connect(vcc, dev, vpi, vci); if (error) { atm_dev_put(dev); return error; } if (vpi == ATM_VPI_UNSPEC || vci == ATM_VCI_UNSPEC) set_bit(ATM_VF_PARTIAL, &vcc->flags); if (test_bit(ATM_VF_READY, &ATM_SD(sock)->flags)) sock->state = SS_CONNECTED; return 0; } int vcc_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, int flags) { struct sock *sk = sock->sk; struct atm_vcc *vcc; struct sk_buff *skb; int copied, error = -EINVAL; if (sock->state != SS_CONNECTED) return -ENOTCONN; /* only handle MSG_DONTWAIT and MSG_PEEK */ if (flags & ~(MSG_DONTWAIT | MSG_PEEK)) return -EOPNOTSUPP; vcc = ATM_SD(sock); if (test_bit(ATM_VF_RELEASED, &vcc->flags) || test_bit(ATM_VF_CLOSE, &vcc->flags) || !test_bit(ATM_VF_READY, &vcc->flags)) return 0; skb = skb_recv_datagram(sk, flags, &error); if (!skb) return error; copied = skb->len; if (copied > size) { copied = size; msg->msg_flags |= MSG_TRUNC; } error = skb_copy_datagram_msg(skb, 0, msg, copied); if (error) return error; sock_recv_cmsgs(msg, sk, skb); if (!(flags & MSG_PEEK)) { pr_debug("%d -= %d\n", atomic_read(&sk->sk_rmem_alloc), skb->truesize); atm_return(vcc, skb->truesize); } skb_free_datagram(sk, skb); return copied; } int vcc_sendmsg(struct socket *sock, struct msghdr *m, size_t size) { struct sock *sk = sock->sk; DEFINE_WAIT(wait); struct atm_vcc *vcc; struct sk_buff *skb; int eff, error; lock_sock(sk); if (sock->state != SS_CONNECTED) { error = -ENOTCONN; goto out; } if (m->msg_name) { error = -EISCONN; goto out; } vcc = ATM_SD(sock); if (test_bit(ATM_VF_RELEASED, &vcc->flags) || test_bit(ATM_VF_CLOSE, &vcc->flags) || !test_bit(ATM_VF_READY, &vcc->flags)) { error = -EPIPE; send_sig(SIGPIPE, current, 0); goto out; } if (!size) { error = 0; goto out; } if (size > vcc->qos.txtp.max_sdu) { error = -EMSGSIZE; goto out; } eff = (size+3) & ~3; /* align to word boundary */ prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); error = 0; while (!vcc_tx_ready(vcc, eff)) { if (m->msg_flags & MSG_DONTWAIT) { error = -EAGAIN; break; } schedule(); if (signal_pending(current)) { error = -ERESTARTSYS; break; } if (test_bit(ATM_VF_RELEASED, &vcc->flags) || test_bit(ATM_VF_CLOSE, &vcc->flags) || !test_bit(ATM_VF_READY, &vcc->flags)) { error = -EPIPE; send_sig(SIGPIPE, current, 0); break; } prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); } finish_wait(sk_sleep(sk), &wait); if (error) goto out; skb = alloc_skb(eff, GFP_KERNEL); if (!skb) { error = -ENOMEM; goto out; } pr_debug("%d += %d\n", sk_wmem_alloc_get(sk), skb->truesize); atm_account_tx(vcc, skb); skb->dev = NULL; /* for paths shared with net_device interfaces */ if (!copy_from_iter_full(skb_put(skb, size), size, &m->msg_iter)) { kfree_skb(skb); error = -EFAULT; goto out; } if (eff != size) memset(skb->data + size, 0, eff-size); error = vcc->dev->ops->send(vcc, skb); error = error ? error : size; out: release_sock(sk); return error; } __poll_t vcc_poll(struct file *file, struct socket *sock, poll_table *wait) { struct sock *sk = sock->sk; struct atm_vcc *vcc; __poll_t mask; sock_poll_wait(file, sock, wait); mask = 0; vcc = ATM_SD(sock); /* exceptional events */ if (sk->sk_err) mask = EPOLLERR; if (test_bit(ATM_VF_RELEASED, &vcc->flags) || test_bit(ATM_VF_CLOSE, &vcc->flags)) mask |= EPOLLHUP; /* readable? */ if (!skb_queue_empty_lockless(&sk->sk_receive_queue)) mask |= EPOLLIN | EPOLLRDNORM; /* writable? */ if (sock->state == SS_CONNECTING && test_bit(ATM_VF_WAITING, &vcc->flags)) return mask; if (vcc->qos.txtp.traffic_class != ATM_NONE && vcc_writable(sk)) mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND; return mask; } static int atm_change_qos(struct atm_vcc *vcc, struct atm_qos *qos) { int error; /* * Don't let the QoS change the already connected AAL type nor the * traffic class. */ if (qos->aal != vcc->qos.aal || qos->rxtp.traffic_class != vcc->qos.rxtp.traffic_class || qos->txtp.traffic_class != vcc->qos.txtp.traffic_class) return -EINVAL; error = adjust_tp(&qos->txtp, qos->aal); if (!error) error = adjust_tp(&qos->rxtp, qos->aal); if (error) return error; if (!vcc->dev->ops->change_qos) return -EOPNOTSUPP; if (sk_atm(vcc)->sk_family == AF_ATMPVC) return vcc->dev->ops->change_qos(vcc, qos, ATM_MF_SET); return svc_change_qos(vcc, qos); } static int check_tp(const struct atm_trafprm *tp) { /* @@@ Should be merged with adjust_tp */ if (!tp->traffic_class || tp->traffic_class == ATM_ANYCLASS) return 0; if (tp->traffic_class != ATM_UBR && !tp->min_pcr && !tp->pcr && !tp->max_pcr) return -EINVAL; if (tp->min_pcr == ATM_MAX_PCR) return -EINVAL; if (tp->min_pcr && tp->max_pcr && tp->max_pcr != ATM_MAX_PCR && tp->min_pcr > tp->max_pcr) return -EINVAL; /* * We allow pcr to be outside [min_pcr,max_pcr], because later * adjustment may still push it in the valid range. */ return 0; } static int check_qos(const struct atm_qos *qos) { int error; if (!qos->txtp.traffic_class && !qos->rxtp.traffic_class) return -EINVAL; if (qos->txtp.traffic_class != qos->rxtp.traffic_class && qos->txtp.traffic_class && qos->rxtp.traffic_class && qos->txtp.traffic_class != ATM_ANYCLASS && qos->rxtp.traffic_class != ATM_ANYCLASS) return -EINVAL; error = check_tp(&qos->txtp); if (error) return error; return check_tp(&qos->rxtp); } int vcc_setsockopt(struct socket *sock, int level, int optname, sockptr_t optval, unsigned int optlen) { struct atm_vcc *vcc; unsigned long value; int error; if (__SO_LEVEL_MATCH(optname, level) && optlen != __SO_SIZE(optname)) return -EINVAL; vcc = ATM_SD(sock); switch (optname) { case SO_ATMQOS: { struct atm_qos qos; if (copy_from_sockptr(&qos, optval, sizeof(qos))) return -EFAULT; error = check_qos(&qos); if (error) return error; if (sock->state == SS_CONNECTED) return atm_change_qos(vcc, &qos); if (sock->state != SS_UNCONNECTED) return -EBADFD; vcc->qos = qos; set_bit(ATM_VF_HASQOS, &vcc->flags); return 0; } case SO_SETCLP: if (copy_from_sockptr(&value, optval, sizeof(value))) return -EFAULT; if (value) vcc->atm_options |= ATM_ATMOPT_CLP; else vcc->atm_options &= ~ATM_ATMOPT_CLP; return 0; default: return -EINVAL; } } int vcc_getsockopt(struct socket *sock, int level, int optname, char __user *optval, int __user *optlen) { struct atm_vcc *vcc; int len; if (get_user(len, optlen)) return -EFAULT; if (__SO_LEVEL_MATCH(optname, level) && len != __SO_SIZE(optname)) return -EINVAL; vcc = ATM_SD(sock); switch (optname) { case SO_ATMQOS: if (!test_bit(ATM_VF_HASQOS, &vcc->flags)) return -EINVAL; return copy_to_user(optval, &vcc->qos, sizeof(vcc->qos)) ? -EFAULT : 0; case SO_SETCLP: return put_user(vcc->atm_options & ATM_ATMOPT_CLP ? 1 : 0, (unsigned long __user *)optval) ? -EFAULT : 0; case SO_ATMPVC: { struct sockaddr_atmpvc pvc; if (!vcc->dev || !test_bit(ATM_VF_ADDR, &vcc->flags)) return -ENOTCONN; memset(&pvc, 0, sizeof(pvc)); pvc.sap_family = AF_ATMPVC; pvc.sap_addr.itf = vcc->dev->number; pvc.sap_addr.vpi = vcc->vpi; pvc.sap_addr.vci = vcc->vci; return copy_to_user(optval, &pvc, sizeof(pvc)) ? -EFAULT : 0; } default: return -EINVAL; } } int register_atmdevice_notifier(struct notifier_block *nb) { return atomic_notifier_chain_register(&atm_dev_notify_chain, nb); } EXPORT_SYMBOL_GPL(register_atmdevice_notifier); void unregister_atmdevice_notifier(struct notifier_block *nb) { atomic_notifier_chain_unregister(&atm_dev_notify_chain, nb); } EXPORT_SYMBOL_GPL(unregister_atmdevice_notifier); static int __init atm_init(void) { int error; error = proto_register(&vcc_proto, 0); if (error < 0) goto out; error = atmpvc_init(); if (error < 0) { pr_err("atmpvc_init() failed with %d\n", error); goto out_unregister_vcc_proto; } error = atmsvc_init(); if (error < 0) { pr_err("atmsvc_init() failed with %d\n", error); goto out_atmpvc_exit; } error = atm_proc_init(); if (error < 0) { pr_err("atm_proc_init() failed with %d\n", error); goto out_atmsvc_exit; } error = atm_sysfs_init(); if (error < 0) { pr_err("atm_sysfs_init() failed with %d\n", error); goto out_atmproc_exit; } out: return error; out_atmproc_exit: atm_proc_exit(); out_atmsvc_exit: atmsvc_exit(); out_atmpvc_exit: atmsvc_exit(); out_unregister_vcc_proto: proto_unregister(&vcc_proto); goto out; } static void __exit atm_exit(void) { atm_proc_exit(); atm_sysfs_exit(); atmsvc_exit(); atmpvc_exit(); proto_unregister(&vcc_proto); } subsys_initcall(atm_init); module_exit(atm_exit); MODULE_DESCRIPTION("Asynchronous Transfer Mode (ATM) networking core"); MODULE_LICENSE("GPL"); MODULE_ALIAS_NETPROTO(PF_ATMPVC); MODULE_ALIAS_NETPROTO(PF_ATMSVC);