/* * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * * Robert Olsson Uppsala Universitet * & Swedish University of Agricultural Sciences. * * Jens Laas Swedish University of * Agricultural Sciences. * * Hans Liss Uppsala Universitet * * This work is based on the LPC-trie which is originally described in: * * An experimental study of compression methods for dynamic tries * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002. * http://www.csc.kth.se/~snilsson/software/dyntrie2/ * * * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999 * * * Code from fib_hash has been reused which includes the following header: * * * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * IPv4 FIB: lookup engine and maintenance routines. * * * Authors: Alexey Kuznetsov, * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * * Substantial contributions to this work comes from: * * David S. Miller, * Stephen Hemminger * Paul E. McKenney * Patrick McHardy */ #define VERSION "0.409" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "fib_lookup.h" #define MAX_STAT_DEPTH 32 #define KEYLENGTH (8*sizeof(t_key)) #define KEY_MAX ((t_key)~0) typedef unsigned int t_key; #define IS_TNODE(n) ((n)->bits) #define IS_LEAF(n) (!(n)->bits) struct key_vector { struct rcu_head rcu; t_key empty_children; /* KEYLENGTH bits needed */ t_key full_children; /* KEYLENGTH bits needed */ struct key_vector __rcu *parent; t_key key; unsigned char pos; /* 2log(KEYLENGTH) bits needed */ unsigned char bits; /* 2log(KEYLENGTH) bits needed */ unsigned char slen; union { /* This list pointer if valid if (pos | bits) == 0 (LEAF) */ struct hlist_head leaf; /* This array is valid if (pos | bits) > 0 (TNODE) */ struct key_vector __rcu *tnode[0]; }; }; #define TNODE_SIZE(n) offsetof(struct key_vector, tnode[n]) #define LEAF_SIZE TNODE_SIZE(1) #ifdef CONFIG_IP_FIB_TRIE_STATS struct trie_use_stats { unsigned int gets; unsigned int backtrack; unsigned int semantic_match_passed; unsigned int semantic_match_miss; unsigned int null_node_hit; unsigned int resize_node_skipped; }; #endif struct trie_stat { unsigned int totdepth; unsigned int maxdepth; unsigned int tnodes; unsigned int leaves; unsigned int nullpointers; unsigned int prefixes; unsigned int nodesizes[MAX_STAT_DEPTH]; }; struct trie { struct key_vector __rcu *tnode[1]; #ifdef CONFIG_IP_FIB_TRIE_STATS struct trie_use_stats __percpu *stats; #endif }; static struct key_vector **resize(struct trie *t, struct key_vector *tn); static size_t tnode_free_size; /* * synchronize_rcu after call_rcu for that many pages; it should be especially * useful before resizing the root node with PREEMPT_NONE configs; the value was * obtained experimentally, aiming to avoid visible slowdown. */ static const int sync_pages = 128; static struct kmem_cache *fn_alias_kmem __read_mostly; static struct kmem_cache *trie_leaf_kmem __read_mostly; /* caller must hold RTNL */ #define node_parent(n) rtnl_dereference((n)->parent) #define get_child(tn, i) rtnl_dereference((tn)->tnode[i]) /* caller must hold RCU read lock or RTNL */ #define node_parent_rcu(n) rcu_dereference_rtnl((n)->parent) #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i]) /* wrapper for rcu_assign_pointer */ static inline void node_set_parent(struct key_vector *n, struct key_vector *tp) { if (n) rcu_assign_pointer(n->parent, tp); } #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER((n)->parent, p) /* This provides us with the number of children in this node, in the case of a * leaf this will return 0 meaning none of the children are accessible. */ static inline unsigned long child_length(const struct key_vector *tn) { return (1ul << tn->bits) & ~(1ul); } static inline unsigned long get_index(t_key key, struct key_vector *kv) { unsigned long index = key ^ kv->key; return index >> kv->pos; } static inline struct fib_table *trie_get_table(struct trie *t) { unsigned long *tb_data = (unsigned long *)t; return container_of(tb_data, struct fib_table, tb_data[0]); } /* To understand this stuff, an understanding of keys and all their bits is * necessary. Every node in the trie has a key associated with it, but not * all of the bits in that key are significant. * * Consider a node 'n' and its parent 'tp'. * * If n is a leaf, every bit in its key is significant. Its presence is * necessitated by path compression, since during a tree traversal (when * searching for a leaf - unless we are doing an insertion) we will completely * ignore all skipped bits we encounter. Thus we need to verify, at the end of * a potentially successful search, that we have indeed been walking the * correct key path. * * Note that we can never "miss" the correct key in the tree if present by * following the wrong path. Path compression ensures that segments of the key * that are the same for all keys with a given prefix are skipped, but the * skipped part *is* identical for each node in the subtrie below the skipped * bit! trie_insert() in this implementation takes care of that. * * if n is an internal node - a 'tnode' here, the various parts of its key * have many different meanings. * * Example: * _________________________________________________________________ * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C | * ----------------------------------------------------------------- * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 * * _________________________________________________________________ * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u | * ----------------------------------------------------------------- * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 * * tp->pos = 22 * tp->bits = 3 * n->pos = 13 * n->bits = 4 * * First, let's just ignore the bits that come before the parent tp, that is * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this * point we do not use them for anything. * * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the * index into the parent's child array. That is, they will be used to find * 'n' among tp's children. * * The bits from (n->pos + n->bits) to (tn->pos - 1) - "S" - are skipped bits * for the node n. * * All the bits we have seen so far are significant to the node n. The rest * of the bits are really not needed or indeed known in n->key. * * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into * n's child array, and will of course be different for each child. * * The rest of the bits, from 0 to (n->pos + n->bits), are completely unknown * at this point. */ static const int halve_threshold = 25; static const int inflate_threshold = 50; static const int halve_threshold_root = 15; static const int inflate_threshold_root = 30; static void __alias_free_mem(struct rcu_head *head) { struct fib_alias *fa = container_of(head, struct fib_alias, rcu); kmem_cache_free(fn_alias_kmem, fa); } static inline void alias_free_mem_rcu(struct fib_alias *fa) { call_rcu(&fa->rcu, __alias_free_mem); } #define TNODE_KMALLOC_MAX \ ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *)) #define TNODE_VMALLOC_MAX \ ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *)) static void __node_free_rcu(struct rcu_head *head) { struct key_vector *n = container_of(head, struct key_vector, rcu); if (IS_LEAF(n)) kmem_cache_free(trie_leaf_kmem, n); else if (n->bits <= TNODE_KMALLOC_MAX) kfree(n); else vfree(n); } #define node_free(n) call_rcu(&n->rcu, __node_free_rcu) static struct key_vector *tnode_alloc(int bits) { size_t size; /* verify bits is within bounds */ if (bits > TNODE_VMALLOC_MAX) return NULL; /* determine size and verify it is non-zero and didn't overflow */ size = TNODE_SIZE(1ul << bits); if (size <= PAGE_SIZE) return kzalloc(size, GFP_KERNEL); else return vzalloc(size); } static inline void empty_child_inc(struct key_vector *n) { ++n->empty_children ? : ++n->full_children; } static inline void empty_child_dec(struct key_vector *n) { n->empty_children-- ? : n->full_children--; } static struct key_vector *leaf_new(t_key key, struct fib_alias *fa) { struct key_vector *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL); if (l) { l->parent = NULL; /* set key and pos to reflect full key value * any trailing zeros in the key should be ignored * as the nodes are searched */ l->key = key; l->slen = fa->fa_slen; l->pos = 0; /* set bits to 0 indicating we are not a tnode */ l->bits = 0; /* link leaf to fib alias */ INIT_HLIST_HEAD(&l->leaf); hlist_add_head(&fa->fa_list, &l->leaf); } return l; } static struct key_vector *tnode_new(t_key key, int pos, int bits) { struct key_vector *tn = tnode_alloc(bits); unsigned int shift = pos + bits; /* verify bits and pos their msb bits clear and values are valid */ BUG_ON(!bits || (shift > KEYLENGTH)); if (tn) { tn->parent = NULL; tn->slen = pos; tn->pos = pos; tn->bits = bits; tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0; if (bits == KEYLENGTH) tn->full_children = 1; else tn->empty_children = 1ul << bits; } pr_debug("AT %p s=%zu %zu\n", tn, TNODE_SIZE(0), sizeof(struct key_vector *) << bits); return tn; } /* Check whether a tnode 'n' is "full", i.e. it is an internal node * and no bits are skipped. See discussion in dyntree paper p. 6 */ static inline int tnode_full(struct key_vector *tn, struct key_vector *n) { return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n); } /* Add a child at position i overwriting the old value. * Update the value of full_children and empty_children. */ static void put_child(struct key_vector *tn, unsigned long i, struct key_vector *n) { struct key_vector *chi = get_child(tn, i); int isfull, wasfull; BUG_ON(i >= child_length(tn)); /* update emptyChildren, overflow into fullChildren */ if (n == NULL && chi != NULL) empty_child_inc(tn); if (n != NULL && chi == NULL) empty_child_dec(tn); /* update fullChildren */ wasfull = tnode_full(tn, chi); isfull = tnode_full(tn, n); if (wasfull && !isfull) tn->full_children--; else if (!wasfull && isfull) tn->full_children++; if (n && (tn->slen < n->slen)) tn->slen = n->slen; rcu_assign_pointer(tn->tnode[i], n); } static void update_children(struct key_vector *tn) { unsigned long i; /* update all of the child parent pointers */ for (i = child_length(tn); i;) { struct key_vector *inode = get_child(tn, --i); if (!inode) continue; /* Either update the children of a tnode that * already belongs to us or update the child * to point to ourselves. */ if (node_parent(inode) == tn) update_children(inode); else node_set_parent(inode, tn); } } static inline void put_child_root(struct key_vector *tp, struct trie *t, t_key key, struct key_vector *n) { if (tp) put_child(tp, get_index(key, tp), n); else rcu_assign_pointer(t->tnode[0], n); } static inline void tnode_free_init(struct key_vector *tn) { tn->rcu.next = NULL; } static inline void tnode_free_append(struct key_vector *tn, struct key_vector *n) { n->rcu.next = tn->rcu.next; tn->rcu.next = &n->rcu; } static void tnode_free(struct key_vector *tn) { struct callback_head *head = &tn->rcu; while (head) { head = head->next; tnode_free_size += TNODE_SIZE(1ul << tn->bits); node_free(tn); tn = container_of(head, struct key_vector, rcu); } if (tnode_free_size >= PAGE_SIZE * sync_pages) { tnode_free_size = 0; synchronize_rcu(); } } static struct key_vector __rcu **replace(struct trie *t, struct key_vector *oldtnode, struct key_vector *tn) { struct key_vector *tp = node_parent(oldtnode); struct key_vector **cptr; unsigned long i; /* setup the parent pointer out of and back into this node */ NODE_INIT_PARENT(tn, tp); put_child_root(tp, t, tn->key, tn); /* update all of the child parent pointers */ update_children(tn); /* all pointers should be clean so we are done */ tnode_free(oldtnode); /* record the pointer that is pointing to this node */ cptr = tp ? tp->tnode : t->tnode; /* resize children now that oldtnode is freed */ for (i = child_length(tn); i;) { struct key_vector *inode = get_child(tn, --i); /* resize child node */ if (tnode_full(tn, inode)) resize(t, inode); } return cptr; } static struct key_vector __rcu **inflate(struct trie *t, struct key_vector *oldtnode) { struct key_vector *tn; unsigned long i; t_key m; pr_debug("In inflate\n"); tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1); if (!tn) goto notnode; /* prepare oldtnode to be freed */ tnode_free_init(oldtnode); /* Assemble all of the pointers in our cluster, in this case that * represents all of the pointers out of our allocated nodes that * point to existing tnodes and the links between our allocated * nodes. */ for (i = child_length(oldtnode), m = 1u << tn->pos; i;) { struct key_vector *inode = get_child(oldtnode, --i); struct key_vector *node0, *node1; unsigned long j, k; /* An empty child */ if (inode == NULL) continue; /* A leaf or an internal node with skipped bits */ if (!tnode_full(oldtnode, inode)) { put_child(tn, get_index(inode->key, tn), inode); continue; } /* drop the node in the old tnode free list */ tnode_free_append(oldtnode, inode); /* An internal node with two children */ if (inode->bits == 1) { put_child(tn, 2 * i + 1, get_child(inode, 1)); put_child(tn, 2 * i, get_child(inode, 0)); continue; } /* We will replace this node 'inode' with two new * ones, 'node0' and 'node1', each with half of the * original children. The two new nodes will have * a position one bit further down the key and this * means that the "significant" part of their keys * (see the discussion near the top of this file) * will differ by one bit, which will be "0" in * node0's key and "1" in node1's key. Since we are * moving the key position by one step, the bit that * we are moving away from - the bit at position * (tn->pos) - is the one that will differ between * node0 and node1. So... we synthesize that bit in the * two new keys. */ node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1); if (!node1) goto nomem; node0 = tnode_new(inode->key, inode->pos, inode->bits - 1); tnode_free_append(tn, node1); if (!node0) goto nomem; tnode_free_append(tn, node0); /* populate child pointers in new nodes */ for (k = child_length(inode), j = k / 2; j;) { put_child(node1, --j, get_child(inode, --k)); put_child(node0, j, get_child(inode, j)); put_child(node1, --j, get_child(inode, --k)); put_child(node0, j, get_child(inode, j)); } /* link new nodes to parent */ NODE_INIT_PARENT(node1, tn); NODE_INIT_PARENT(node0, tn); /* link parent to nodes */ put_child(tn, 2 * i + 1, node1); put_child(tn, 2 * i, node0); } /* setup the parent pointers into and out of this node */ return replace(t, oldtnode, tn); nomem: /* all pointers should be clean so we are done */ tnode_free(tn); notnode: return NULL; } static struct key_vector __rcu **halve(struct trie *t, struct key_vector *oldtnode) { struct key_vector *tn; unsigned long i; pr_debug("In halve\n"); tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1); if (!tn) goto notnode; /* prepare oldtnode to be freed */ tnode_free_init(oldtnode); /* Assemble all of the pointers in our cluster, in this case that * represents all of the pointers out of our allocated nodes that * point to existing tnodes and the links between our allocated * nodes. */ for (i = child_length(oldtnode); i;) { struct key_vector *node1 = get_child(oldtnode, --i); struct key_vector *node0 = get_child(oldtnode, --i); struct key_vector *inode; /* At least one of the children is empty */ if (!node1 || !node0) { put_child(tn, i / 2, node1 ? : node0); continue; } /* Two nonempty children */ inode = tnode_new(node0->key, oldtnode->pos, 1); if (!inode) goto nomem; tnode_free_append(tn, inode); /* initialize pointers out of node */ put_child(inode, 1, node1); put_child(inode, 0, node0); NODE_INIT_PARENT(inode, tn); /* link parent to node */ put_child(tn, i / 2, inode); } /* setup the parent pointers into and out of this node */ return replace(t, oldtnode, tn); nomem: /* all pointers should be clean so we are done */ tnode_free(tn); notnode: return NULL; } static void collapse(struct trie *t, struct key_vector *oldtnode) { struct key_vector *n, *tp; unsigned long i; /* scan the tnode looking for that one child that might still exist */ for (n = NULL, i = child_length(oldtnode); !n && i;) n = get_child(oldtnode, --i); /* compress one level */ tp = node_parent(oldtnode); put_child_root(tp, t, oldtnode->key, n); node_set_parent(n, tp); /* drop dead node */ node_free(oldtnode); } static unsigned char update_suffix(struct key_vector *tn) { unsigned char slen = tn->pos; unsigned long stride, i; /* search though the list of children looking for nodes that might * have a suffix greater than the one we currently have. This is * why we start with a stride of 2 since a stride of 1 would * represent the nodes with suffix length equal to tn->pos */ for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) { struct key_vector *n = get_child(tn, i); if (!n || (n->slen <= slen)) continue; /* update stride and slen based on new value */ stride <<= (n->slen - slen); slen = n->slen; i &= ~(stride - 1); /* if slen covers all but the last bit we can stop here * there will be nothing longer than that since only node * 0 and 1 << (bits - 1) could have that as their suffix * length. */ if ((slen + 1) >= (tn->pos + tn->bits)) break; } tn->slen = slen; return slen; } /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of * the Helsinki University of Technology and Matti Tikkanen of Nokia * Telecommunications, page 6: * "A node is doubled if the ratio of non-empty children to all * children in the *doubled* node is at least 'high'." * * 'high' in this instance is the variable 'inflate_threshold'. It * is expressed as a percentage, so we multiply it with * child_length() and instead of multiplying by 2 (since the * child array will be doubled by inflate()) and multiplying * the left-hand side by 100 (to handle the percentage thing) we * multiply the left-hand side by 50. * * The left-hand side may look a bit weird: child_length(tn) * - tn->empty_children is of course the number of non-null children * in the current node. tn->full_children is the number of "full" * children, that is non-null tnodes with a skip value of 0. * All of those will be doubled in the resulting inflated tnode, so * we just count them one extra time here. * * A clearer way to write this would be: * * to_be_doubled = tn->full_children; * not_to_be_doubled = child_length(tn) - tn->empty_children - * tn->full_children; * * new_child_length = child_length(tn) * 2; * * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) / * new_child_length; * if (new_fill_factor >= inflate_threshold) * * ...and so on, tho it would mess up the while () loop. * * anyway, * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >= * inflate_threshold * * avoid a division: * 100 * (not_to_be_doubled + 2*to_be_doubled) >= * inflate_threshold * new_child_length * * expand not_to_be_doubled and to_be_doubled, and shorten: * 100 * (child_length(tn) - tn->empty_children + * tn->full_children) >= inflate_threshold * new_child_length * * expand new_child_length: * 100 * (child_length(tn) - tn->empty_children + * tn->full_children) >= * inflate_threshold * child_length(tn) * 2 * * shorten again: * 50 * (tn->full_children + child_length(tn) - * tn->empty_children) >= inflate_threshold * * child_length(tn) * */ static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn) { unsigned long used = child_length(tn); unsigned long threshold = used; /* Keep root node larger */ threshold *= tp ? inflate_threshold : inflate_threshold_root; used -= tn->empty_children; used += tn->full_children; /* if bits == KEYLENGTH then pos = 0, and will fail below */ return (used > 1) && tn->pos && ((50 * used) >= threshold); } static inline bool should_halve(struct key_vector *tp, struct key_vector *tn) { unsigned long used = child_length(tn); unsigned long threshold = used; /* Keep root node larger */ threshold *= tp ? halve_threshold : halve_threshold_root; used -= tn->empty_children; /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */ return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold); } static inline bool should_collapse(struct key_vector *tn) { unsigned long used = child_length(tn); used -= tn->empty_children; /* account for bits == KEYLENGTH case */ if ((tn->bits == KEYLENGTH) && tn->full_children) used -= KEY_MAX; /* One child or none, time to drop us from the trie */ return used < 2; } #define MAX_WORK 10 static struct key_vector __rcu **resize(struct trie *t, struct key_vector *tn) { #ifdef CONFIG_IP_FIB_TRIE_STATS struct trie_use_stats __percpu *stats = t->stats; #endif struct key_vector *tp = node_parent(tn); unsigned long cindex = tp ? get_index(tn->key, tp) : 0; struct key_vector __rcu **cptr = tp ? tp->tnode : t->tnode; int max_work = MAX_WORK; pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n", tn, inflate_threshold, halve_threshold); /* track the tnode via the pointer from the parent instead of * doing it ourselves. This way we can let RCU fully do its * thing without us interfering */ BUG_ON(tn != rtnl_dereference(cptr[cindex])); /* Double as long as the resulting node has a number of * nonempty nodes that are above the threshold. */ while (should_inflate(tp, tn) && max_work) { struct key_vector __rcu **tcptr = inflate(t, tn); if (!tcptr) { #ifdef CONFIG_IP_FIB_TRIE_STATS this_cpu_inc(stats->resize_node_skipped); #endif break; } max_work--; cptr = tcptr; tn = rtnl_dereference(cptr[cindex]); } /* Return if at least one inflate is run */ if (max_work != MAX_WORK) return cptr; /* Halve as long as the number of empty children in this * node is above threshold. */ while (should_halve(tp, tn) && max_work) { struct key_vector __rcu **tcptr = halve(t, tn); if (!tcptr) { #ifdef CONFIG_IP_FIB_TRIE_STATS this_cpu_inc(stats->resize_node_skipped); #endif break; } max_work--; cptr = tcptr; tn = rtnl_dereference(cptr[cindex]); } /* Only one child remains */ if (should_collapse(tn)) { collapse(t, tn); return cptr; } /* Return if at least one deflate was run */ if (max_work != MAX_WORK) return cptr; /* push the suffix length to the parent node */ if (tn->slen > tn->pos) { unsigned char slen = update_suffix(tn); if (tp && (slen > tp->slen)) tp->slen = slen; } return cptr; } static void leaf_pull_suffix(struct key_vector *tp, struct key_vector *l) { while (tp && (tp->slen > tp->pos) && (tp->slen > l->slen)) { if (update_suffix(tp) > l->slen) break; tp = node_parent(tp); } } static void leaf_push_suffix(struct key_vector *tn, struct key_vector *l) { /* if this is a new leaf then tn will be NULL and we can sort * out parent suffix lengths as a part of trie_rebalance */ while (tn && (tn->slen < l->slen)) { tn->slen = l->slen; tn = node_parent(tn); } } /* rcu_read_lock needs to be hold by caller from readside */ static struct key_vector *fib_find_node(struct trie *t, struct key_vector **tp, u32 key) { struct key_vector *pn = NULL, *n = rcu_dereference_rtnl(t->tnode[0]); while (n) { unsigned long index = get_index(key, n); /* This bit of code is a bit tricky but it combines multiple * checks into a single check. The prefix consists of the * prefix plus zeros for the bits in the cindex. The index * is the difference between the key and this value. From * this we can actually derive several pieces of data. * if (index >= (1ul << bits)) * we have a mismatch in skip bits and failed * else * we know the value is cindex * * This check is safe even if bits == KEYLENGTH due to the * fact that we can only allocate a node with 32 bits if a * long is greater than 32 bits. */ if (index >= (1ul << n->bits)) { n = NULL; break; } /* we have found a leaf. Prefixes have already been compared */ if (IS_LEAF(n)) break; pn = n; n = get_child_rcu(n, index); } *tp = pn; return n; } /* Return the first fib alias matching TOS with * priority less than or equal to PRIO. */ static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen, u8 tos, u32 prio) { struct fib_alias *fa; if (!fah) return NULL; hlist_for_each_entry(fa, fah, fa_list) { if (fa->fa_slen < slen) continue; if (fa->fa_slen != slen) break; if (fa->fa_tos > tos) continue; if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos) return fa; } return NULL; } static void trie_rebalance(struct trie *t, struct key_vector *tn) { struct key_vector __rcu **cptr = t->tnode; while (tn) { struct key_vector *tp = node_parent(tn); cptr = resize(t, tn); if (!tp) break; tn = container_of(cptr, struct key_vector, tnode[0]); } } static int fib_insert_node(struct trie *t, struct key_vector *tp, struct fib_alias *new, t_key key) { struct key_vector *n, *l; l = leaf_new(key, new); if (!l) goto noleaf; /* retrieve child from parent node */ if (tp) n = get_child(tp, get_index(key, tp)); else n = rcu_dereference_rtnl(t->tnode[0]); /* Case 2: n is a LEAF or a TNODE and the key doesn't match. * * Add a new tnode here * first tnode need some special handling * leaves us in position for handling as case 3 */ if (n) { struct key_vector *tn; tn = tnode_new(key, __fls(key ^ n->key), 1); if (!tn) goto notnode; /* initialize routes out of node */ NODE_INIT_PARENT(tn, tp); put_child(tn, get_index(key, tn) ^ 1, n); /* start adding routes into the node */ put_child_root(tp, t, key, tn); node_set_parent(n, tn); /* parent now has a NULL spot where the leaf can go */ tp = tn; } /* Case 3: n is NULL, and will just insert a new leaf */ NODE_INIT_PARENT(l, tp); put_child_root(tp, t, key, l); trie_rebalance(t, tp); return 0; notnode: node_free(l); noleaf: return -ENOMEM; } static int fib_insert_alias(struct trie *t, struct key_vector *tp, struct key_vector *l, struct fib_alias *new, struct fib_alias *fa, t_key key) { if (!l) return fib_insert_node(t, tp, new, key); if (fa) { hlist_add_before_rcu(&new->fa_list, &fa->fa_list); } else { struct fib_alias *last; hlist_for_each_entry(last, &l->leaf, fa_list) { if (new->fa_slen < last->fa_slen) break; fa = last; } if (fa) hlist_add_behind_rcu(&new->fa_list, &fa->fa_list); else hlist_add_head_rcu(&new->fa_list, &l->leaf); } /* if we added to the tail node then we need to update slen */ if (l->slen < new->fa_slen) { l->slen = new->fa_slen; leaf_push_suffix(tp, l); } return 0; } /* Caller must hold RTNL. */ int fib_table_insert(struct fib_table *tb, struct fib_config *cfg) { struct trie *t = (struct trie *)tb->tb_data; struct fib_alias *fa, *new_fa; struct key_vector *l, *tp; struct fib_info *fi; u8 plen = cfg->fc_dst_len; u8 slen = KEYLENGTH - plen; u8 tos = cfg->fc_tos; u32 key; int err; if (plen > KEYLENGTH) return -EINVAL; key = ntohl(cfg->fc_dst); pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen); if ((plen < KEYLENGTH) && (key << plen)) return -EINVAL; fi = fib_create_info(cfg); if (IS_ERR(fi)) { err = PTR_ERR(fi); goto err; } l = fib_find_node(t, &tp, key); fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority) : NULL; /* Now fa, if non-NULL, points to the first fib alias * with the same keys [prefix,tos,priority], if such key already * exists or to the node before which we will insert new one. * * If fa is NULL, we will need to allocate a new one and * insert to the tail of the section matching the suffix length * of the new alias. */ if (fa && fa->fa_tos == tos && fa->fa_info->fib_priority == fi->fib_priority) { struct fib_alias *fa_first, *fa_match; err = -EEXIST; if (cfg->fc_nlflags & NLM_F_EXCL) goto out; /* We have 2 goals: * 1. Find exact match for type, scope, fib_info to avoid * duplicate routes * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it */ fa_match = NULL; fa_first = fa; hlist_for_each_entry_from(fa, fa_list) { if ((fa->fa_slen != slen) || (fa->fa_tos != tos)) break; if (fa->fa_info->fib_priority != fi->fib_priority) break; if (fa->fa_type == cfg->fc_type && fa->fa_info == fi) { fa_match = fa; break; } } if (cfg->fc_nlflags & NLM_F_REPLACE) { struct fib_info *fi_drop; u8 state; fa = fa_first; if (fa_match) { if (fa == fa_match) err = 0; goto out; } err = -ENOBUFS; new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); if (new_fa == NULL) goto out; fi_drop = fa->fa_info; new_fa->fa_tos = fa->fa_tos; new_fa->fa_info = fi; new_fa->fa_type = cfg->fc_type; state = fa->fa_state; new_fa->fa_state = state & ~FA_S_ACCESSED; new_fa->fa_slen = fa->fa_slen; err = netdev_switch_fib_ipv4_add(key, plen, fi, new_fa->fa_tos, cfg->fc_type, tb->tb_id); if (err) { netdev_switch_fib_ipv4_abort(fi); kmem_cache_free(fn_alias_kmem, new_fa); goto out; } hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list); alias_free_mem_rcu(fa); fib_release_info(fi_drop); if (state & FA_S_ACCESSED) rt_cache_flush(cfg->fc_nlinfo.nl_net); rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE); goto succeeded; } /* Error if we find a perfect match which * uses the same scope, type, and nexthop * information. */ if (fa_match) goto out; if (!(cfg->fc_nlflags & NLM_F_APPEND)) fa = fa_first; } err = -ENOENT; if (!(cfg->fc_nlflags & NLM_F_CREATE)) goto out; err = -ENOBUFS; new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); if (new_fa == NULL) goto out; new_fa->fa_info = fi; new_fa->fa_tos = tos; new_fa->fa_type = cfg->fc_type; new_fa->fa_state = 0; new_fa->fa_slen = slen; /* (Optionally) offload fib entry to switch hardware. */ err = netdev_switch_fib_ipv4_add(key, plen, fi, tos, cfg->fc_type, tb->tb_id); if (err) { netdev_switch_fib_ipv4_abort(fi); goto out_free_new_fa; } /* Insert new entry to the list. */ err = fib_insert_alias(t, tp, l, new_fa, fa, key); if (err) goto out_sw_fib_del; if (!plen) tb->tb_num_default++; rt_cache_flush(cfg->fc_nlinfo.nl_net); rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id, &cfg->fc_nlinfo, 0); succeeded: return 0; out_sw_fib_del: netdev_switch_fib_ipv4_del(key, plen, fi, tos, cfg->fc_type, tb->tb_id); out_free_new_fa: kmem_cache_free(fn_alias_kmem, new_fa); out: fib_release_info(fi); err: return err; } static inline t_key prefix_mismatch(t_key key, struct key_vector *n) { t_key prefix = n->key; return (key ^ prefix) & (prefix | -prefix); } /* should be called with rcu_read_lock */ int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp, struct fib_result *res, int fib_flags) { struct trie *t = (struct trie *)tb->tb_data; #ifdef CONFIG_IP_FIB_TRIE_STATS struct trie_use_stats __percpu *stats = t->stats; #endif const t_key key = ntohl(flp->daddr); struct key_vector *n, *pn; struct fib_alias *fa; unsigned long index; t_key cindex; n = rcu_dereference(t->tnode[0]); if (!n) return -EAGAIN; #ifdef CONFIG_IP_FIB_TRIE_STATS this_cpu_inc(stats->gets); #endif pn = n; cindex = 0; /* Step 1: Travel to the longest prefix match in the trie */ for (;;) { index = get_index(key, n); /* This bit of code is a bit tricky but it combines multiple * checks into a single check. The prefix consists of the * prefix plus zeros for the "bits" in the prefix. The index * is the difference between the key and this value. From * this we can actually derive several pieces of data. * if (index >= (1ul << bits)) * we have a mismatch in skip bits and failed * else * we know the value is cindex * * This check is safe even if bits == KEYLENGTH due to the * fact that we can only allocate a node with 32 bits if a * long is greater than 32 bits. */ if (index >= (1ul << n->bits)) break; /* we have found a leaf. Prefixes have already been compared */ if (IS_LEAF(n)) goto found; /* only record pn and cindex if we are going to be chopping * bits later. Otherwise we are just wasting cycles. */ if (n->slen > n->pos) { pn = n; cindex = index; } n = get_child_rcu(n, index); if (unlikely(!n)) goto backtrace; } /* Step 2: Sort out leaves and begin backtracing for longest prefix */ for (;;) { /* record the pointer where our next node pointer is stored */ struct key_vector __rcu **cptr = n->tnode; /* This test verifies that none of the bits that differ * between the key and the prefix exist in the region of * the lsb and higher in the prefix. */ if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos)) goto backtrace; /* exit out and process leaf */ if (unlikely(IS_LEAF(n))) break; /* Don't bother recording parent info. Since we are in * prefix match mode we will have to come back to wherever * we started this traversal anyway */ while ((n = rcu_dereference(*cptr)) == NULL) { backtrace: #ifdef CONFIG_IP_FIB_TRIE_STATS if (!n) this_cpu_inc(stats->null_node_hit); #endif /* If we are at cindex 0 there are no more bits for * us to strip at this level so we must ascend back * up one level to see if there are any more bits to * be stripped there. */ while (!cindex) { t_key pkey = pn->key; pn = node_parent_rcu(pn); if (unlikely(!pn)) return -EAGAIN; #ifdef CONFIG_IP_FIB_TRIE_STATS this_cpu_inc(stats->backtrack); #endif /* Get Child's index */ cindex = get_index(pkey, pn); } /* strip the least significant bit from the cindex */ cindex &= cindex - 1; /* grab pointer for next child node */ cptr = &pn->tnode[cindex]; } } found: /* this line carries forward the xor from earlier in the function */ index = key ^ n->key; /* Step 3: Process the leaf, if that fails fall back to backtracing */ hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) { struct fib_info *fi = fa->fa_info; int nhsel, err; if ((index >= (1ul << fa->fa_slen)) && ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen != KEYLENGTH))) continue; if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos) continue; if (fi->fib_dead) continue; if (fa->fa_info->fib_scope < flp->flowi4_scope) continue; fib_alias_accessed(fa); err = fib_props[fa->fa_type].error; if (unlikely(err < 0)) { #ifdef CONFIG_IP_FIB_TRIE_STATS this_cpu_inc(stats->semantic_match_passed); #endif return err; } if (fi->fib_flags & RTNH_F_DEAD) continue; for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) { const struct fib_nh *nh = &fi->fib_nh[nhsel]; if (nh->nh_flags & RTNH_F_DEAD) continue; if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif) continue; if (!(fib_flags & FIB_LOOKUP_NOREF)) atomic_inc(&fi->fib_clntref); res->prefixlen = KEYLENGTH - fa->fa_slen; res->nh_sel = nhsel; res->type = fa->fa_type; res->scope = fi->fib_scope; res->fi = fi; res->table = tb; res->fa_head = &n->leaf; #ifdef CONFIG_IP_FIB_TRIE_STATS this_cpu_inc(stats->semantic_match_passed); #endif return err; } } #ifdef CONFIG_IP_FIB_TRIE_STATS this_cpu_inc(stats->semantic_match_miss); #endif goto backtrace; } EXPORT_SYMBOL_GPL(fib_table_lookup); static void fib_remove_alias(struct trie *t, struct key_vector *tp, struct key_vector *l, struct fib_alias *old) { /* record the location of the previous list_info entry */ struct hlist_node **pprev = old->fa_list.pprev; struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next); /* remove the fib_alias from the list */ hlist_del_rcu(&old->fa_list); /* if we emptied the list this leaf will be freed and we can sort * out parent suffix lengths as a part of trie_rebalance */ if (hlist_empty(&l->leaf)) { put_child_root(tp, t, l->key, NULL); node_free(l); trie_rebalance(t, tp); return; } /* only access fa if it is pointing at the last valid hlist_node */ if (*pprev) return; /* update the trie with the latest suffix length */ l->slen = fa->fa_slen; leaf_pull_suffix(tp, l); } /* Caller must hold RTNL. */ int fib_table_delete(struct fib_table *tb, struct fib_config *cfg) { struct trie *t = (struct trie *) tb->tb_data; struct fib_alias *fa, *fa_to_delete; struct key_vector *l, *tp; u8 plen = cfg->fc_dst_len; u8 slen = KEYLENGTH - plen; u8 tos = cfg->fc_tos; u32 key; if (plen > KEYLENGTH) return -EINVAL; key = ntohl(cfg->fc_dst); if ((plen < KEYLENGTH) && (key << plen)) return -EINVAL; l = fib_find_node(t, &tp, key); if (!l) return -ESRCH; fa = fib_find_alias(&l->leaf, slen, tos, 0); if (!fa) return -ESRCH; pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t); fa_to_delete = NULL; hlist_for_each_entry_from(fa, fa_list) { struct fib_info *fi = fa->fa_info; if ((fa->fa_slen != slen) || (fa->fa_tos != tos)) break; if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) && (cfg->fc_scope == RT_SCOPE_NOWHERE || fa->fa_info->fib_scope == cfg->fc_scope) && (!cfg->fc_prefsrc || fi->fib_prefsrc == cfg->fc_prefsrc) && (!cfg->fc_protocol || fi->fib_protocol == cfg->fc_protocol) && fib_nh_match(cfg, fi) == 0) { fa_to_delete = fa; break; } } if (!fa_to_delete) return -ESRCH; netdev_switch_fib_ipv4_del(key, plen, fa_to_delete->fa_info, tos, cfg->fc_type, tb->tb_id); rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id, &cfg->fc_nlinfo, 0); if (!plen) tb->tb_num_default--; fib_remove_alias(t, tp, l, fa_to_delete); if (fa_to_delete->fa_state & FA_S_ACCESSED) rt_cache_flush(cfg->fc_nlinfo.nl_net); fib_release_info(fa_to_delete->fa_info); alias_free_mem_rcu(fa_to_delete); return 0; } /* Scan for the next leaf starting at the provided key value */ static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key) { struct key_vector *pn, *n = *tn; unsigned long cindex; /* record parent node for backtracing */ pn = n; cindex = n ? get_index(key, n) : 0; /* this loop is meant to try and find the key in the trie */ while (n) { unsigned long idx = get_index(key, n); /* guarantee forward progress on the keys */ if (IS_LEAF(n) && (n->key >= key)) goto found; if (idx >= (1ul << n->bits)) break; /* record parent and next child index */ pn = n; cindex = idx; /* descend into the next child */ n = get_child_rcu(pn, cindex++); } /* this loop will search for the next leaf with a greater key */ while (pn) { /* if we exhausted the parent node we will need to climb */ if (cindex >= (1ul << pn->bits)) { t_key pkey = pn->key; pn = node_parent_rcu(pn); if (!pn) break; cindex = get_index(pkey, pn) + 1; continue; } /* grab the next available node */ n = get_child_rcu(pn, cindex++); if (!n) continue; /* no need to compare keys since we bumped the index */ if (IS_LEAF(n)) goto found; /* Rescan start scanning in new node */ pn = n; cindex = 0; } *tn = pn; return NULL; /* Root of trie */ found: /* if we are at the limit for keys just return NULL for the tnode */ *tn = (n->key == KEY_MAX) ? NULL : pn; return n; } /* Caller must hold RTNL */ void fib_table_flush_external(struct fib_table *tb) { struct trie *t = (struct trie *)tb->tb_data; struct fib_alias *fa; struct key_vector *n, *pn; unsigned long cindex; n = rcu_dereference(t->tnode[0]); if (!n) return; pn = NULL; cindex = 0; while (IS_TNODE(n)) { /* record pn and cindex for leaf walking */ pn = n; cindex = 1ul << n->bits; backtrace: /* walk trie in reverse order */ do { while (!(cindex--)) { t_key pkey = pn->key; /* if we got the root we are done */ pn = node_parent(pn); if (!pn) return; cindex = get_index(pkey, pn); } /* grab the next available node */ n = get_child(pn, cindex); } while (!n); } hlist_for_each_entry(fa, &n->leaf, fa_list) { struct fib_info *fi = fa->fa_info; if (!fi || !(fi->fib_flags & RTNH_F_EXTERNAL)) continue; netdev_switch_fib_ipv4_del(n->key, KEYLENGTH - fa->fa_slen, fi, fa->fa_tos, fa->fa_type, tb->tb_id); } /* if trie is leaf only loop is completed */ if (pn) goto backtrace; } /* Caller must hold RTNL. */ int fib_table_flush(struct fib_table *tb) { struct trie *t = (struct trie *)tb->tb_data; struct key_vector *n, *pn; struct hlist_node *tmp; struct fib_alias *fa; unsigned long cindex; unsigned char slen; int found = 0; n = rcu_dereference(t->tnode[0]); if (!n) goto flush_complete; pn = NULL; cindex = 0; while (IS_TNODE(n)) { /* record pn and cindex for leaf walking */ pn = n; cindex = 1ul << n->bits; backtrace: /* walk trie in reverse order */ do { while (!(cindex--)) { struct key_vector __rcu **cptr; t_key pkey = pn->key; n = pn; pn = node_parent(n); /* resize completed node */ cptr = resize(t, n); /* if we got the root we are done */ if (!pn) goto flush_complete; pn = container_of(cptr, struct key_vector, tnode[0]); cindex = get_index(pkey, pn); } /* grab the next available node */ n = get_child(pn, cindex); } while (!n); } /* track slen in case any prefixes survive */ slen = 0; hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) { struct fib_info *fi = fa->fa_info; if (fi && (fi->fib_flags & RTNH_F_DEAD)) { netdev_switch_fib_ipv4_del(n->key, KEYLENGTH - fa->fa_slen, fi, fa->fa_tos, fa->fa_type, tb->tb_id); hlist_del_rcu(&fa->fa_list); fib_release_info(fa->fa_info); alias_free_mem_rcu(fa); found++; continue; } slen = fa->fa_slen; } /* update leaf slen */ n->slen = slen; if (hlist_empty(&n->leaf)) { put_child_root(pn, t, n->key, NULL); node_free(n); } else { leaf_pull_suffix(pn, n); } /* if trie is leaf only loop is completed */ if (pn) goto backtrace; flush_complete: pr_debug("trie_flush found=%d\n", found); return found; } static void __trie_free_rcu(struct rcu_head *head) { struct fib_table *tb = container_of(head, struct fib_table, rcu); #ifdef CONFIG_IP_FIB_TRIE_STATS struct trie *t = (struct trie *)tb->tb_data; free_percpu(t->stats); #endif /* CONFIG_IP_FIB_TRIE_STATS */ kfree(tb); } void fib_free_table(struct fib_table *tb) { call_rcu(&tb->rcu, __trie_free_rcu); } static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb, struct sk_buff *skb, struct netlink_callback *cb) { __be32 xkey = htonl(l->key); struct fib_alias *fa; int i, s_i; s_i = cb->args[4]; i = 0; /* rcu_read_lock is hold by caller */ hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { if (i < s_i) { i++; continue; } if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, RTM_NEWROUTE, tb->tb_id, fa->fa_type, xkey, KEYLENGTH - fa->fa_slen, fa->fa_tos, fa->fa_info, NLM_F_MULTI) < 0) { cb->args[4] = i; return -1; } i++; } cb->args[4] = i; return skb->len; } /* rcu_read_lock needs to be hold by caller from readside */ int fib_table_dump(struct fib_table *tb, struct sk_buff *skb, struct netlink_callback *cb) { struct trie *t = (struct trie *)tb->tb_data; struct key_vector *l, *tp; /* Dump starting at last key. * Note: 0.0.0.0/0 (ie default) is first key. */ int count = cb->args[2]; t_key key = cb->args[3]; tp = rcu_dereference_rtnl(t->tnode[0]); while ((l = leaf_walk_rcu(&tp, key)) != NULL) { if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) { cb->args[3] = key; cb->args[2] = count; return -1; } ++count; key = l->key + 1; memset(&cb->args[4], 0, sizeof(cb->args) - 4*sizeof(cb->args[0])); /* stop loop if key wrapped back to 0 */ if (key < l->key) break; } cb->args[3] = key; cb->args[2] = count; return skb->len; } void __init fib_trie_init(void) { fn_alias_kmem = kmem_cache_create("ip_fib_alias", sizeof(struct fib_alias), 0, SLAB_PANIC, NULL); trie_leaf_kmem = kmem_cache_create("ip_fib_trie", LEAF_SIZE, 0, SLAB_PANIC, NULL); } struct fib_table *fib_trie_table(u32 id) { struct fib_table *tb; struct trie *t; tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie), GFP_KERNEL); if (tb == NULL) return NULL; tb->tb_id = id; tb->tb_default = -1; tb->tb_num_default = 0; t = (struct trie *) tb->tb_data; RCU_INIT_POINTER(t->tnode[0], NULL); #ifdef CONFIG_IP_FIB_TRIE_STATS t->stats = alloc_percpu(struct trie_use_stats); if (!t->stats) { kfree(tb); tb = NULL; } #endif return tb; } #ifdef CONFIG_PROC_FS /* Depth first Trie walk iterator */ struct fib_trie_iter { struct seq_net_private p; struct fib_table *tb; struct key_vector *tnode; unsigned int index; unsigned int depth; }; static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter) { unsigned long cindex = iter->index; struct key_vector *tn = iter->tnode; struct key_vector *p; /* A single entry routing table */ if (!tn) return NULL; pr_debug("get_next iter={node=%p index=%d depth=%d}\n", iter->tnode, iter->index, iter->depth); rescan: while (cindex < child_length(tn)) { struct key_vector *n = get_child_rcu(tn, cindex); if (n) { if (IS_LEAF(n)) { iter->tnode = tn; iter->index = cindex + 1; } else { /* push down one level */ iter->tnode = n; iter->index = 0; ++iter->depth; } return n; } ++cindex; } /* Current node exhausted, pop back up */ p = node_parent_rcu(tn); if (p) { cindex = get_index(tn->key, p) + 1; tn = p; --iter->depth; goto rescan; } /* got root? */ return NULL; } static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter, struct trie *t) { struct key_vector *n; if (!t) return NULL; n = rcu_dereference(t->tnode[0]); if (!n) return NULL; if (IS_TNODE(n)) { iter->tnode = n; iter->index = 0; iter->depth = 1; } else { iter->tnode = NULL; iter->index = 0; iter->depth = 0; } return n; } static void trie_collect_stats(struct trie *t, struct trie_stat *s) { struct key_vector *n; struct fib_trie_iter iter; memset(s, 0, sizeof(*s)); rcu_read_lock(); for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) { if (IS_LEAF(n)) { struct fib_alias *fa; s->leaves++; s->totdepth += iter.depth; if (iter.depth > s->maxdepth) s->maxdepth = iter.depth; hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) ++s->prefixes; } else { s->tnodes++; if (n->bits < MAX_STAT_DEPTH) s->nodesizes[n->bits]++; s->nullpointers += n->empty_children; } } rcu_read_unlock(); } /* * This outputs /proc/net/fib_triestats */ static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat) { unsigned int i, max, pointers, bytes, avdepth; if (stat->leaves) avdepth = stat->totdepth*100 / stat->leaves; else avdepth = 0; seq_printf(seq, "\tAver depth: %u.%02d\n", avdepth / 100, avdepth % 100); seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth); seq_printf(seq, "\tLeaves: %u\n", stat->leaves); bytes = LEAF_SIZE * stat->leaves; seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes); bytes += sizeof(struct fib_alias) * stat->prefixes; seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes); bytes += TNODE_SIZE(0) * stat->tnodes; max = MAX_STAT_DEPTH; while (max > 0 && stat->nodesizes[max-1] == 0) max--; pointers = 0; for (i = 1; i < max; i++) if (stat->nodesizes[i] != 0) { seq_printf(seq, " %u: %u", i, stat->nodesizes[i]); pointers += (1<nodesizes[i]; } seq_putc(seq, '\n'); seq_printf(seq, "\tPointers: %u\n", pointers); bytes += sizeof(struct key_vector *) * pointers; seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers); seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024); } #ifdef CONFIG_IP_FIB_TRIE_STATS static void trie_show_usage(struct seq_file *seq, const struct trie_use_stats __percpu *stats) { struct trie_use_stats s = { 0 }; int cpu; /* loop through all of the CPUs and gather up the stats */ for_each_possible_cpu(cpu) { const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu); s.gets += pcpu->gets; s.backtrack += pcpu->backtrack; s.semantic_match_passed += pcpu->semantic_match_passed; s.semantic_match_miss += pcpu->semantic_match_miss; s.null_node_hit += pcpu->null_node_hit; s.resize_node_skipped += pcpu->resize_node_skipped; } seq_printf(seq, "\nCounters:\n---------\n"); seq_printf(seq, "gets = %u\n", s.gets); seq_printf(seq, "backtracks = %u\n", s.backtrack); seq_printf(seq, "semantic match passed = %u\n", s.semantic_match_passed); seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss); seq_printf(seq, "null node hit= %u\n", s.null_node_hit); seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped); } #endif /* CONFIG_IP_FIB_TRIE_STATS */ static void fib_table_print(struct seq_file *seq, struct fib_table *tb) { if (tb->tb_id == RT_TABLE_LOCAL) seq_puts(seq, "Local:\n"); else if (tb->tb_id == RT_TABLE_MAIN) seq_puts(seq, "Main:\n"); else seq_printf(seq, "Id %d:\n", tb->tb_id); } static int fib_triestat_seq_show(struct seq_file *seq, void *v) { struct net *net = (struct net *)seq->private; unsigned int h; seq_printf(seq, "Basic info: size of leaf:" " %Zd bytes, size of tnode: %Zd bytes.\n", LEAF_SIZE, TNODE_SIZE(0)); for (h = 0; h < FIB_TABLE_HASHSZ; h++) { struct hlist_head *head = &net->ipv4.fib_table_hash[h]; struct fib_table *tb; hlist_for_each_entry_rcu(tb, head, tb_hlist) { struct trie *t = (struct trie *) tb->tb_data; struct trie_stat stat; if (!t) continue; fib_table_print(seq, tb); trie_collect_stats(t, &stat); trie_show_stats(seq, &stat); #ifdef CONFIG_IP_FIB_TRIE_STATS trie_show_usage(seq, t->stats); #endif } } return 0; } static int fib_triestat_seq_open(struct inode *inode, struct file *file) { return single_open_net(inode, file, fib_triestat_seq_show); } static const struct file_operations fib_triestat_fops = { .owner = THIS_MODULE, .open = fib_triestat_seq_open, .read = seq_read, .llseek = seq_lseek, .release = single_release_net, }; static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos) { struct fib_trie_iter *iter = seq->private; struct net *net = seq_file_net(seq); loff_t idx = 0; unsigned int h; for (h = 0; h < FIB_TABLE_HASHSZ; h++) { struct hlist_head *head = &net->ipv4.fib_table_hash[h]; struct fib_table *tb; hlist_for_each_entry_rcu(tb, head, tb_hlist) { struct key_vector *n; for (n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); n; n = fib_trie_get_next(iter)) if (pos == idx++) { iter->tb = tb; return n; } } } return NULL; } static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos) __acquires(RCU) { rcu_read_lock(); return fib_trie_get_idx(seq, *pos); } static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos) { struct fib_trie_iter *iter = seq->private; struct net *net = seq_file_net(seq); struct fib_table *tb = iter->tb; struct hlist_node *tb_node; unsigned int h; struct key_vector *n; ++*pos; /* next node in same table */ n = fib_trie_get_next(iter); if (n) return n; /* walk rest of this hash chain */ h = tb->tb_id & (FIB_TABLE_HASHSZ - 1); while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) { tb = hlist_entry(tb_node, struct fib_table, tb_hlist); n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); if (n) goto found; } /* new hash chain */ while (++h < FIB_TABLE_HASHSZ) { struct hlist_head *head = &net->ipv4.fib_table_hash[h]; hlist_for_each_entry_rcu(tb, head, tb_hlist) { n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); if (n) goto found; } } return NULL; found: iter->tb = tb; return n; } static void fib_trie_seq_stop(struct seq_file *seq, void *v) __releases(RCU) { rcu_read_unlock(); } static void seq_indent(struct seq_file *seq, int n) { while (n-- > 0) seq_puts(seq, " "); } static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s) { switch (s) { case RT_SCOPE_UNIVERSE: return "universe"; case RT_SCOPE_SITE: return "site"; case RT_SCOPE_LINK: return "link"; case RT_SCOPE_HOST: return "host"; case RT_SCOPE_NOWHERE: return "nowhere"; default: snprintf(buf, len, "scope=%d", s); return buf; } } static const char *const rtn_type_names[__RTN_MAX] = { [RTN_UNSPEC] = "UNSPEC", [RTN_UNICAST] = "UNICAST", [RTN_LOCAL] = "LOCAL", [RTN_BROADCAST] = "BROADCAST", [RTN_ANYCAST] = "ANYCAST", [RTN_MULTICAST] = "MULTICAST", [RTN_BLACKHOLE] = "BLACKHOLE", [RTN_UNREACHABLE] = "UNREACHABLE", [RTN_PROHIBIT] = "PROHIBIT", [RTN_THROW] = "THROW", [RTN_NAT] = "NAT", [RTN_XRESOLVE] = "XRESOLVE", }; static inline const char *rtn_type(char *buf, size_t len, unsigned int t) { if (t < __RTN_MAX && rtn_type_names[t]) return rtn_type_names[t]; snprintf(buf, len, "type %u", t); return buf; } /* Pretty print the trie */ static int fib_trie_seq_show(struct seq_file *seq, void *v) { const struct fib_trie_iter *iter = seq->private; struct key_vector *n = v; if (!node_parent_rcu(n)) fib_table_print(seq, iter->tb); if (IS_TNODE(n)) { __be32 prf = htonl(n->key); seq_indent(seq, iter->depth-1); seq_printf(seq, " +-- %pI4/%zu %u %u %u\n", &prf, KEYLENGTH - n->pos - n->bits, n->bits, n->full_children, n->empty_children); } else { __be32 val = htonl(n->key); struct fib_alias *fa; seq_indent(seq, iter->depth); seq_printf(seq, " |-- %pI4\n", &val); hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) { char buf1[32], buf2[32]; seq_indent(seq, iter->depth + 1); seq_printf(seq, " /%zu %s %s", KEYLENGTH - fa->fa_slen, rtn_scope(buf1, sizeof(buf1), fa->fa_info->fib_scope), rtn_type(buf2, sizeof(buf2), fa->fa_type)); if (fa->fa_tos) seq_printf(seq, " tos=%d", fa->fa_tos); seq_putc(seq, '\n'); } } return 0; } static const struct seq_operations fib_trie_seq_ops = { .start = fib_trie_seq_start, .next = fib_trie_seq_next, .stop = fib_trie_seq_stop, .show = fib_trie_seq_show, }; static int fib_trie_seq_open(struct inode *inode, struct file *file) { return seq_open_net(inode, file, &fib_trie_seq_ops, sizeof(struct fib_trie_iter)); } static const struct file_operations fib_trie_fops = { .owner = THIS_MODULE, .open = fib_trie_seq_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release_net, }; struct fib_route_iter { struct seq_net_private p; struct fib_table *main_tb; struct key_vector *tnode; loff_t pos; t_key key; }; static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos) { struct fib_table *tb = iter->main_tb; struct key_vector *l, **tp = &iter->tnode; struct trie *t; t_key key; /* use cache location of next-to-find key */ if (iter->pos > 0 && pos >= iter->pos) { pos -= iter->pos; key = iter->key; } else { t = (struct trie *)tb->tb_data; iter->tnode = rcu_dereference_rtnl(t->tnode[0]); iter->pos = 0; key = 0; } while ((l = leaf_walk_rcu(tp, key)) != NULL) { key = l->key + 1; iter->pos++; if (pos-- <= 0) break; l = NULL; /* handle unlikely case of a key wrap */ if (!key) break; } if (l) iter->key = key; /* remember it */ else iter->pos = 0; /* forget it */ return l; } static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos) __acquires(RCU) { struct fib_route_iter *iter = seq->private; struct fib_table *tb; struct trie *t; rcu_read_lock(); tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN); if (!tb) return NULL; iter->main_tb = tb; if (*pos != 0) return fib_route_get_idx(iter, *pos); t = (struct trie *)tb->tb_data; iter->tnode = rcu_dereference_rtnl(t->tnode[0]); iter->pos = 0; iter->key = 0; return SEQ_START_TOKEN; } static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos) { struct fib_route_iter *iter = seq->private; struct key_vector *l = NULL; t_key key = iter->key; ++*pos; /* only allow key of 0 for start of sequence */ if ((v == SEQ_START_TOKEN) || key) l = leaf_walk_rcu(&iter->tnode, key); if (l) { iter->key = l->key + 1; iter->pos++; } else { iter->pos = 0; } return l; } static void fib_route_seq_stop(struct seq_file *seq, void *v) __releases(RCU) { rcu_read_unlock(); } static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi) { unsigned int flags = 0; if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT) flags = RTF_REJECT; if (fi && fi->fib_nh->nh_gw) flags |= RTF_GATEWAY; if (mask == htonl(0xFFFFFFFF)) flags |= RTF_HOST; flags |= RTF_UP; return flags; } /* * This outputs /proc/net/route. * The format of the file is not supposed to be changed * and needs to be same as fib_hash output to avoid breaking * legacy utilities */ static int fib_route_seq_show(struct seq_file *seq, void *v) { struct fib_alias *fa; struct key_vector *l = v; __be32 prefix; if (v == SEQ_START_TOKEN) { seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway " "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU" "\tWindow\tIRTT"); return 0; } prefix = htonl(l->key); hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { const struct fib_info *fi = fa->fa_info; __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen); unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi); if ((fa->fa_type == RTN_BROADCAST) || (fa->fa_type == RTN_MULTICAST)) continue; seq_setwidth(seq, 127); if (fi) seq_printf(seq, "%s\t%08X\t%08X\t%04X\t%d\t%u\t" "%d\t%08X\t%d\t%u\t%u", fi->fib_dev ? fi->fib_dev->name : "*", prefix, fi->fib_nh->nh_gw, flags, 0, 0, fi->fib_priority, mask, (fi->fib_advmss ? fi->fib_advmss + 40 : 0), fi->fib_window, fi->fib_rtt >> 3); else seq_printf(seq, "*\t%08X\t%08X\t%04X\t%d\t%u\t" "%d\t%08X\t%d\t%u\t%u", prefix, 0, flags, 0, 0, 0, mask, 0, 0, 0); seq_pad(seq, '\n'); } return 0; } static const struct seq_operations fib_route_seq_ops = { .start = fib_route_seq_start, .next = fib_route_seq_next, .stop = fib_route_seq_stop, .show = fib_route_seq_show, }; static int fib_route_seq_open(struct inode *inode, struct file *file) { return seq_open_net(inode, file, &fib_route_seq_ops, sizeof(struct fib_route_iter)); } static const struct file_operations fib_route_fops = { .owner = THIS_MODULE, .open = fib_route_seq_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release_net, }; int __net_init fib_proc_init(struct net *net) { if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops)) goto out1; if (!proc_create("fib_triestat", S_IRUGO, net->proc_net, &fib_triestat_fops)) goto out2; if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops)) goto out3; return 0; out3: remove_proc_entry("fib_triestat", net->proc_net); out2: remove_proc_entry("fib_trie", net->proc_net); out1: return -ENOMEM; } void __net_exit fib_proc_exit(struct net *net) { remove_proc_entry("fib_trie", net->proc_net); remove_proc_entry("fib_triestat", net->proc_net); remove_proc_entry("route", net->proc_net); } #endif /* CONFIG_PROC_FS */