/* * Copyright (c) 2006 Oracle. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * */ #include #include #include #include #include #include #include #include "rds.h" /* this is just used for stats gathering :/ */ static DEFINE_SPINLOCK(rds_sock_lock); static unsigned long rds_sock_count; static LIST_HEAD(rds_sock_list); DECLARE_WAIT_QUEUE_HEAD(rds_poll_waitq); /* * This is called as the final descriptor referencing this socket is closed. * We have to unbind the socket so that another socket can be bound to the * address it was using. * * We have to be careful about racing with the incoming path. sock_orphan() * sets SOCK_DEAD and we use that as an indicator to the rx path that new * messages shouldn't be queued. */ static int rds_release(struct socket *sock) { struct sock *sk = sock->sk; struct rds_sock *rs; if (!sk) goto out; rs = rds_sk_to_rs(sk); sock_orphan(sk); /* Note - rds_clear_recv_queue grabs rs_recv_lock, so * that ensures the recv path has completed messing * with the socket. */ rds_clear_recv_queue(rs); rds_cong_remove_socket(rs); rds_remove_bound(rs); rds_send_drop_to(rs, NULL); rds_rdma_drop_keys(rs); rds_notify_queue_get(rs, NULL); __skb_queue_purge(&rs->rs_zcookie_queue); spin_lock_bh(&rds_sock_lock); list_del_init(&rs->rs_item); rds_sock_count--; spin_unlock_bh(&rds_sock_lock); rds_trans_put(rs->rs_transport); sock->sk = NULL; sock_put(sk); out: return 0; } /* * Careful not to race with rds_release -> sock_orphan which clears sk_sleep. * _bh() isn't OK here, we're called from interrupt handlers. It's probably OK * to wake the waitqueue after sk_sleep is clear as we hold a sock ref, but * this seems more conservative. * NB - normally, one would use sk_callback_lock for this, but we can * get here from interrupts, whereas the network code grabs sk_callback_lock * with _lock_bh only - so relying on sk_callback_lock introduces livelocks. */ void rds_wake_sk_sleep(struct rds_sock *rs) { unsigned long flags; read_lock_irqsave(&rs->rs_recv_lock, flags); __rds_wake_sk_sleep(rds_rs_to_sk(rs)); read_unlock_irqrestore(&rs->rs_recv_lock, flags); } static int rds_getname(struct socket *sock, struct sockaddr *uaddr, int peer) { struct sockaddr_in *sin = (struct sockaddr_in *)uaddr; struct rds_sock *rs = rds_sk_to_rs(sock->sk); memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); /* racey, don't care */ if (peer) { if (!rs->rs_conn_addr) return -ENOTCONN; sin->sin_port = rs->rs_conn_port; sin->sin_addr.s_addr = rs->rs_conn_addr; } else { sin->sin_port = rs->rs_bound_port; sin->sin_addr.s_addr = rs->rs_bound_addr; } sin->sin_family = AF_INET; return sizeof(*sin); } /* * RDS' poll is without a doubt the least intuitive part of the interface, * as EPOLLIN and EPOLLOUT do not behave entirely as you would expect from * a network protocol. * * EPOLLIN is asserted if * - there is data on the receive queue. * - to signal that a previously congested destination may have become * uncongested * - A notification has been queued to the socket (this can be a congestion * update, or a RDMA completion, or a MSG_ZEROCOPY completion). * * EPOLLOUT is asserted if there is room on the send queue. This does not mean * however, that the next sendmsg() call will succeed. If the application tries * to send to a congested destination, the system call may still fail (and * return ENOBUFS). */ static __poll_t rds_poll(struct file *file, struct socket *sock, poll_table *wait) { struct sock *sk = sock->sk; struct rds_sock *rs = rds_sk_to_rs(sk); __poll_t mask = 0; unsigned long flags; poll_wait(file, sk_sleep(sk), wait); if (rs->rs_seen_congestion) poll_wait(file, &rds_poll_waitq, wait); read_lock_irqsave(&rs->rs_recv_lock, flags); if (!rs->rs_cong_monitor) { /* When a congestion map was updated, we signal EPOLLIN for * "historical" reasons. Applications can also poll for * WRBAND instead. */ if (rds_cong_updated_since(&rs->rs_cong_track)) mask |= (EPOLLIN | EPOLLRDNORM | EPOLLWRBAND); } else { spin_lock(&rs->rs_lock); if (rs->rs_cong_notify) mask |= (EPOLLIN | EPOLLRDNORM); spin_unlock(&rs->rs_lock); } if (!list_empty(&rs->rs_recv_queue) || !list_empty(&rs->rs_notify_queue) || !skb_queue_empty(&rs->rs_zcookie_queue)) mask |= (EPOLLIN | EPOLLRDNORM); if (rs->rs_snd_bytes < rds_sk_sndbuf(rs)) mask |= (EPOLLOUT | EPOLLWRNORM); if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) mask |= POLLERR; read_unlock_irqrestore(&rs->rs_recv_lock, flags); /* clear state any time we wake a seen-congested socket */ if (mask) rs->rs_seen_congestion = 0; return mask; } static int rds_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) { return -ENOIOCTLCMD; } static int rds_cancel_sent_to(struct rds_sock *rs, char __user *optval, int len) { struct sockaddr_in sin; int ret = 0; /* racing with another thread binding seems ok here */ if (rs->rs_bound_addr == 0) { ret = -ENOTCONN; /* XXX not a great errno */ goto out; } if (len < sizeof(struct sockaddr_in)) { ret = -EINVAL; goto out; } if (copy_from_user(&sin, optval, sizeof(sin))) { ret = -EFAULT; goto out; } rds_send_drop_to(rs, &sin); out: return ret; } static int rds_set_bool_option(unsigned char *optvar, char __user *optval, int optlen) { int value; if (optlen < sizeof(int)) return -EINVAL; if (get_user(value, (int __user *) optval)) return -EFAULT; *optvar = !!value; return 0; } static int rds_cong_monitor(struct rds_sock *rs, char __user *optval, int optlen) { int ret; ret = rds_set_bool_option(&rs->rs_cong_monitor, optval, optlen); if (ret == 0) { if (rs->rs_cong_monitor) { rds_cong_add_socket(rs); } else { rds_cong_remove_socket(rs); rs->rs_cong_mask = 0; rs->rs_cong_notify = 0; } } return ret; } static int rds_set_transport(struct rds_sock *rs, char __user *optval, int optlen) { int t_type; if (rs->rs_transport) return -EOPNOTSUPP; /* previously attached to transport */ if (optlen != sizeof(int)) return -EINVAL; if (copy_from_user(&t_type, (int __user *)optval, sizeof(t_type))) return -EFAULT; if (t_type < 0 || t_type >= RDS_TRANS_COUNT) return -EINVAL; rs->rs_transport = rds_trans_get(t_type); return rs->rs_transport ? 0 : -ENOPROTOOPT; } static int rds_enable_recvtstamp(struct sock *sk, char __user *optval, int optlen) { int val, valbool; if (optlen != sizeof(int)) return -EFAULT; if (get_user(val, (int __user *)optval)) return -EFAULT; valbool = val ? 1 : 0; if (valbool) sock_set_flag(sk, SOCK_RCVTSTAMP); else sock_reset_flag(sk, SOCK_RCVTSTAMP); return 0; } static int rds_recv_track_latency(struct rds_sock *rs, char __user *optval, int optlen) { struct rds_rx_trace_so trace; int i; if (optlen != sizeof(struct rds_rx_trace_so)) return -EFAULT; if (copy_from_user(&trace, optval, sizeof(trace))) return -EFAULT; if (trace.rx_traces > RDS_MSG_RX_DGRAM_TRACE_MAX) return -EFAULT; rs->rs_rx_traces = trace.rx_traces; for (i = 0; i < rs->rs_rx_traces; i++) { if (trace.rx_trace_pos[i] > RDS_MSG_RX_DGRAM_TRACE_MAX) { rs->rs_rx_traces = 0; return -EFAULT; } rs->rs_rx_trace[i] = trace.rx_trace_pos[i]; } return 0; } static int rds_setsockopt(struct socket *sock, int level, int optname, char __user *optval, unsigned int optlen) { struct rds_sock *rs = rds_sk_to_rs(sock->sk); int ret; if (level != SOL_RDS) { ret = -ENOPROTOOPT; goto out; } switch (optname) { case RDS_CANCEL_SENT_TO: ret = rds_cancel_sent_to(rs, optval, optlen); break; case RDS_GET_MR: ret = rds_get_mr(rs, optval, optlen); break; case RDS_GET_MR_FOR_DEST: ret = rds_get_mr_for_dest(rs, optval, optlen); break; case RDS_FREE_MR: ret = rds_free_mr(rs, optval, optlen); break; case RDS_RECVERR: ret = rds_set_bool_option(&rs->rs_recverr, optval, optlen); break; case RDS_CONG_MONITOR: ret = rds_cong_monitor(rs, optval, optlen); break; case SO_RDS_TRANSPORT: lock_sock(sock->sk); ret = rds_set_transport(rs, optval, optlen); release_sock(sock->sk); break; case SO_TIMESTAMP: lock_sock(sock->sk); ret = rds_enable_recvtstamp(sock->sk, optval, optlen); release_sock(sock->sk); break; case SO_RDS_MSG_RXPATH_LATENCY: ret = rds_recv_track_latency(rs, optval, optlen); break; default: ret = -ENOPROTOOPT; } out: return ret; } static int rds_getsockopt(struct socket *sock, int level, int optname, char __user *optval, int __user *optlen) { struct rds_sock *rs = rds_sk_to_rs(sock->sk); int ret = -ENOPROTOOPT, len; int trans; if (level != SOL_RDS) goto out; if (get_user(len, optlen)) { ret = -EFAULT; goto out; } switch (optname) { case RDS_INFO_FIRST ... RDS_INFO_LAST: ret = rds_info_getsockopt(sock, optname, optval, optlen); break; case RDS_RECVERR: if (len < sizeof(int)) ret = -EINVAL; else if (put_user(rs->rs_recverr, (int __user *) optval) || put_user(sizeof(int), optlen)) ret = -EFAULT; else ret = 0; break; case SO_RDS_TRANSPORT: if (len < sizeof(int)) { ret = -EINVAL; break; } trans = (rs->rs_transport ? rs->rs_transport->t_type : RDS_TRANS_NONE); /* unbound */ if (put_user(trans, (int __user *)optval) || put_user(sizeof(int), optlen)) ret = -EFAULT; else ret = 0; break; default: break; } out: return ret; } static int rds_connect(struct socket *sock, struct sockaddr *uaddr, int addr_len, int flags) { struct sock *sk = sock->sk; struct sockaddr_in *sin = (struct sockaddr_in *)uaddr; struct rds_sock *rs = rds_sk_to_rs(sk); int ret = 0; lock_sock(sk); if (addr_len != sizeof(struct sockaddr_in)) { ret = -EINVAL; goto out; } if (sin->sin_family != AF_INET) { ret = -EAFNOSUPPORT; goto out; } if (sin->sin_addr.s_addr == htonl(INADDR_ANY)) { ret = -EDESTADDRREQ; goto out; } rs->rs_conn_addr = sin->sin_addr.s_addr; rs->rs_conn_port = sin->sin_port; out: release_sock(sk); return ret; } static struct proto rds_proto = { .name = "RDS", .owner = THIS_MODULE, .obj_size = sizeof(struct rds_sock), }; static const struct proto_ops rds_proto_ops = { .family = AF_RDS, .owner = THIS_MODULE, .release = rds_release, .bind = rds_bind, .connect = rds_connect, .socketpair = sock_no_socketpair, .accept = sock_no_accept, .getname = rds_getname, .poll = rds_poll, .ioctl = rds_ioctl, .listen = sock_no_listen, .shutdown = sock_no_shutdown, .setsockopt = rds_setsockopt, .getsockopt = rds_getsockopt, .sendmsg = rds_sendmsg, .recvmsg = rds_recvmsg, .mmap = sock_no_mmap, .sendpage = sock_no_sendpage, }; static void rds_sock_destruct(struct sock *sk) { struct rds_sock *rs = rds_sk_to_rs(sk); WARN_ON((&rs->rs_item != rs->rs_item.next || &rs->rs_item != rs->rs_item.prev)); } static int __rds_create(struct socket *sock, struct sock *sk, int protocol) { struct rds_sock *rs; sock_init_data(sock, sk); sock->ops = &rds_proto_ops; sk->sk_protocol = protocol; sk->sk_destruct = rds_sock_destruct; rs = rds_sk_to_rs(sk); spin_lock_init(&rs->rs_lock); rwlock_init(&rs->rs_recv_lock); INIT_LIST_HEAD(&rs->rs_send_queue); INIT_LIST_HEAD(&rs->rs_recv_queue); INIT_LIST_HEAD(&rs->rs_notify_queue); INIT_LIST_HEAD(&rs->rs_cong_list); skb_queue_head_init(&rs->rs_zcookie_queue); spin_lock_init(&rs->rs_rdma_lock); rs->rs_rdma_keys = RB_ROOT; rs->rs_rx_traces = 0; spin_lock_bh(&rds_sock_lock); list_add_tail(&rs->rs_item, &rds_sock_list); rds_sock_count++; spin_unlock_bh(&rds_sock_lock); return 0; } static int rds_create(struct net *net, struct socket *sock, int protocol, int kern) { struct sock *sk; if (sock->type != SOCK_SEQPACKET || protocol) return -ESOCKTNOSUPPORT; sk = sk_alloc(net, AF_RDS, GFP_ATOMIC, &rds_proto, kern); if (!sk) return -ENOMEM; return __rds_create(sock, sk, protocol); } void rds_sock_addref(struct rds_sock *rs) { sock_hold(rds_rs_to_sk(rs)); } void rds_sock_put(struct rds_sock *rs) { sock_put(rds_rs_to_sk(rs)); } static const struct net_proto_family rds_family_ops = { .family = AF_RDS, .create = rds_create, .owner = THIS_MODULE, }; static void rds_sock_inc_info(struct socket *sock, unsigned int len, struct rds_info_iterator *iter, struct rds_info_lengths *lens) { struct rds_sock *rs; struct rds_incoming *inc; unsigned int total = 0; len /= sizeof(struct rds_info_message); spin_lock_bh(&rds_sock_lock); list_for_each_entry(rs, &rds_sock_list, rs_item) { read_lock(&rs->rs_recv_lock); /* XXX too lazy to maintain counts.. */ list_for_each_entry(inc, &rs->rs_recv_queue, i_item) { total++; if (total <= len) rds_inc_info_copy(inc, iter, inc->i_saddr, rs->rs_bound_addr, 1); } read_unlock(&rs->rs_recv_lock); } spin_unlock_bh(&rds_sock_lock); lens->nr = total; lens->each = sizeof(struct rds_info_message); } static void rds_sock_info(struct socket *sock, unsigned int len, struct rds_info_iterator *iter, struct rds_info_lengths *lens) { struct rds_info_socket sinfo; struct rds_sock *rs; len /= sizeof(struct rds_info_socket); spin_lock_bh(&rds_sock_lock); if (len < rds_sock_count) goto out; list_for_each_entry(rs, &rds_sock_list, rs_item) { sinfo.sndbuf = rds_sk_sndbuf(rs); sinfo.rcvbuf = rds_sk_rcvbuf(rs); sinfo.bound_addr = rs->rs_bound_addr; sinfo.connected_addr = rs->rs_conn_addr; sinfo.bound_port = rs->rs_bound_port; sinfo.connected_port = rs->rs_conn_port; sinfo.inum = sock_i_ino(rds_rs_to_sk(rs)); rds_info_copy(iter, &sinfo, sizeof(sinfo)); } out: lens->nr = rds_sock_count; lens->each = sizeof(struct rds_info_socket); spin_unlock_bh(&rds_sock_lock); } static void rds_exit(void) { sock_unregister(rds_family_ops.family); proto_unregister(&rds_proto); rds_conn_exit(); rds_cong_exit(); rds_sysctl_exit(); rds_threads_exit(); rds_stats_exit(); rds_page_exit(); rds_bind_lock_destroy(); rds_info_deregister_func(RDS_INFO_SOCKETS, rds_sock_info); rds_info_deregister_func(RDS_INFO_RECV_MESSAGES, rds_sock_inc_info); } module_exit(rds_exit); u32 rds_gen_num; static int rds_init(void) { int ret; net_get_random_once(&rds_gen_num, sizeof(rds_gen_num)); ret = rds_bind_lock_init(); if (ret) goto out; ret = rds_conn_init(); if (ret) goto out_bind; ret = rds_threads_init(); if (ret) goto out_conn; ret = rds_sysctl_init(); if (ret) goto out_threads; ret = rds_stats_init(); if (ret) goto out_sysctl; ret = proto_register(&rds_proto, 1); if (ret) goto out_stats; ret = sock_register(&rds_family_ops); if (ret) goto out_proto; rds_info_register_func(RDS_INFO_SOCKETS, rds_sock_info); rds_info_register_func(RDS_INFO_RECV_MESSAGES, rds_sock_inc_info); goto out; out_proto: proto_unregister(&rds_proto); out_stats: rds_stats_exit(); out_sysctl: rds_sysctl_exit(); out_threads: rds_threads_exit(); out_conn: rds_conn_exit(); rds_cong_exit(); rds_page_exit(); out_bind: rds_bind_lock_destroy(); out: return ret; } module_init(rds_init); #define DRV_VERSION "4.0" #define DRV_RELDATE "Feb 12, 2009" MODULE_AUTHOR("Oracle Corporation "); MODULE_DESCRIPTION("RDS: Reliable Datagram Sockets" " v" DRV_VERSION " (" DRV_RELDATE ")"); MODULE_VERSION(DRV_VERSION); MODULE_LICENSE("Dual BSD/GPL"); MODULE_ALIAS_NETPROTO(PF_RDS);