/* * Copyright (c) 2015 Oracle. All rights reserved. * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved. */ /* Lightweight memory registration using Fast Memory Regions (FMR). * Referred to sometimes as MTHCAFMR mode. * * FMR uses synchronous memory registration and deregistration. * FMR registration is known to be fast, but FMR deregistration * can take tens of usecs to complete. */ /* Normal operation * * A Memory Region is prepared for RDMA READ or WRITE using the * ib_map_phys_fmr verb (fmr_op_map). When the RDMA operation is * finished, the Memory Region is unmapped using the ib_unmap_fmr * verb (fmr_op_unmap). */ /* Transport recovery * * After a transport reconnect, fmr_op_map re-uses the MR already * allocated for the RPC, but generates a fresh rkey then maps the * MR again. This process is synchronous. */ #include "xprt_rdma.h" #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) # define RPCDBG_FACILITY RPCDBG_TRANS #endif /* Maximum scatter/gather per FMR */ #define RPCRDMA_MAX_FMR_SGES (64) static int fmr_op_open(struct rpcrdma_ia *ia, struct rpcrdma_ep *ep, struct rpcrdma_create_data_internal *cdata) { return 0; } /* FMR mode conveys up to 64 pages of payload per chunk segment. */ static size_t fmr_op_maxpages(struct rpcrdma_xprt *r_xprt) { return min_t(unsigned int, RPCRDMA_MAX_DATA_SEGS, rpcrdma_max_segments(r_xprt) * RPCRDMA_MAX_FMR_SGES); } static int fmr_op_init(struct rpcrdma_xprt *r_xprt) { struct rpcrdma_buffer *buf = &r_xprt->rx_buf; int mr_access_flags = IB_ACCESS_REMOTE_WRITE | IB_ACCESS_REMOTE_READ; struct ib_fmr_attr fmr_attr = { .max_pages = RPCRDMA_MAX_FMR_SGES, .max_maps = 1, .page_shift = PAGE_SHIFT }; struct ib_pd *pd = r_xprt->rx_ia.ri_pd; struct rpcrdma_mw *r; int i, rc; spin_lock_init(&buf->rb_mwlock); INIT_LIST_HEAD(&buf->rb_mws); INIT_LIST_HEAD(&buf->rb_all); i = (buf->rb_max_requests + 1) * RPCRDMA_MAX_SEGS; dprintk("RPC: %s: initializing %d FMRs\n", __func__, i); rc = -ENOMEM; while (i--) { r = kzalloc(sizeof(*r), GFP_KERNEL); if (!r) goto out; r->r.fmr.physaddrs = kmalloc(RPCRDMA_MAX_FMR_SGES * sizeof(u64), GFP_KERNEL); if (!r->r.fmr.physaddrs) goto out_free; r->r.fmr.fmr = ib_alloc_fmr(pd, mr_access_flags, &fmr_attr); if (IS_ERR(r->r.fmr.fmr)) goto out_fmr_err; list_add(&r->mw_list, &buf->rb_mws); list_add(&r->mw_all, &buf->rb_all); } return 0; out_fmr_err: rc = PTR_ERR(r->r.fmr.fmr); dprintk("RPC: %s: ib_alloc_fmr status %i\n", __func__, rc); kfree(r->r.fmr.physaddrs); out_free: kfree(r); out: return rc; } static int __fmr_unmap(struct rpcrdma_mw *r) { LIST_HEAD(l); list_add(&r->r.fmr.fmr->list, &l); return ib_unmap_fmr(&l); } /* Use the ib_map_phys_fmr() verb to register a memory region * for remote access via RDMA READ or RDMA WRITE. */ static int fmr_op_map(struct rpcrdma_xprt *r_xprt, struct rpcrdma_mr_seg *seg, int nsegs, bool writing) { struct rpcrdma_ia *ia = &r_xprt->rx_ia; struct ib_device *device = ia->ri_device; enum dma_data_direction direction = rpcrdma_data_dir(writing); struct rpcrdma_mr_seg *seg1 = seg; int len, pageoff, i, rc; struct rpcrdma_mw *mw; mw = seg1->rl_mw; seg1->rl_mw = NULL; if (!mw) { mw = rpcrdma_get_mw(r_xprt); if (!mw) return -ENOMEM; } else { /* this is a retransmit; generate a fresh rkey */ rc = __fmr_unmap(mw); if (rc) return rc; } pageoff = offset_in_page(seg1->mr_offset); seg1->mr_offset -= pageoff; /* start of page */ seg1->mr_len += pageoff; len = -pageoff; if (nsegs > RPCRDMA_MAX_FMR_SGES) nsegs = RPCRDMA_MAX_FMR_SGES; for (i = 0; i < nsegs;) { rpcrdma_map_one(device, seg, direction); mw->r.fmr.physaddrs[i] = seg->mr_dma; len += seg->mr_len; ++seg; ++i; /* Check for holes */ if ((i < nsegs && offset_in_page(seg->mr_offset)) || offset_in_page((seg-1)->mr_offset + (seg-1)->mr_len)) break; } rc = ib_map_phys_fmr(mw->r.fmr.fmr, mw->r.fmr.physaddrs, i, seg1->mr_dma); if (rc) goto out_maperr; seg1->rl_mw = mw; seg1->mr_rkey = mw->r.fmr.fmr->rkey; seg1->mr_base = seg1->mr_dma + pageoff; seg1->mr_nsegs = i; seg1->mr_len = len; return i; out_maperr: dprintk("RPC: %s: ib_map_phys_fmr %u@0x%llx+%i (%d) status %i\n", __func__, len, (unsigned long long)seg1->mr_dma, pageoff, i, rc); while (i--) rpcrdma_unmap_one(device, --seg); return rc; } /* Use the ib_unmap_fmr() verb to prevent further remote * access via RDMA READ or RDMA WRITE. */ static int fmr_op_unmap(struct rpcrdma_xprt *r_xprt, struct rpcrdma_mr_seg *seg) { struct rpcrdma_ia *ia = &r_xprt->rx_ia; struct rpcrdma_mr_seg *seg1 = seg; struct rpcrdma_mw *mw = seg1->rl_mw; int rc, nsegs = seg->mr_nsegs; dprintk("RPC: %s: FMR %p\n", __func__, mw); seg1->rl_mw = NULL; while (seg1->mr_nsegs--) rpcrdma_unmap_one(ia->ri_device, seg++); rc = __fmr_unmap(mw); if (rc) goto out_err; rpcrdma_put_mw(r_xprt, mw); return nsegs; out_err: /* The FMR is abandoned, but remains in rb_all. fmr_op_destroy * will attempt to release it when the transport is destroyed. */ dprintk("RPC: %s: ib_unmap_fmr status %i\n", __func__, rc); return nsegs; } static void fmr_op_destroy(struct rpcrdma_buffer *buf) { struct rpcrdma_mw *r; int rc; while (!list_empty(&buf->rb_all)) { r = list_entry(buf->rb_all.next, struct rpcrdma_mw, mw_all); list_del(&r->mw_all); kfree(r->r.fmr.physaddrs); rc = ib_dealloc_fmr(r->r.fmr.fmr); if (rc) dprintk("RPC: %s: ib_dealloc_fmr failed %i\n", __func__, rc); kfree(r); } } const struct rpcrdma_memreg_ops rpcrdma_fmr_memreg_ops = { .ro_map = fmr_op_map, .ro_unmap = fmr_op_unmap, .ro_open = fmr_op_open, .ro_maxpages = fmr_op_maxpages, .ro_init = fmr_op_init, .ro_destroy = fmr_op_destroy, .ro_displayname = "fmr", };