/* * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the BSD-type * license below: * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of the Network Appliance, Inc. nor the names of * its contributors may be used to endorse or promote products * derived from this software without specific prior written * permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * verbs.c * * Encapsulates the major functions managing: * o adapters * o endpoints * o connections * o buffer memory */ #include #include #include #include #include #include /* try_module_get()/module_put() */ #include "xprt_rdma.h" /* * Globals/Macros */ #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) # define RPCDBG_FACILITY RPCDBG_TRANS #endif /* * internal functions */ static struct workqueue_struct *rpcrdma_receive_wq; int rpcrdma_alloc_wq(void) { struct workqueue_struct *recv_wq; recv_wq = alloc_workqueue("xprtrdma_receive", WQ_MEM_RECLAIM | WQ_UNBOUND | WQ_HIGHPRI, 0); if (!recv_wq) return -ENOMEM; rpcrdma_receive_wq = recv_wq; return 0; } void rpcrdma_destroy_wq(void) { struct workqueue_struct *wq; if (rpcrdma_receive_wq) { wq = rpcrdma_receive_wq; rpcrdma_receive_wq = NULL; destroy_workqueue(wq); } } static void rpcrdma_qp_async_error_upcall(struct ib_event *event, void *context) { struct rpcrdma_ep *ep = context; pr_err("RPC: %s: %s on device %s ep %p\n", __func__, ib_event_msg(event->event), event->device->name, context); if (ep->rep_connected == 1) { ep->rep_connected = -EIO; rpcrdma_conn_func(ep); wake_up_all(&ep->rep_connect_wait); } } /** * rpcrdma_wc_send - Invoked by RDMA provider for each polled Send WC * @cq: completion queue (ignored) * @wc: completed WR * */ static void rpcrdma_wc_send(struct ib_cq *cq, struct ib_wc *wc) { /* WARNING: Only wr_cqe and status are reliable at this point */ if (wc->status != IB_WC_SUCCESS && wc->status != IB_WC_WR_FLUSH_ERR) pr_err("rpcrdma: Send: %s (%u/0x%x)\n", ib_wc_status_msg(wc->status), wc->status, wc->vendor_err); } static void rpcrdma_receive_worker(struct work_struct *work) { struct rpcrdma_rep *rep = container_of(work, struct rpcrdma_rep, rr_work); rpcrdma_reply_handler(rep); } /* Perform basic sanity checking to avoid using garbage * to update the credit grant value. */ static void rpcrdma_update_granted_credits(struct rpcrdma_rep *rep) { struct rpcrdma_msg *rmsgp = rdmab_to_msg(rep->rr_rdmabuf); struct rpcrdma_buffer *buffer = &rep->rr_rxprt->rx_buf; u32 credits; if (rep->rr_len < RPCRDMA_HDRLEN_ERR) return; credits = be32_to_cpu(rmsgp->rm_credit); if (credits == 0) credits = 1; /* don't deadlock */ else if (credits > buffer->rb_max_requests) credits = buffer->rb_max_requests; atomic_set(&buffer->rb_credits, credits); } /** * rpcrdma_receive_wc - Invoked by RDMA provider for each polled Receive WC * @cq: completion queue (ignored) * @wc: completed WR * */ static void rpcrdma_receive_wc(struct ib_cq *cq, struct ib_wc *wc) { struct ib_cqe *cqe = wc->wr_cqe; struct rpcrdma_rep *rep = container_of(cqe, struct rpcrdma_rep, rr_cqe); /* WARNING: Only wr_id and status are reliable at this point */ if (wc->status != IB_WC_SUCCESS) goto out_fail; /* status == SUCCESS means all fields in wc are trustworthy */ if (wc->opcode != IB_WC_RECV) return; dprintk("RPC: %s: rep %p opcode 'recv', length %u: success\n", __func__, rep, wc->byte_len); rep->rr_len = wc->byte_len; ib_dma_sync_single_for_cpu(rep->rr_device, rdmab_addr(rep->rr_rdmabuf), rep->rr_len, DMA_FROM_DEVICE); rpcrdma_update_granted_credits(rep); out_schedule: queue_work(rpcrdma_receive_wq, &rep->rr_work); return; out_fail: if (wc->status != IB_WC_WR_FLUSH_ERR) pr_err("rpcrdma: Recv: %s (%u/0x%x)\n", ib_wc_status_msg(wc->status), wc->status, wc->vendor_err); rep->rr_len = RPCRDMA_BAD_LEN; goto out_schedule; } static int rpcrdma_conn_upcall(struct rdma_cm_id *id, struct rdma_cm_event *event) { struct rpcrdma_xprt *xprt = id->context; struct rpcrdma_ia *ia = &xprt->rx_ia; struct rpcrdma_ep *ep = &xprt->rx_ep; #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) struct sockaddr *sap = (struct sockaddr *)&ep->rep_remote_addr; #endif struct ib_qp_attr *attr = &ia->ri_qp_attr; struct ib_qp_init_attr *iattr = &ia->ri_qp_init_attr; int connstate = 0; switch (event->event) { case RDMA_CM_EVENT_ADDR_RESOLVED: case RDMA_CM_EVENT_ROUTE_RESOLVED: ia->ri_async_rc = 0; complete(&ia->ri_done); break; case RDMA_CM_EVENT_ADDR_ERROR: ia->ri_async_rc = -EHOSTUNREACH; dprintk("RPC: %s: CM address resolution error, ep 0x%p\n", __func__, ep); complete(&ia->ri_done); break; case RDMA_CM_EVENT_ROUTE_ERROR: ia->ri_async_rc = -ENETUNREACH; dprintk("RPC: %s: CM route resolution error, ep 0x%p\n", __func__, ep); complete(&ia->ri_done); break; case RDMA_CM_EVENT_ESTABLISHED: connstate = 1; ib_query_qp(ia->ri_id->qp, attr, IB_QP_MAX_QP_RD_ATOMIC | IB_QP_MAX_DEST_RD_ATOMIC, iattr); dprintk("RPC: %s: %d responder resources" " (%d initiator)\n", __func__, attr->max_dest_rd_atomic, attr->max_rd_atomic); goto connected; case RDMA_CM_EVENT_CONNECT_ERROR: connstate = -ENOTCONN; goto connected; case RDMA_CM_EVENT_UNREACHABLE: connstate = -ENETDOWN; goto connected; case RDMA_CM_EVENT_REJECTED: connstate = -ECONNREFUSED; goto connected; case RDMA_CM_EVENT_DISCONNECTED: connstate = -ECONNABORTED; goto connected; case RDMA_CM_EVENT_DEVICE_REMOVAL: connstate = -ENODEV; connected: dprintk("RPC: %s: %sconnected\n", __func__, connstate > 0 ? "" : "dis"); atomic_set(&xprt->rx_buf.rb_credits, 1); ep->rep_connected = connstate; rpcrdma_conn_func(ep); wake_up_all(&ep->rep_connect_wait); /*FALLTHROUGH*/ default: dprintk("RPC: %s: %pIS:%u (ep 0x%p): %s\n", __func__, sap, rpc_get_port(sap), ep, rdma_event_msg(event->event)); break; } #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) if (connstate == 1) { int ird = attr->max_dest_rd_atomic; int tird = ep->rep_remote_cma.responder_resources; pr_info("rpcrdma: connection to %pIS:%u on %s, memreg '%s', %d credits, %d responders%s\n", sap, rpc_get_port(sap), ia->ri_device->name, ia->ri_ops->ro_displayname, xprt->rx_buf.rb_max_requests, ird, ird < 4 && ird < tird / 2 ? " (low!)" : ""); } else if (connstate < 0) { pr_info("rpcrdma: connection to %pIS:%u closed (%d)\n", sap, rpc_get_port(sap), connstate); } #endif return 0; } static void rpcrdma_destroy_id(struct rdma_cm_id *id) { if (id) { module_put(id->device->owner); rdma_destroy_id(id); } } static struct rdma_cm_id * rpcrdma_create_id(struct rpcrdma_xprt *xprt, struct rpcrdma_ia *ia, struct sockaddr *addr) { struct rdma_cm_id *id; int rc; init_completion(&ia->ri_done); id = rdma_create_id(&init_net, rpcrdma_conn_upcall, xprt, RDMA_PS_TCP, IB_QPT_RC); if (IS_ERR(id)) { rc = PTR_ERR(id); dprintk("RPC: %s: rdma_create_id() failed %i\n", __func__, rc); return id; } ia->ri_async_rc = -ETIMEDOUT; rc = rdma_resolve_addr(id, NULL, addr, RDMA_RESOLVE_TIMEOUT); if (rc) { dprintk("RPC: %s: rdma_resolve_addr() failed %i\n", __func__, rc); goto out; } wait_for_completion_interruptible_timeout(&ia->ri_done, msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT) + 1); /* FIXME: * Until xprtrdma supports DEVICE_REMOVAL, the provider must * be pinned while there are active NFS/RDMA mounts to prevent * hangs and crashes at umount time. */ if (!ia->ri_async_rc && !try_module_get(id->device->owner)) { dprintk("RPC: %s: Failed to get device module\n", __func__); ia->ri_async_rc = -ENODEV; } rc = ia->ri_async_rc; if (rc) goto out; ia->ri_async_rc = -ETIMEDOUT; rc = rdma_resolve_route(id, RDMA_RESOLVE_TIMEOUT); if (rc) { dprintk("RPC: %s: rdma_resolve_route() failed %i\n", __func__, rc); goto put; } wait_for_completion_interruptible_timeout(&ia->ri_done, msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT) + 1); rc = ia->ri_async_rc; if (rc) goto put; return id; put: module_put(id->device->owner); out: rdma_destroy_id(id); return ERR_PTR(rc); } /* * Exported functions. */ /* * Open and initialize an Interface Adapter. * o initializes fields of struct rpcrdma_ia, including * interface and provider attributes and protection zone. */ int rpcrdma_ia_open(struct rpcrdma_xprt *xprt, struct sockaddr *addr, int memreg) { struct rpcrdma_ia *ia = &xprt->rx_ia; int rc; ia->ri_id = rpcrdma_create_id(xprt, ia, addr); if (IS_ERR(ia->ri_id)) { rc = PTR_ERR(ia->ri_id); goto out1; } ia->ri_device = ia->ri_id->device; ia->ri_pd = ib_alloc_pd(ia->ri_device); if (IS_ERR(ia->ri_pd)) { rc = PTR_ERR(ia->ri_pd); pr_err("rpcrdma: ib_alloc_pd() returned %d\n", rc); goto out2; } switch (memreg) { case RPCRDMA_FRMR: if (frwr_is_supported(ia)) { ia->ri_ops = &rpcrdma_frwr_memreg_ops; break; } /*FALLTHROUGH*/ case RPCRDMA_MTHCAFMR: if (fmr_is_supported(ia)) { ia->ri_ops = &rpcrdma_fmr_memreg_ops; break; } /*FALLTHROUGH*/ default: pr_err("rpcrdma: Unsupported memory registration mode: %d\n", memreg); rc = -EINVAL; goto out3; } return 0; out3: ib_dealloc_pd(ia->ri_pd); ia->ri_pd = NULL; out2: rpcrdma_destroy_id(ia->ri_id); ia->ri_id = NULL; out1: return rc; } /* * Clean up/close an IA. * o if event handles and PD have been initialized, free them. * o close the IA */ void rpcrdma_ia_close(struct rpcrdma_ia *ia) { dprintk("RPC: %s: entering\n", __func__); if (ia->ri_id != NULL && !IS_ERR(ia->ri_id)) { if (ia->ri_id->qp) rdma_destroy_qp(ia->ri_id); rpcrdma_destroy_id(ia->ri_id); ia->ri_id = NULL; } /* If the pd is still busy, xprtrdma missed freeing a resource */ if (ia->ri_pd && !IS_ERR(ia->ri_pd)) ib_dealloc_pd(ia->ri_pd); } /* * Create unconnected endpoint. */ int rpcrdma_ep_create(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia, struct rpcrdma_create_data_internal *cdata) { struct ib_cq *sendcq, *recvcq; unsigned int max_qp_wr; int rc; if (ia->ri_device->attrs.max_sge < RPCRDMA_MAX_IOVS) { dprintk("RPC: %s: insufficient sge's available\n", __func__); return -ENOMEM; } if (ia->ri_device->attrs.max_qp_wr <= RPCRDMA_BACKWARD_WRS) { dprintk("RPC: %s: insufficient wqe's available\n", __func__); return -ENOMEM; } max_qp_wr = ia->ri_device->attrs.max_qp_wr - RPCRDMA_BACKWARD_WRS - 1; /* check provider's send/recv wr limits */ if (cdata->max_requests > max_qp_wr) cdata->max_requests = max_qp_wr; ep->rep_attr.event_handler = rpcrdma_qp_async_error_upcall; ep->rep_attr.qp_context = ep; ep->rep_attr.srq = NULL; ep->rep_attr.cap.max_send_wr = cdata->max_requests; ep->rep_attr.cap.max_send_wr += RPCRDMA_BACKWARD_WRS; ep->rep_attr.cap.max_send_wr += 1; /* drain cqe */ rc = ia->ri_ops->ro_open(ia, ep, cdata); if (rc) return rc; ep->rep_attr.cap.max_recv_wr = cdata->max_requests; ep->rep_attr.cap.max_recv_wr += RPCRDMA_BACKWARD_WRS; ep->rep_attr.cap.max_recv_wr += 1; /* drain cqe */ ep->rep_attr.cap.max_send_sge = RPCRDMA_MAX_IOVS; ep->rep_attr.cap.max_recv_sge = 1; ep->rep_attr.cap.max_inline_data = 0; ep->rep_attr.sq_sig_type = IB_SIGNAL_REQ_WR; ep->rep_attr.qp_type = IB_QPT_RC; ep->rep_attr.port_num = ~0; dprintk("RPC: %s: requested max: dtos: send %d recv %d; " "iovs: send %d recv %d\n", __func__, ep->rep_attr.cap.max_send_wr, ep->rep_attr.cap.max_recv_wr, ep->rep_attr.cap.max_send_sge, ep->rep_attr.cap.max_recv_sge); /* set trigger for requesting send completion */ ep->rep_cqinit = ep->rep_attr.cap.max_send_wr/2 - 1; if (ep->rep_cqinit <= 2) ep->rep_cqinit = 0; /* always signal? */ INIT_CQCOUNT(ep); init_waitqueue_head(&ep->rep_connect_wait); INIT_DELAYED_WORK(&ep->rep_connect_worker, rpcrdma_connect_worker); sendcq = ib_alloc_cq(ia->ri_device, NULL, ep->rep_attr.cap.max_send_wr + 1, 0, IB_POLL_SOFTIRQ); if (IS_ERR(sendcq)) { rc = PTR_ERR(sendcq); dprintk("RPC: %s: failed to create send CQ: %i\n", __func__, rc); goto out1; } recvcq = ib_alloc_cq(ia->ri_device, NULL, ep->rep_attr.cap.max_recv_wr + 1, 0, IB_POLL_SOFTIRQ); if (IS_ERR(recvcq)) { rc = PTR_ERR(recvcq); dprintk("RPC: %s: failed to create recv CQ: %i\n", __func__, rc); goto out2; } ep->rep_attr.send_cq = sendcq; ep->rep_attr.recv_cq = recvcq; /* Initialize cma parameters */ memset(&ep->rep_remote_cma, 0, sizeof(ep->rep_remote_cma)); /* RPC/RDMA does not use private data */ ep->rep_remote_cma.private_data = NULL; ep->rep_remote_cma.private_data_len = 0; /* Client offers RDMA Read but does not initiate */ ep->rep_remote_cma.initiator_depth = 0; if (ia->ri_device->attrs.max_qp_rd_atom > 32) /* arbitrary but <= 255 */ ep->rep_remote_cma.responder_resources = 32; else ep->rep_remote_cma.responder_resources = ia->ri_device->attrs.max_qp_rd_atom; /* Limit transport retries so client can detect server * GID changes quickly. RPC layer handles re-establishing * transport connection and retransmission. */ ep->rep_remote_cma.retry_count = 6; /* RPC-over-RDMA handles its own flow control. In addition, * make all RNR NAKs visible so we know that RPC-over-RDMA * flow control is working correctly (no NAKs should be seen). */ ep->rep_remote_cma.flow_control = 0; ep->rep_remote_cma.rnr_retry_count = 0; return 0; out2: ib_free_cq(sendcq); out1: return rc; } /* * rpcrdma_ep_destroy * * Disconnect and destroy endpoint. After this, the only * valid operations on the ep are to free it (if dynamically * allocated) or re-create it. */ void rpcrdma_ep_destroy(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia) { dprintk("RPC: %s: entering, connected is %d\n", __func__, ep->rep_connected); cancel_delayed_work_sync(&ep->rep_connect_worker); if (ia->ri_id->qp) { rpcrdma_ep_disconnect(ep, ia); rdma_destroy_qp(ia->ri_id); ia->ri_id->qp = NULL; } ib_free_cq(ep->rep_attr.recv_cq); ib_free_cq(ep->rep_attr.send_cq); } /* * Connect unconnected endpoint. */ int rpcrdma_ep_connect(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia) { struct rdma_cm_id *id, *old; int rc = 0; int retry_count = 0; if (ep->rep_connected != 0) { struct rpcrdma_xprt *xprt; retry: dprintk("RPC: %s: reconnecting...\n", __func__); rpcrdma_ep_disconnect(ep, ia); xprt = container_of(ia, struct rpcrdma_xprt, rx_ia); id = rpcrdma_create_id(xprt, ia, (struct sockaddr *)&xprt->rx_data.addr); if (IS_ERR(id)) { rc = -EHOSTUNREACH; goto out; } /* TEMP TEMP TEMP - fail if new device: * Deregister/remarshal *all* requests! * Close and recreate adapter, pd, etc! * Re-determine all attributes still sane! * More stuff I haven't thought of! * Rrrgh! */ if (ia->ri_device != id->device) { printk("RPC: %s: can't reconnect on " "different device!\n", __func__); rpcrdma_destroy_id(id); rc = -ENETUNREACH; goto out; } /* END TEMP */ rc = rdma_create_qp(id, ia->ri_pd, &ep->rep_attr); if (rc) { dprintk("RPC: %s: rdma_create_qp failed %i\n", __func__, rc); rpcrdma_destroy_id(id); rc = -ENETUNREACH; goto out; } old = ia->ri_id; ia->ri_id = id; rdma_destroy_qp(old); rpcrdma_destroy_id(old); } else { dprintk("RPC: %s: connecting...\n", __func__); rc = rdma_create_qp(ia->ri_id, ia->ri_pd, &ep->rep_attr); if (rc) { dprintk("RPC: %s: rdma_create_qp failed %i\n", __func__, rc); /* do not update ep->rep_connected */ return -ENETUNREACH; } } ep->rep_connected = 0; rc = rdma_connect(ia->ri_id, &ep->rep_remote_cma); if (rc) { dprintk("RPC: %s: rdma_connect() failed with %i\n", __func__, rc); goto out; } wait_event_interruptible(ep->rep_connect_wait, ep->rep_connected != 0); /* * Check state. A non-peer reject indicates no listener * (ECONNREFUSED), which may be a transient state. All * others indicate a transport condition which has already * undergone a best-effort. */ if (ep->rep_connected == -ECONNREFUSED && ++retry_count <= RDMA_CONNECT_RETRY_MAX) { dprintk("RPC: %s: non-peer_reject, retry\n", __func__); goto retry; } if (ep->rep_connected <= 0) { /* Sometimes, the only way to reliably connect to remote * CMs is to use same nonzero values for ORD and IRD. */ if (retry_count++ <= RDMA_CONNECT_RETRY_MAX + 1 && (ep->rep_remote_cma.responder_resources == 0 || ep->rep_remote_cma.initiator_depth != ep->rep_remote_cma.responder_resources)) { if (ep->rep_remote_cma.responder_resources == 0) ep->rep_remote_cma.responder_resources = 1; ep->rep_remote_cma.initiator_depth = ep->rep_remote_cma.responder_resources; goto retry; } rc = ep->rep_connected; } else { struct rpcrdma_xprt *r_xprt; unsigned int extras; dprintk("RPC: %s: connected\n", __func__); r_xprt = container_of(ia, struct rpcrdma_xprt, rx_ia); extras = r_xprt->rx_buf.rb_bc_srv_max_requests; if (extras) { rc = rpcrdma_ep_post_extra_recv(r_xprt, extras); if (rc) { pr_warn("%s: rpcrdma_ep_post_extra_recv: %i\n", __func__, rc); rc = 0; } } } out: if (rc) ep->rep_connected = rc; return rc; } /* * rpcrdma_ep_disconnect * * This is separate from destroy to facilitate the ability * to reconnect without recreating the endpoint. * * This call is not reentrant, and must not be made in parallel * on the same endpoint. */ void rpcrdma_ep_disconnect(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia) { int rc; rc = rdma_disconnect(ia->ri_id); if (!rc) { /* returns without wait if not connected */ wait_event_interruptible(ep->rep_connect_wait, ep->rep_connected != 1); dprintk("RPC: %s: after wait, %sconnected\n", __func__, (ep->rep_connected == 1) ? "still " : "dis"); } else { dprintk("RPC: %s: rdma_disconnect %i\n", __func__, rc); ep->rep_connected = rc; } ib_drain_qp(ia->ri_id->qp); } static void rpcrdma_mr_recovery_worker(struct work_struct *work) { struct rpcrdma_buffer *buf = container_of(work, struct rpcrdma_buffer, rb_recovery_worker.work); struct rpcrdma_mw *mw; spin_lock(&buf->rb_recovery_lock); while (!list_empty(&buf->rb_stale_mrs)) { mw = list_first_entry(&buf->rb_stale_mrs, struct rpcrdma_mw, mw_list); list_del_init(&mw->mw_list); spin_unlock(&buf->rb_recovery_lock); dprintk("RPC: %s: recovering MR %p\n", __func__, mw); mw->mw_xprt->rx_ia.ri_ops->ro_recover_mr(mw); spin_lock(&buf->rb_recovery_lock); } spin_unlock(&buf->rb_recovery_lock); } void rpcrdma_defer_mr_recovery(struct rpcrdma_mw *mw) { struct rpcrdma_xprt *r_xprt = mw->mw_xprt; struct rpcrdma_buffer *buf = &r_xprt->rx_buf; spin_lock(&buf->rb_recovery_lock); list_add(&mw->mw_list, &buf->rb_stale_mrs); spin_unlock(&buf->rb_recovery_lock); schedule_delayed_work(&buf->rb_recovery_worker, 0); } static void rpcrdma_create_mrs(struct rpcrdma_xprt *r_xprt) { struct rpcrdma_buffer *buf = &r_xprt->rx_buf; struct rpcrdma_ia *ia = &r_xprt->rx_ia; unsigned int count; LIST_HEAD(free); LIST_HEAD(all); for (count = 0; count < 32; count++) { struct rpcrdma_mw *mw; int rc; mw = kzalloc(sizeof(*mw), GFP_KERNEL); if (!mw) break; rc = ia->ri_ops->ro_init_mr(ia, mw); if (rc) { kfree(mw); break; } mw->mw_xprt = r_xprt; list_add(&mw->mw_list, &free); list_add(&mw->mw_all, &all); } spin_lock(&buf->rb_mwlock); list_splice(&free, &buf->rb_mws); list_splice(&all, &buf->rb_all); r_xprt->rx_stats.mrs_allocated += count; spin_unlock(&buf->rb_mwlock); dprintk("RPC: %s: created %u MRs\n", __func__, count); } static void rpcrdma_mr_refresh_worker(struct work_struct *work) { struct rpcrdma_buffer *buf = container_of(work, struct rpcrdma_buffer, rb_refresh_worker.work); struct rpcrdma_xprt *r_xprt = container_of(buf, struct rpcrdma_xprt, rx_buf); rpcrdma_create_mrs(r_xprt); } struct rpcrdma_req * rpcrdma_create_req(struct rpcrdma_xprt *r_xprt) { struct rpcrdma_buffer *buffer = &r_xprt->rx_buf; struct rpcrdma_req *req; req = kzalloc(sizeof(*req), GFP_KERNEL); if (req == NULL) return ERR_PTR(-ENOMEM); INIT_LIST_HEAD(&req->rl_free); spin_lock(&buffer->rb_reqslock); list_add(&req->rl_all, &buffer->rb_allreqs); spin_unlock(&buffer->rb_reqslock); req->rl_cqe.done = rpcrdma_wc_send; req->rl_buffer = &r_xprt->rx_buf; INIT_LIST_HEAD(&req->rl_registered); return req; } struct rpcrdma_rep * rpcrdma_create_rep(struct rpcrdma_xprt *r_xprt) { struct rpcrdma_create_data_internal *cdata = &r_xprt->rx_data; struct rpcrdma_ia *ia = &r_xprt->rx_ia; struct rpcrdma_rep *rep; int rc; rc = -ENOMEM; rep = kzalloc(sizeof(*rep), GFP_KERNEL); if (rep == NULL) goto out; rep->rr_rdmabuf = rpcrdma_alloc_regbuf(ia, cdata->inline_rsize, GFP_KERNEL); if (IS_ERR(rep->rr_rdmabuf)) { rc = PTR_ERR(rep->rr_rdmabuf); goto out_free; } rep->rr_device = ia->ri_device; rep->rr_cqe.done = rpcrdma_receive_wc; rep->rr_rxprt = r_xprt; INIT_WORK(&rep->rr_work, rpcrdma_receive_worker); return rep; out_free: kfree(rep); out: return ERR_PTR(rc); } int rpcrdma_buffer_create(struct rpcrdma_xprt *r_xprt) { struct rpcrdma_buffer *buf = &r_xprt->rx_buf; int i, rc; buf->rb_max_requests = r_xprt->rx_data.max_requests; buf->rb_bc_srv_max_requests = 0; atomic_set(&buf->rb_credits, 1); spin_lock_init(&buf->rb_mwlock); spin_lock_init(&buf->rb_lock); spin_lock_init(&buf->rb_recovery_lock); INIT_LIST_HEAD(&buf->rb_mws); INIT_LIST_HEAD(&buf->rb_all); INIT_LIST_HEAD(&buf->rb_stale_mrs); INIT_DELAYED_WORK(&buf->rb_refresh_worker, rpcrdma_mr_refresh_worker); INIT_DELAYED_WORK(&buf->rb_recovery_worker, rpcrdma_mr_recovery_worker); rpcrdma_create_mrs(r_xprt); INIT_LIST_HEAD(&buf->rb_send_bufs); INIT_LIST_HEAD(&buf->rb_allreqs); spin_lock_init(&buf->rb_reqslock); for (i = 0; i < buf->rb_max_requests; i++) { struct rpcrdma_req *req; req = rpcrdma_create_req(r_xprt); if (IS_ERR(req)) { dprintk("RPC: %s: request buffer %d alloc" " failed\n", __func__, i); rc = PTR_ERR(req); goto out; } req->rl_backchannel = false; list_add(&req->rl_free, &buf->rb_send_bufs); } INIT_LIST_HEAD(&buf->rb_recv_bufs); for (i = 0; i < buf->rb_max_requests + 2; i++) { struct rpcrdma_rep *rep; rep = rpcrdma_create_rep(r_xprt); if (IS_ERR(rep)) { dprintk("RPC: %s: reply buffer %d alloc failed\n", __func__, i); rc = PTR_ERR(rep); goto out; } list_add(&rep->rr_list, &buf->rb_recv_bufs); } return 0; out: rpcrdma_buffer_destroy(buf); return rc; } static struct rpcrdma_req * rpcrdma_buffer_get_req_locked(struct rpcrdma_buffer *buf) { struct rpcrdma_req *req; req = list_first_entry(&buf->rb_send_bufs, struct rpcrdma_req, rl_free); list_del(&req->rl_free); return req; } static struct rpcrdma_rep * rpcrdma_buffer_get_rep_locked(struct rpcrdma_buffer *buf) { struct rpcrdma_rep *rep; rep = list_first_entry(&buf->rb_recv_bufs, struct rpcrdma_rep, rr_list); list_del(&rep->rr_list); return rep; } static void rpcrdma_destroy_rep(struct rpcrdma_ia *ia, struct rpcrdma_rep *rep) { rpcrdma_free_regbuf(ia, rep->rr_rdmabuf); kfree(rep); } void rpcrdma_destroy_req(struct rpcrdma_ia *ia, struct rpcrdma_req *req) { rpcrdma_free_regbuf(ia, req->rl_sendbuf); rpcrdma_free_regbuf(ia, req->rl_rdmabuf); kfree(req); } static void rpcrdma_destroy_mrs(struct rpcrdma_buffer *buf) { struct rpcrdma_xprt *r_xprt = container_of(buf, struct rpcrdma_xprt, rx_buf); struct rpcrdma_ia *ia = rdmab_to_ia(buf); struct rpcrdma_mw *mw; unsigned int count; count = 0; spin_lock(&buf->rb_mwlock); while (!list_empty(&buf->rb_all)) { mw = list_entry(buf->rb_all.next, struct rpcrdma_mw, mw_all); list_del(&mw->mw_all); spin_unlock(&buf->rb_mwlock); ia->ri_ops->ro_release_mr(mw); count++; spin_lock(&buf->rb_mwlock); } spin_unlock(&buf->rb_mwlock); r_xprt->rx_stats.mrs_allocated = 0; dprintk("RPC: %s: released %u MRs\n", __func__, count); } void rpcrdma_buffer_destroy(struct rpcrdma_buffer *buf) { struct rpcrdma_ia *ia = rdmab_to_ia(buf); cancel_delayed_work_sync(&buf->rb_recovery_worker); while (!list_empty(&buf->rb_recv_bufs)) { struct rpcrdma_rep *rep; rep = rpcrdma_buffer_get_rep_locked(buf); rpcrdma_destroy_rep(ia, rep); } spin_lock(&buf->rb_reqslock); while (!list_empty(&buf->rb_allreqs)) { struct rpcrdma_req *req; req = list_first_entry(&buf->rb_allreqs, struct rpcrdma_req, rl_all); list_del(&req->rl_all); spin_unlock(&buf->rb_reqslock); rpcrdma_destroy_req(ia, req); spin_lock(&buf->rb_reqslock); } spin_unlock(&buf->rb_reqslock); rpcrdma_destroy_mrs(buf); } struct rpcrdma_mw * rpcrdma_get_mw(struct rpcrdma_xprt *r_xprt) { struct rpcrdma_buffer *buf = &r_xprt->rx_buf; struct rpcrdma_mw *mw = NULL; spin_lock(&buf->rb_mwlock); if (!list_empty(&buf->rb_mws)) { mw = list_first_entry(&buf->rb_mws, struct rpcrdma_mw, mw_list); list_del_init(&mw->mw_list); } spin_unlock(&buf->rb_mwlock); if (!mw) goto out_nomws; return mw; out_nomws: dprintk("RPC: %s: no MWs available\n", __func__); schedule_delayed_work(&buf->rb_refresh_worker, 0); /* Allow the reply handler and refresh worker to run */ cond_resched(); return NULL; } void rpcrdma_put_mw(struct rpcrdma_xprt *r_xprt, struct rpcrdma_mw *mw) { struct rpcrdma_buffer *buf = &r_xprt->rx_buf; spin_lock(&buf->rb_mwlock); list_add_tail(&mw->mw_list, &buf->rb_mws); spin_unlock(&buf->rb_mwlock); } /* * Get a set of request/reply buffers. * * Reply buffer (if available) is attached to send buffer upon return. */ struct rpcrdma_req * rpcrdma_buffer_get(struct rpcrdma_buffer *buffers) { struct rpcrdma_req *req; spin_lock(&buffers->rb_lock); if (list_empty(&buffers->rb_send_bufs)) goto out_reqbuf; req = rpcrdma_buffer_get_req_locked(buffers); if (list_empty(&buffers->rb_recv_bufs)) goto out_repbuf; req->rl_reply = rpcrdma_buffer_get_rep_locked(buffers); spin_unlock(&buffers->rb_lock); return req; out_reqbuf: spin_unlock(&buffers->rb_lock); pr_warn("RPC: %s: out of request buffers\n", __func__); return NULL; out_repbuf: spin_unlock(&buffers->rb_lock); pr_warn("RPC: %s: out of reply buffers\n", __func__); req->rl_reply = NULL; return req; } /* * Put request/reply buffers back into pool. * Pre-decrement counter/array index. */ void rpcrdma_buffer_put(struct rpcrdma_req *req) { struct rpcrdma_buffer *buffers = req->rl_buffer; struct rpcrdma_rep *rep = req->rl_reply; req->rl_niovs = 0; req->rl_reply = NULL; spin_lock(&buffers->rb_lock); list_add_tail(&req->rl_free, &buffers->rb_send_bufs); if (rep) list_add_tail(&rep->rr_list, &buffers->rb_recv_bufs); spin_unlock(&buffers->rb_lock); } /* * Recover reply buffers from pool. * This happens when recovering from disconnect. */ void rpcrdma_recv_buffer_get(struct rpcrdma_req *req) { struct rpcrdma_buffer *buffers = req->rl_buffer; spin_lock(&buffers->rb_lock); if (!list_empty(&buffers->rb_recv_bufs)) req->rl_reply = rpcrdma_buffer_get_rep_locked(buffers); spin_unlock(&buffers->rb_lock); } /* * Put reply buffers back into pool when not attached to * request. This happens in error conditions. */ void rpcrdma_recv_buffer_put(struct rpcrdma_rep *rep) { struct rpcrdma_buffer *buffers = &rep->rr_rxprt->rx_buf; spin_lock(&buffers->rb_lock); list_add_tail(&rep->rr_list, &buffers->rb_recv_bufs); spin_unlock(&buffers->rb_lock); } /* * Wrappers for internal-use kmalloc memory registration, used by buffer code. */ /** * rpcrdma_alloc_regbuf - kmalloc and register memory for SEND/RECV buffers * @ia: controlling rpcrdma_ia * @size: size of buffer to be allocated, in bytes * @flags: GFP flags * * Returns pointer to private header of an area of internally * registered memory, or an ERR_PTR. The registered buffer follows * the end of the private header. * * xprtrdma uses a regbuf for posting an outgoing RDMA SEND, or for * receiving the payload of RDMA RECV operations. regbufs are not * used for RDMA READ/WRITE operations, thus are registered only for * LOCAL access. */ struct rpcrdma_regbuf * rpcrdma_alloc_regbuf(struct rpcrdma_ia *ia, size_t size, gfp_t flags) { struct rpcrdma_regbuf *rb; struct ib_sge *iov; rb = kmalloc(sizeof(*rb) + size, flags); if (rb == NULL) goto out; iov = &rb->rg_iov; iov->addr = ib_dma_map_single(ia->ri_device, (void *)rb->rg_base, size, DMA_BIDIRECTIONAL); if (ib_dma_mapping_error(ia->ri_device, iov->addr)) goto out_free; iov->length = size; iov->lkey = ia->ri_pd->local_dma_lkey; rb->rg_size = size; rb->rg_owner = NULL; return rb; out_free: kfree(rb); out: return ERR_PTR(-ENOMEM); } /** * rpcrdma_free_regbuf - deregister and free registered buffer * @ia: controlling rpcrdma_ia * @rb: regbuf to be deregistered and freed */ void rpcrdma_free_regbuf(struct rpcrdma_ia *ia, struct rpcrdma_regbuf *rb) { struct ib_sge *iov; if (!rb) return; iov = &rb->rg_iov; ib_dma_unmap_single(ia->ri_device, iov->addr, iov->length, DMA_BIDIRECTIONAL); kfree(rb); } /* * Prepost any receive buffer, then post send. * * Receive buffer is donated to hardware, reclaimed upon recv completion. */ int rpcrdma_ep_post(struct rpcrdma_ia *ia, struct rpcrdma_ep *ep, struct rpcrdma_req *req) { struct ib_device *device = ia->ri_device; struct ib_send_wr send_wr, *send_wr_fail; struct rpcrdma_rep *rep = req->rl_reply; struct ib_sge *iov = req->rl_send_iov; int i, rc; if (rep) { rc = rpcrdma_ep_post_recv(ia, ep, rep); if (rc) return rc; req->rl_reply = NULL; } send_wr.next = NULL; send_wr.wr_cqe = &req->rl_cqe; send_wr.sg_list = iov; send_wr.num_sge = req->rl_niovs; send_wr.opcode = IB_WR_SEND; for (i = 0; i < send_wr.num_sge; i++) ib_dma_sync_single_for_device(device, iov[i].addr, iov[i].length, DMA_TO_DEVICE); dprintk("RPC: %s: posting %d s/g entries\n", __func__, send_wr.num_sge); if (DECR_CQCOUNT(ep) > 0) send_wr.send_flags = 0; else { /* Provider must take a send completion every now and then */ INIT_CQCOUNT(ep); send_wr.send_flags = IB_SEND_SIGNALED; } rc = ib_post_send(ia->ri_id->qp, &send_wr, &send_wr_fail); if (rc) goto out_postsend_err; return 0; out_postsend_err: pr_err("rpcrdma: RDMA Send ib_post_send returned %i\n", rc); return -ENOTCONN; } /* * (Re)post a receive buffer. */ int rpcrdma_ep_post_recv(struct rpcrdma_ia *ia, struct rpcrdma_ep *ep, struct rpcrdma_rep *rep) { struct ib_recv_wr recv_wr, *recv_wr_fail; int rc; recv_wr.next = NULL; recv_wr.wr_cqe = &rep->rr_cqe; recv_wr.sg_list = &rep->rr_rdmabuf->rg_iov; recv_wr.num_sge = 1; ib_dma_sync_single_for_cpu(ia->ri_device, rdmab_addr(rep->rr_rdmabuf), rdmab_length(rep->rr_rdmabuf), DMA_BIDIRECTIONAL); rc = ib_post_recv(ia->ri_id->qp, &recv_wr, &recv_wr_fail); if (rc) goto out_postrecv; return 0; out_postrecv: pr_err("rpcrdma: ib_post_recv returned %i\n", rc); return -ENOTCONN; } /** * rpcrdma_ep_post_extra_recv - Post buffers for incoming backchannel requests * @r_xprt: transport associated with these backchannel resources * @min_reqs: minimum number of incoming requests expected * * Returns zero if all requested buffers were posted, or a negative errno. */ int rpcrdma_ep_post_extra_recv(struct rpcrdma_xprt *r_xprt, unsigned int count) { struct rpcrdma_buffer *buffers = &r_xprt->rx_buf; struct rpcrdma_ia *ia = &r_xprt->rx_ia; struct rpcrdma_ep *ep = &r_xprt->rx_ep; struct rpcrdma_rep *rep; int rc; while (count--) { spin_lock(&buffers->rb_lock); if (list_empty(&buffers->rb_recv_bufs)) goto out_reqbuf; rep = rpcrdma_buffer_get_rep_locked(buffers); spin_unlock(&buffers->rb_lock); rc = rpcrdma_ep_post_recv(ia, ep, rep); if (rc) goto out_rc; } return 0; out_reqbuf: spin_unlock(&buffers->rb_lock); pr_warn("%s: no extra receive buffers\n", __func__); return -ENOMEM; out_rc: rpcrdma_recv_buffer_put(rep); return rc; }