/* * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the BSD-type * license below: * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of the Network Appliance, Inc. nor the names of * its contributors may be used to endorse or promote products * derived from this software without specific prior written * permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * verbs.c * * Encapsulates the major functions managing: * o adapters * o endpoints * o connections * o buffer memory */ #include #include #include #include #include #include "xprt_rdma.h" /* * Globals/Macros */ #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) # define RPCDBG_FACILITY RPCDBG_TRANS #endif /* * internal functions */ /* * handle replies in tasklet context, using a single, global list * rdma tasklet function -- just turn around and call the func * for all replies on the list */ static DEFINE_SPINLOCK(rpcrdma_tk_lock_g); static LIST_HEAD(rpcrdma_tasklets_g); static void rpcrdma_run_tasklet(unsigned long data) { struct rpcrdma_rep *rep; void (*func)(struct rpcrdma_rep *); unsigned long flags; data = data; spin_lock_irqsave(&rpcrdma_tk_lock_g, flags); while (!list_empty(&rpcrdma_tasklets_g)) { rep = list_entry(rpcrdma_tasklets_g.next, struct rpcrdma_rep, rr_list); list_del(&rep->rr_list); func = rep->rr_func; rep->rr_func = NULL; spin_unlock_irqrestore(&rpcrdma_tk_lock_g, flags); if (func) func(rep); else rpcrdma_recv_buffer_put(rep); spin_lock_irqsave(&rpcrdma_tk_lock_g, flags); } spin_unlock_irqrestore(&rpcrdma_tk_lock_g, flags); } static DECLARE_TASKLET(rpcrdma_tasklet_g, rpcrdma_run_tasklet, 0UL); static void rpcrdma_schedule_tasklet(struct list_head *sched_list) { unsigned long flags; spin_lock_irqsave(&rpcrdma_tk_lock_g, flags); list_splice_tail(sched_list, &rpcrdma_tasklets_g); spin_unlock_irqrestore(&rpcrdma_tk_lock_g, flags); tasklet_schedule(&rpcrdma_tasklet_g); } static void rpcrdma_qp_async_error_upcall(struct ib_event *event, void *context) { struct rpcrdma_ep *ep = context; pr_err("RPC: %s: %s on device %s ep %p\n", __func__, ib_event_msg(event->event), event->device->name, context); if (ep->rep_connected == 1) { ep->rep_connected = -EIO; rpcrdma_conn_func(ep); wake_up_all(&ep->rep_connect_wait); } } static void rpcrdma_cq_async_error_upcall(struct ib_event *event, void *context) { struct rpcrdma_ep *ep = context; pr_err("RPC: %s: %s on device %s ep %p\n", __func__, ib_event_msg(event->event), event->device->name, context); if (ep->rep_connected == 1) { ep->rep_connected = -EIO; rpcrdma_conn_func(ep); wake_up_all(&ep->rep_connect_wait); } } static void rpcrdma_sendcq_process_wc(struct ib_wc *wc) { /* WARNING: Only wr_id and status are reliable at this point */ if (wc->wr_id == RPCRDMA_IGNORE_COMPLETION) { if (wc->status != IB_WC_SUCCESS && wc->status != IB_WC_WR_FLUSH_ERR) pr_err("RPC: %s: SEND: %s\n", __func__, ib_wc_status_msg(wc->status)); } else { struct rpcrdma_mw *r; r = (struct rpcrdma_mw *)(unsigned long)wc->wr_id; r->mw_sendcompletion(wc); } } static int rpcrdma_sendcq_poll(struct ib_cq *cq, struct rpcrdma_ep *ep) { struct ib_wc *wcs; int budget, count, rc; budget = RPCRDMA_WC_BUDGET / RPCRDMA_POLLSIZE; do { wcs = ep->rep_send_wcs; rc = ib_poll_cq(cq, RPCRDMA_POLLSIZE, wcs); if (rc <= 0) return rc; count = rc; while (count-- > 0) rpcrdma_sendcq_process_wc(wcs++); } while (rc == RPCRDMA_POLLSIZE && --budget); return 0; } /* * Handle send, fast_reg_mr, and local_inv completions. * * Send events are typically suppressed and thus do not result * in an upcall. Occasionally one is signaled, however. This * prevents the provider's completion queue from wrapping and * losing a completion. */ static void rpcrdma_sendcq_upcall(struct ib_cq *cq, void *cq_context) { struct rpcrdma_ep *ep = (struct rpcrdma_ep *)cq_context; int rc; rc = rpcrdma_sendcq_poll(cq, ep); if (rc) { dprintk("RPC: %s: ib_poll_cq failed: %i\n", __func__, rc); return; } rc = ib_req_notify_cq(cq, IB_CQ_NEXT_COMP | IB_CQ_REPORT_MISSED_EVENTS); if (rc == 0) return; if (rc < 0) { dprintk("RPC: %s: ib_req_notify_cq failed: %i\n", __func__, rc); return; } rpcrdma_sendcq_poll(cq, ep); } static void rpcrdma_recvcq_process_wc(struct ib_wc *wc, struct list_head *sched_list) { struct rpcrdma_rep *rep = (struct rpcrdma_rep *)(unsigned long)wc->wr_id; /* WARNING: Only wr_id and status are reliable at this point */ if (wc->status != IB_WC_SUCCESS) goto out_fail; /* status == SUCCESS means all fields in wc are trustworthy */ if (wc->opcode != IB_WC_RECV) return; dprintk("RPC: %s: rep %p opcode 'recv', length %u: success\n", __func__, rep, wc->byte_len); rep->rr_len = wc->byte_len; ib_dma_sync_single_for_cpu(rdmab_to_ia(rep->rr_buffer)->ri_id->device, rdmab_addr(rep->rr_rdmabuf), rep->rr_len, DMA_FROM_DEVICE); prefetch(rdmab_to_msg(rep->rr_rdmabuf)); out_schedule: list_add_tail(&rep->rr_list, sched_list); return; out_fail: if (wc->status != IB_WC_WR_FLUSH_ERR) pr_err("RPC: %s: rep %p: %s\n", __func__, rep, ib_wc_status_msg(wc->status)); rep->rr_len = ~0U; goto out_schedule; } static int rpcrdma_recvcq_poll(struct ib_cq *cq, struct rpcrdma_ep *ep) { struct list_head sched_list; struct ib_wc *wcs; int budget, count, rc; INIT_LIST_HEAD(&sched_list); budget = RPCRDMA_WC_BUDGET / RPCRDMA_POLLSIZE; do { wcs = ep->rep_recv_wcs; rc = ib_poll_cq(cq, RPCRDMA_POLLSIZE, wcs); if (rc <= 0) goto out_schedule; count = rc; while (count-- > 0) rpcrdma_recvcq_process_wc(wcs++, &sched_list); } while (rc == RPCRDMA_POLLSIZE && --budget); rc = 0; out_schedule: rpcrdma_schedule_tasklet(&sched_list); return rc; } /* * Handle receive completions. * * It is reentrant but processes single events in order to maintain * ordering of receives to keep server credits. * * It is the responsibility of the scheduled tasklet to return * recv buffers to the pool. NOTE: this affects synchronization of * connection shutdown. That is, the structures required for * the completion of the reply handler must remain intact until * all memory has been reclaimed. */ static void rpcrdma_recvcq_upcall(struct ib_cq *cq, void *cq_context) { struct rpcrdma_ep *ep = (struct rpcrdma_ep *)cq_context; int rc; rc = rpcrdma_recvcq_poll(cq, ep); if (rc) { dprintk("RPC: %s: ib_poll_cq failed: %i\n", __func__, rc); return; } rc = ib_req_notify_cq(cq, IB_CQ_NEXT_COMP | IB_CQ_REPORT_MISSED_EVENTS); if (rc == 0) return; if (rc < 0) { dprintk("RPC: %s: ib_req_notify_cq failed: %i\n", __func__, rc); return; } rpcrdma_recvcq_poll(cq, ep); } static void rpcrdma_flush_cqs(struct rpcrdma_ep *ep) { struct ib_wc wc; LIST_HEAD(sched_list); while (ib_poll_cq(ep->rep_attr.recv_cq, 1, &wc) > 0) rpcrdma_recvcq_process_wc(&wc, &sched_list); if (!list_empty(&sched_list)) rpcrdma_schedule_tasklet(&sched_list); while (ib_poll_cq(ep->rep_attr.send_cq, 1, &wc) > 0) rpcrdma_sendcq_process_wc(&wc); } static int rpcrdma_conn_upcall(struct rdma_cm_id *id, struct rdma_cm_event *event) { struct rpcrdma_xprt *xprt = id->context; struct rpcrdma_ia *ia = &xprt->rx_ia; struct rpcrdma_ep *ep = &xprt->rx_ep; #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) struct sockaddr *sap = (struct sockaddr *)&ep->rep_remote_addr; #endif struct ib_qp_attr *attr = &ia->ri_qp_attr; struct ib_qp_init_attr *iattr = &ia->ri_qp_init_attr; int connstate = 0; switch (event->event) { case RDMA_CM_EVENT_ADDR_RESOLVED: case RDMA_CM_EVENT_ROUTE_RESOLVED: ia->ri_async_rc = 0; complete(&ia->ri_done); break; case RDMA_CM_EVENT_ADDR_ERROR: ia->ri_async_rc = -EHOSTUNREACH; dprintk("RPC: %s: CM address resolution error, ep 0x%p\n", __func__, ep); complete(&ia->ri_done); break; case RDMA_CM_EVENT_ROUTE_ERROR: ia->ri_async_rc = -ENETUNREACH; dprintk("RPC: %s: CM route resolution error, ep 0x%p\n", __func__, ep); complete(&ia->ri_done); break; case RDMA_CM_EVENT_ESTABLISHED: connstate = 1; ib_query_qp(ia->ri_id->qp, attr, IB_QP_MAX_QP_RD_ATOMIC | IB_QP_MAX_DEST_RD_ATOMIC, iattr); dprintk("RPC: %s: %d responder resources" " (%d initiator)\n", __func__, attr->max_dest_rd_atomic, attr->max_rd_atomic); goto connected; case RDMA_CM_EVENT_CONNECT_ERROR: connstate = -ENOTCONN; goto connected; case RDMA_CM_EVENT_UNREACHABLE: connstate = -ENETDOWN; goto connected; case RDMA_CM_EVENT_REJECTED: connstate = -ECONNREFUSED; goto connected; case RDMA_CM_EVENT_DISCONNECTED: connstate = -ECONNABORTED; goto connected; case RDMA_CM_EVENT_DEVICE_REMOVAL: connstate = -ENODEV; connected: dprintk("RPC: %s: %sconnected\n", __func__, connstate > 0 ? "" : "dis"); ep->rep_connected = connstate; rpcrdma_conn_func(ep); wake_up_all(&ep->rep_connect_wait); /*FALLTHROUGH*/ default: dprintk("RPC: %s: %pIS:%u (ep 0x%p): %s\n", __func__, sap, rpc_get_port(sap), ep, rdma_event_msg(event->event)); break; } #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) if (connstate == 1) { int ird = attr->max_dest_rd_atomic; int tird = ep->rep_remote_cma.responder_resources; pr_info("rpcrdma: connection to %pIS:%u on %s, memreg '%s', %d credits, %d responders%s\n", sap, rpc_get_port(sap), ia->ri_id->device->name, ia->ri_ops->ro_displayname, xprt->rx_buf.rb_max_requests, ird, ird < 4 && ird < tird / 2 ? " (low!)" : ""); } else if (connstate < 0) { pr_info("rpcrdma: connection to %pIS:%u closed (%d)\n", sap, rpc_get_port(sap), connstate); } #endif return 0; } static struct rdma_cm_id * rpcrdma_create_id(struct rpcrdma_xprt *xprt, struct rpcrdma_ia *ia, struct sockaddr *addr) { struct rdma_cm_id *id; int rc; init_completion(&ia->ri_done); id = rdma_create_id(rpcrdma_conn_upcall, xprt, RDMA_PS_TCP, IB_QPT_RC); if (IS_ERR(id)) { rc = PTR_ERR(id); dprintk("RPC: %s: rdma_create_id() failed %i\n", __func__, rc); return id; } ia->ri_async_rc = -ETIMEDOUT; rc = rdma_resolve_addr(id, NULL, addr, RDMA_RESOLVE_TIMEOUT); if (rc) { dprintk("RPC: %s: rdma_resolve_addr() failed %i\n", __func__, rc); goto out; } wait_for_completion_interruptible_timeout(&ia->ri_done, msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT) + 1); rc = ia->ri_async_rc; if (rc) goto out; ia->ri_async_rc = -ETIMEDOUT; rc = rdma_resolve_route(id, RDMA_RESOLVE_TIMEOUT); if (rc) { dprintk("RPC: %s: rdma_resolve_route() failed %i\n", __func__, rc); goto out; } wait_for_completion_interruptible_timeout(&ia->ri_done, msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT) + 1); rc = ia->ri_async_rc; if (rc) goto out; return id; out: rdma_destroy_id(id); return ERR_PTR(rc); } /* * Drain any cq, prior to teardown. */ static void rpcrdma_clean_cq(struct ib_cq *cq) { struct ib_wc wc; int count = 0; while (1 == ib_poll_cq(cq, 1, &wc)) ++count; if (count) dprintk("RPC: %s: flushed %d events (last 0x%x)\n", __func__, count, wc.opcode); } /* * Exported functions. */ /* * Open and initialize an Interface Adapter. * o initializes fields of struct rpcrdma_ia, including * interface and provider attributes and protection zone. */ int rpcrdma_ia_open(struct rpcrdma_xprt *xprt, struct sockaddr *addr, int memreg) { int rc, mem_priv; struct rpcrdma_ia *ia = &xprt->rx_ia; struct ib_device_attr *devattr = &ia->ri_devattr; ia->ri_id = rpcrdma_create_id(xprt, ia, addr); if (IS_ERR(ia->ri_id)) { rc = PTR_ERR(ia->ri_id); goto out1; } ia->ri_pd = ib_alloc_pd(ia->ri_id->device); if (IS_ERR(ia->ri_pd)) { rc = PTR_ERR(ia->ri_pd); dprintk("RPC: %s: ib_alloc_pd() failed %i\n", __func__, rc); goto out2; } rc = ib_query_device(ia->ri_id->device, devattr); if (rc) { dprintk("RPC: %s: ib_query_device failed %d\n", __func__, rc); goto out3; } if (devattr->device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY) { ia->ri_have_dma_lkey = 1; ia->ri_dma_lkey = ia->ri_id->device->local_dma_lkey; } if (memreg == RPCRDMA_FRMR) { /* Requires both frmr reg and local dma lkey */ if (((devattr->device_cap_flags & (IB_DEVICE_MEM_MGT_EXTENSIONS|IB_DEVICE_LOCAL_DMA_LKEY)) != (IB_DEVICE_MEM_MGT_EXTENSIONS|IB_DEVICE_LOCAL_DMA_LKEY)) || (devattr->max_fast_reg_page_list_len == 0)) { dprintk("RPC: %s: FRMR registration " "not supported by HCA\n", __func__); memreg = RPCRDMA_MTHCAFMR; } } if (memreg == RPCRDMA_MTHCAFMR) { if (!ia->ri_id->device->alloc_fmr) { dprintk("RPC: %s: MTHCAFMR registration " "not supported by HCA\n", __func__); memreg = RPCRDMA_ALLPHYSICAL; } } /* * Optionally obtain an underlying physical identity mapping in * order to do a memory window-based bind. This base registration * is protected from remote access - that is enabled only by binding * for the specific bytes targeted during each RPC operation, and * revoked after the corresponding completion similar to a storage * adapter. */ switch (memreg) { case RPCRDMA_FRMR: ia->ri_ops = &rpcrdma_frwr_memreg_ops; break; case RPCRDMA_ALLPHYSICAL: ia->ri_ops = &rpcrdma_physical_memreg_ops; mem_priv = IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE | IB_ACCESS_REMOTE_READ; goto register_setup; case RPCRDMA_MTHCAFMR: ia->ri_ops = &rpcrdma_fmr_memreg_ops; if (ia->ri_have_dma_lkey) break; mem_priv = IB_ACCESS_LOCAL_WRITE; register_setup: ia->ri_bind_mem = ib_get_dma_mr(ia->ri_pd, mem_priv); if (IS_ERR(ia->ri_bind_mem)) { printk(KERN_ALERT "%s: ib_get_dma_mr for " "phys register failed with %lX\n", __func__, PTR_ERR(ia->ri_bind_mem)); rc = -ENOMEM; goto out3; } break; default: printk(KERN_ERR "RPC: Unsupported memory " "registration mode: %d\n", memreg); rc = -ENOMEM; goto out3; } dprintk("RPC: %s: memory registration strategy is '%s'\n", __func__, ia->ri_ops->ro_displayname); /* Else will do memory reg/dereg for each chunk */ ia->ri_memreg_strategy = memreg; rwlock_init(&ia->ri_qplock); return 0; out3: ib_dealloc_pd(ia->ri_pd); ia->ri_pd = NULL; out2: rdma_destroy_id(ia->ri_id); ia->ri_id = NULL; out1: return rc; } /* * Clean up/close an IA. * o if event handles and PD have been initialized, free them. * o close the IA */ void rpcrdma_ia_close(struct rpcrdma_ia *ia) { int rc; dprintk("RPC: %s: entering\n", __func__); if (ia->ri_bind_mem != NULL) { rc = ib_dereg_mr(ia->ri_bind_mem); dprintk("RPC: %s: ib_dereg_mr returned %i\n", __func__, rc); } if (ia->ri_id != NULL && !IS_ERR(ia->ri_id)) { if (ia->ri_id->qp) rdma_destroy_qp(ia->ri_id); rdma_destroy_id(ia->ri_id); ia->ri_id = NULL; } if (ia->ri_pd != NULL && !IS_ERR(ia->ri_pd)) { rc = ib_dealloc_pd(ia->ri_pd); dprintk("RPC: %s: ib_dealloc_pd returned %i\n", __func__, rc); } } /* * Create unconnected endpoint. */ int rpcrdma_ep_create(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia, struct rpcrdma_create_data_internal *cdata) { struct ib_device_attr *devattr = &ia->ri_devattr; struct ib_cq *sendcq, *recvcq; struct ib_cq_init_attr cq_attr = {}; int rc, err; /* check provider's send/recv wr limits */ if (cdata->max_requests > devattr->max_qp_wr) cdata->max_requests = devattr->max_qp_wr; ep->rep_attr.event_handler = rpcrdma_qp_async_error_upcall; ep->rep_attr.qp_context = ep; ep->rep_attr.srq = NULL; ep->rep_attr.cap.max_send_wr = cdata->max_requests; rc = ia->ri_ops->ro_open(ia, ep, cdata); if (rc) return rc; ep->rep_attr.cap.max_recv_wr = cdata->max_requests; ep->rep_attr.cap.max_send_sge = (cdata->padding ? 4 : 2); ep->rep_attr.cap.max_recv_sge = 1; ep->rep_attr.cap.max_inline_data = 0; ep->rep_attr.sq_sig_type = IB_SIGNAL_REQ_WR; ep->rep_attr.qp_type = IB_QPT_RC; ep->rep_attr.port_num = ~0; if (cdata->padding) { ep->rep_padbuf = rpcrdma_alloc_regbuf(ia, cdata->padding, GFP_KERNEL); if (IS_ERR(ep->rep_padbuf)) return PTR_ERR(ep->rep_padbuf); } else ep->rep_padbuf = NULL; dprintk("RPC: %s: requested max: dtos: send %d recv %d; " "iovs: send %d recv %d\n", __func__, ep->rep_attr.cap.max_send_wr, ep->rep_attr.cap.max_recv_wr, ep->rep_attr.cap.max_send_sge, ep->rep_attr.cap.max_recv_sge); /* set trigger for requesting send completion */ ep->rep_cqinit = ep->rep_attr.cap.max_send_wr/2 - 1; if (ep->rep_cqinit > RPCRDMA_MAX_UNSIGNALED_SENDS) ep->rep_cqinit = RPCRDMA_MAX_UNSIGNALED_SENDS; else if (ep->rep_cqinit <= 2) ep->rep_cqinit = 0; INIT_CQCOUNT(ep); init_waitqueue_head(&ep->rep_connect_wait); INIT_DELAYED_WORK(&ep->rep_connect_worker, rpcrdma_connect_worker); cq_attr.cqe = ep->rep_attr.cap.max_send_wr + 1; sendcq = ib_create_cq(ia->ri_id->device, rpcrdma_sendcq_upcall, rpcrdma_cq_async_error_upcall, ep, &cq_attr); if (IS_ERR(sendcq)) { rc = PTR_ERR(sendcq); dprintk("RPC: %s: failed to create send CQ: %i\n", __func__, rc); goto out1; } rc = ib_req_notify_cq(sendcq, IB_CQ_NEXT_COMP); if (rc) { dprintk("RPC: %s: ib_req_notify_cq failed: %i\n", __func__, rc); goto out2; } cq_attr.cqe = ep->rep_attr.cap.max_recv_wr + 1; recvcq = ib_create_cq(ia->ri_id->device, rpcrdma_recvcq_upcall, rpcrdma_cq_async_error_upcall, ep, &cq_attr); if (IS_ERR(recvcq)) { rc = PTR_ERR(recvcq); dprintk("RPC: %s: failed to create recv CQ: %i\n", __func__, rc); goto out2; } rc = ib_req_notify_cq(recvcq, IB_CQ_NEXT_COMP); if (rc) { dprintk("RPC: %s: ib_req_notify_cq failed: %i\n", __func__, rc); ib_destroy_cq(recvcq); goto out2; } ep->rep_attr.send_cq = sendcq; ep->rep_attr.recv_cq = recvcq; /* Initialize cma parameters */ /* RPC/RDMA does not use private data */ ep->rep_remote_cma.private_data = NULL; ep->rep_remote_cma.private_data_len = 0; /* Client offers RDMA Read but does not initiate */ ep->rep_remote_cma.initiator_depth = 0; if (devattr->max_qp_rd_atom > 32) /* arbitrary but <= 255 */ ep->rep_remote_cma.responder_resources = 32; else ep->rep_remote_cma.responder_resources = devattr->max_qp_rd_atom; ep->rep_remote_cma.retry_count = 7; ep->rep_remote_cma.flow_control = 0; ep->rep_remote_cma.rnr_retry_count = 0; return 0; out2: err = ib_destroy_cq(sendcq); if (err) dprintk("RPC: %s: ib_destroy_cq returned %i\n", __func__, err); out1: rpcrdma_free_regbuf(ia, ep->rep_padbuf); return rc; } /* * rpcrdma_ep_destroy * * Disconnect and destroy endpoint. After this, the only * valid operations on the ep are to free it (if dynamically * allocated) or re-create it. */ void rpcrdma_ep_destroy(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia) { int rc; dprintk("RPC: %s: entering, connected is %d\n", __func__, ep->rep_connected); cancel_delayed_work_sync(&ep->rep_connect_worker); if (ia->ri_id->qp) { rpcrdma_ep_disconnect(ep, ia); rdma_destroy_qp(ia->ri_id); ia->ri_id->qp = NULL; } rpcrdma_free_regbuf(ia, ep->rep_padbuf); rpcrdma_clean_cq(ep->rep_attr.recv_cq); rc = ib_destroy_cq(ep->rep_attr.recv_cq); if (rc) dprintk("RPC: %s: ib_destroy_cq returned %i\n", __func__, rc); rpcrdma_clean_cq(ep->rep_attr.send_cq); rc = ib_destroy_cq(ep->rep_attr.send_cq); if (rc) dprintk("RPC: %s: ib_destroy_cq returned %i\n", __func__, rc); } /* * Connect unconnected endpoint. */ int rpcrdma_ep_connect(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia) { struct rdma_cm_id *id, *old; int rc = 0; int retry_count = 0; if (ep->rep_connected != 0) { struct rpcrdma_xprt *xprt; retry: dprintk("RPC: %s: reconnecting...\n", __func__); rpcrdma_ep_disconnect(ep, ia); rpcrdma_flush_cqs(ep); xprt = container_of(ia, struct rpcrdma_xprt, rx_ia); ia->ri_ops->ro_reset(xprt); id = rpcrdma_create_id(xprt, ia, (struct sockaddr *)&xprt->rx_data.addr); if (IS_ERR(id)) { rc = -EHOSTUNREACH; goto out; } /* TEMP TEMP TEMP - fail if new device: * Deregister/remarshal *all* requests! * Close and recreate adapter, pd, etc! * Re-determine all attributes still sane! * More stuff I haven't thought of! * Rrrgh! */ if (ia->ri_id->device != id->device) { printk("RPC: %s: can't reconnect on " "different device!\n", __func__); rdma_destroy_id(id); rc = -ENETUNREACH; goto out; } /* END TEMP */ rc = rdma_create_qp(id, ia->ri_pd, &ep->rep_attr); if (rc) { dprintk("RPC: %s: rdma_create_qp failed %i\n", __func__, rc); rdma_destroy_id(id); rc = -ENETUNREACH; goto out; } write_lock(&ia->ri_qplock); old = ia->ri_id; ia->ri_id = id; write_unlock(&ia->ri_qplock); rdma_destroy_qp(old); rdma_destroy_id(old); } else { dprintk("RPC: %s: connecting...\n", __func__); rc = rdma_create_qp(ia->ri_id, ia->ri_pd, &ep->rep_attr); if (rc) { dprintk("RPC: %s: rdma_create_qp failed %i\n", __func__, rc); /* do not update ep->rep_connected */ return -ENETUNREACH; } } ep->rep_connected = 0; rc = rdma_connect(ia->ri_id, &ep->rep_remote_cma); if (rc) { dprintk("RPC: %s: rdma_connect() failed with %i\n", __func__, rc); goto out; } wait_event_interruptible(ep->rep_connect_wait, ep->rep_connected != 0); /* * Check state. A non-peer reject indicates no listener * (ECONNREFUSED), which may be a transient state. All * others indicate a transport condition which has already * undergone a best-effort. */ if (ep->rep_connected == -ECONNREFUSED && ++retry_count <= RDMA_CONNECT_RETRY_MAX) { dprintk("RPC: %s: non-peer_reject, retry\n", __func__); goto retry; } if (ep->rep_connected <= 0) { /* Sometimes, the only way to reliably connect to remote * CMs is to use same nonzero values for ORD and IRD. */ if (retry_count++ <= RDMA_CONNECT_RETRY_MAX + 1 && (ep->rep_remote_cma.responder_resources == 0 || ep->rep_remote_cma.initiator_depth != ep->rep_remote_cma.responder_resources)) { if (ep->rep_remote_cma.responder_resources == 0) ep->rep_remote_cma.responder_resources = 1; ep->rep_remote_cma.initiator_depth = ep->rep_remote_cma.responder_resources; goto retry; } rc = ep->rep_connected; } else { dprintk("RPC: %s: connected\n", __func__); } out: if (rc) ep->rep_connected = rc; return rc; } /* * rpcrdma_ep_disconnect * * This is separate from destroy to facilitate the ability * to reconnect without recreating the endpoint. * * This call is not reentrant, and must not be made in parallel * on the same endpoint. */ void rpcrdma_ep_disconnect(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia) { int rc; rpcrdma_flush_cqs(ep); rc = rdma_disconnect(ia->ri_id); if (!rc) { /* returns without wait if not connected */ wait_event_interruptible(ep->rep_connect_wait, ep->rep_connected != 1); dprintk("RPC: %s: after wait, %sconnected\n", __func__, (ep->rep_connected == 1) ? "still " : "dis"); } else { dprintk("RPC: %s: rdma_disconnect %i\n", __func__, rc); ep->rep_connected = rc; } } static struct rpcrdma_req * rpcrdma_create_req(struct rpcrdma_xprt *r_xprt) { struct rpcrdma_req *req; req = kzalloc(sizeof(*req), GFP_KERNEL); if (req == NULL) return ERR_PTR(-ENOMEM); req->rl_buffer = &r_xprt->rx_buf; return req; } static struct rpcrdma_rep * rpcrdma_create_rep(struct rpcrdma_xprt *r_xprt) { struct rpcrdma_create_data_internal *cdata = &r_xprt->rx_data; struct rpcrdma_ia *ia = &r_xprt->rx_ia; struct rpcrdma_rep *rep; int rc; rc = -ENOMEM; rep = kzalloc(sizeof(*rep), GFP_KERNEL); if (rep == NULL) goto out; rep->rr_rdmabuf = rpcrdma_alloc_regbuf(ia, cdata->inline_rsize, GFP_KERNEL); if (IS_ERR(rep->rr_rdmabuf)) { rc = PTR_ERR(rep->rr_rdmabuf); goto out_free; } rep->rr_buffer = &r_xprt->rx_buf; return rep; out_free: kfree(rep); out: return ERR_PTR(rc); } int rpcrdma_buffer_create(struct rpcrdma_xprt *r_xprt) { struct rpcrdma_buffer *buf = &r_xprt->rx_buf; struct rpcrdma_ia *ia = &r_xprt->rx_ia; struct rpcrdma_create_data_internal *cdata = &r_xprt->rx_data; char *p; size_t len; int i, rc; buf->rb_max_requests = cdata->max_requests; spin_lock_init(&buf->rb_lock); /* Need to allocate: * 1. arrays for send and recv pointers * 2. arrays of struct rpcrdma_req to fill in pointers * 3. array of struct rpcrdma_rep for replies * Send/recv buffers in req/rep need to be registered */ len = buf->rb_max_requests * (sizeof(struct rpcrdma_req *) + sizeof(struct rpcrdma_rep *)); p = kzalloc(len, GFP_KERNEL); if (p == NULL) { dprintk("RPC: %s: req_t/rep_t/pad kzalloc(%zd) failed\n", __func__, len); rc = -ENOMEM; goto out; } buf->rb_pool = p; /* for freeing it later */ buf->rb_send_bufs = (struct rpcrdma_req **) p; p = (char *) &buf->rb_send_bufs[buf->rb_max_requests]; buf->rb_recv_bufs = (struct rpcrdma_rep **) p; p = (char *) &buf->rb_recv_bufs[buf->rb_max_requests]; rc = ia->ri_ops->ro_init(r_xprt); if (rc) goto out; for (i = 0; i < buf->rb_max_requests; i++) { struct rpcrdma_req *req; struct rpcrdma_rep *rep; req = rpcrdma_create_req(r_xprt); if (IS_ERR(req)) { dprintk("RPC: %s: request buffer %d alloc" " failed\n", __func__, i); rc = PTR_ERR(req); goto out; } buf->rb_send_bufs[i] = req; rep = rpcrdma_create_rep(r_xprt); if (IS_ERR(rep)) { dprintk("RPC: %s: reply buffer %d alloc failed\n", __func__, i); rc = PTR_ERR(rep); goto out; } buf->rb_recv_bufs[i] = rep; } return 0; out: rpcrdma_buffer_destroy(buf); return rc; } static void rpcrdma_destroy_rep(struct rpcrdma_ia *ia, struct rpcrdma_rep *rep) { if (!rep) return; rpcrdma_free_regbuf(ia, rep->rr_rdmabuf); kfree(rep); } static void rpcrdma_destroy_req(struct rpcrdma_ia *ia, struct rpcrdma_req *req) { if (!req) return; rpcrdma_free_regbuf(ia, req->rl_sendbuf); rpcrdma_free_regbuf(ia, req->rl_rdmabuf); kfree(req); } void rpcrdma_buffer_destroy(struct rpcrdma_buffer *buf) { struct rpcrdma_ia *ia = rdmab_to_ia(buf); int i; /* clean up in reverse order from create * 1. recv mr memory (mr free, then kfree) * 2. send mr memory (mr free, then kfree) * 3. MWs */ dprintk("RPC: %s: entering\n", __func__); for (i = 0; i < buf->rb_max_requests; i++) { if (buf->rb_recv_bufs) rpcrdma_destroy_rep(ia, buf->rb_recv_bufs[i]); if (buf->rb_send_bufs) rpcrdma_destroy_req(ia, buf->rb_send_bufs[i]); } ia->ri_ops->ro_destroy(buf); kfree(buf->rb_pool); } /* "*mw" can be NULL when rpcrdma_buffer_get_mrs() fails, leaving * some req segments uninitialized. */ static void rpcrdma_buffer_put_mr(struct rpcrdma_mw **mw, struct rpcrdma_buffer *buf) { if (*mw) { list_add_tail(&(*mw)->mw_list, &buf->rb_mws); *mw = NULL; } } /* Cycle mw's back in reverse order, and "spin" them. * This delays and scrambles reuse as much as possible. */ static void rpcrdma_buffer_put_mrs(struct rpcrdma_req *req, struct rpcrdma_buffer *buf) { struct rpcrdma_mr_seg *seg = req->rl_segments; struct rpcrdma_mr_seg *seg1 = seg; int i; for (i = 1, seg++; i < RPCRDMA_MAX_SEGS; seg++, i++) rpcrdma_buffer_put_mr(&seg->rl_mw, buf); rpcrdma_buffer_put_mr(&seg1->rl_mw, buf); } static void rpcrdma_buffer_put_sendbuf(struct rpcrdma_req *req, struct rpcrdma_buffer *buf) { buf->rb_send_bufs[--buf->rb_send_index] = req; req->rl_niovs = 0; if (req->rl_reply) { buf->rb_recv_bufs[--buf->rb_recv_index] = req->rl_reply; req->rl_reply->rr_func = NULL; req->rl_reply = NULL; } } /* rpcrdma_unmap_one() was already done during deregistration. * Redo only the ib_post_send(). */ static void rpcrdma_retry_local_inv(struct rpcrdma_mw *r, struct rpcrdma_ia *ia) { struct rpcrdma_xprt *r_xprt = container_of(ia, struct rpcrdma_xprt, rx_ia); struct ib_send_wr invalidate_wr, *bad_wr; int rc; dprintk("RPC: %s: FRMR %p is stale\n", __func__, r); /* When this FRMR is re-inserted into rb_mws, it is no longer stale */ r->r.frmr.fr_state = FRMR_IS_INVALID; memset(&invalidate_wr, 0, sizeof(invalidate_wr)); invalidate_wr.wr_id = (unsigned long)(void *)r; invalidate_wr.opcode = IB_WR_LOCAL_INV; invalidate_wr.ex.invalidate_rkey = r->r.frmr.fr_mr->rkey; DECR_CQCOUNT(&r_xprt->rx_ep); dprintk("RPC: %s: frmr %p invalidating rkey %08x\n", __func__, r, r->r.frmr.fr_mr->rkey); read_lock(&ia->ri_qplock); rc = ib_post_send(ia->ri_id->qp, &invalidate_wr, &bad_wr); read_unlock(&ia->ri_qplock); if (rc) { /* Force rpcrdma_buffer_get() to retry */ r->r.frmr.fr_state = FRMR_IS_STALE; dprintk("RPC: %s: ib_post_send failed, %i\n", __func__, rc); } } static void rpcrdma_retry_flushed_linv(struct list_head *stale, struct rpcrdma_buffer *buf) { struct rpcrdma_ia *ia = rdmab_to_ia(buf); struct list_head *pos; struct rpcrdma_mw *r; unsigned long flags; list_for_each(pos, stale) { r = list_entry(pos, struct rpcrdma_mw, mw_list); rpcrdma_retry_local_inv(r, ia); } spin_lock_irqsave(&buf->rb_lock, flags); list_splice_tail(stale, &buf->rb_mws); spin_unlock_irqrestore(&buf->rb_lock, flags); } static struct rpcrdma_req * rpcrdma_buffer_get_frmrs(struct rpcrdma_req *req, struct rpcrdma_buffer *buf, struct list_head *stale) { struct rpcrdma_mw *r; int i; i = RPCRDMA_MAX_SEGS - 1; while (!list_empty(&buf->rb_mws)) { r = list_entry(buf->rb_mws.next, struct rpcrdma_mw, mw_list); list_del(&r->mw_list); if (r->r.frmr.fr_state == FRMR_IS_STALE) { list_add(&r->mw_list, stale); continue; } req->rl_segments[i].rl_mw = r; if (unlikely(i-- == 0)) return req; /* Success */ } /* Not enough entries on rb_mws for this req */ rpcrdma_buffer_put_sendbuf(req, buf); rpcrdma_buffer_put_mrs(req, buf); return NULL; } static struct rpcrdma_req * rpcrdma_buffer_get_fmrs(struct rpcrdma_req *req, struct rpcrdma_buffer *buf) { struct rpcrdma_mw *r; int i; i = RPCRDMA_MAX_SEGS - 1; while (!list_empty(&buf->rb_mws)) { r = list_entry(buf->rb_mws.next, struct rpcrdma_mw, mw_list); list_del(&r->mw_list); req->rl_segments[i].rl_mw = r; if (unlikely(i-- == 0)) return req; /* Success */ } /* Not enough entries on rb_mws for this req */ rpcrdma_buffer_put_sendbuf(req, buf); rpcrdma_buffer_put_mrs(req, buf); return NULL; } /* * Get a set of request/reply buffers. * * Reply buffer (if needed) is attached to send buffer upon return. * Rule: * rb_send_index and rb_recv_index MUST always be pointing to the * *next* available buffer (non-NULL). They are incremented after * removing buffers, and decremented *before* returning them. */ struct rpcrdma_req * rpcrdma_buffer_get(struct rpcrdma_buffer *buffers) { struct rpcrdma_ia *ia = rdmab_to_ia(buffers); struct list_head stale; struct rpcrdma_req *req; unsigned long flags; spin_lock_irqsave(&buffers->rb_lock, flags); if (buffers->rb_send_index == buffers->rb_max_requests) { spin_unlock_irqrestore(&buffers->rb_lock, flags); dprintk("RPC: %s: out of request buffers\n", __func__); return ((struct rpcrdma_req *)NULL); } req = buffers->rb_send_bufs[buffers->rb_send_index]; if (buffers->rb_send_index < buffers->rb_recv_index) { dprintk("RPC: %s: %d extra receives outstanding (ok)\n", __func__, buffers->rb_recv_index - buffers->rb_send_index); req->rl_reply = NULL; } else { req->rl_reply = buffers->rb_recv_bufs[buffers->rb_recv_index]; buffers->rb_recv_bufs[buffers->rb_recv_index++] = NULL; } buffers->rb_send_bufs[buffers->rb_send_index++] = NULL; INIT_LIST_HEAD(&stale); switch (ia->ri_memreg_strategy) { case RPCRDMA_FRMR: req = rpcrdma_buffer_get_frmrs(req, buffers, &stale); break; case RPCRDMA_MTHCAFMR: req = rpcrdma_buffer_get_fmrs(req, buffers); break; default: break; } spin_unlock_irqrestore(&buffers->rb_lock, flags); if (!list_empty(&stale)) rpcrdma_retry_flushed_linv(&stale, buffers); return req; } /* * Put request/reply buffers back into pool. * Pre-decrement counter/array index. */ void rpcrdma_buffer_put(struct rpcrdma_req *req) { struct rpcrdma_buffer *buffers = req->rl_buffer; struct rpcrdma_ia *ia = rdmab_to_ia(buffers); unsigned long flags; spin_lock_irqsave(&buffers->rb_lock, flags); rpcrdma_buffer_put_sendbuf(req, buffers); switch (ia->ri_memreg_strategy) { case RPCRDMA_FRMR: case RPCRDMA_MTHCAFMR: rpcrdma_buffer_put_mrs(req, buffers); break; default: break; } spin_unlock_irqrestore(&buffers->rb_lock, flags); } /* * Recover reply buffers from pool. * This happens when recovering from error conditions. * Post-increment counter/array index. */ void rpcrdma_recv_buffer_get(struct rpcrdma_req *req) { struct rpcrdma_buffer *buffers = req->rl_buffer; unsigned long flags; spin_lock_irqsave(&buffers->rb_lock, flags); if (buffers->rb_recv_index < buffers->rb_max_requests) { req->rl_reply = buffers->rb_recv_bufs[buffers->rb_recv_index]; buffers->rb_recv_bufs[buffers->rb_recv_index++] = NULL; } spin_unlock_irqrestore(&buffers->rb_lock, flags); } /* * Put reply buffers back into pool when not attached to * request. This happens in error conditions. */ void rpcrdma_recv_buffer_put(struct rpcrdma_rep *rep) { struct rpcrdma_buffer *buffers = rep->rr_buffer; unsigned long flags; rep->rr_func = NULL; spin_lock_irqsave(&buffers->rb_lock, flags); buffers->rb_recv_bufs[--buffers->rb_recv_index] = rep; spin_unlock_irqrestore(&buffers->rb_lock, flags); } /* * Wrappers for internal-use kmalloc memory registration, used by buffer code. */ void rpcrdma_mapping_error(struct rpcrdma_mr_seg *seg) { dprintk("RPC: map_one: offset %p iova %llx len %zu\n", seg->mr_offset, (unsigned long long)seg->mr_dma, seg->mr_dmalen); } static int rpcrdma_register_internal(struct rpcrdma_ia *ia, void *va, int len, struct ib_mr **mrp, struct ib_sge *iov) { struct ib_phys_buf ipb; struct ib_mr *mr; int rc; /* * All memory passed here was kmalloc'ed, therefore phys-contiguous. */ iov->addr = ib_dma_map_single(ia->ri_id->device, va, len, DMA_BIDIRECTIONAL); if (ib_dma_mapping_error(ia->ri_id->device, iov->addr)) return -ENOMEM; iov->length = len; if (ia->ri_have_dma_lkey) { *mrp = NULL; iov->lkey = ia->ri_dma_lkey; return 0; } else if (ia->ri_bind_mem != NULL) { *mrp = NULL; iov->lkey = ia->ri_bind_mem->lkey; return 0; } ipb.addr = iov->addr; ipb.size = iov->length; mr = ib_reg_phys_mr(ia->ri_pd, &ipb, 1, IB_ACCESS_LOCAL_WRITE, &iov->addr); dprintk("RPC: %s: phys convert: 0x%llx " "registered 0x%llx length %d\n", __func__, (unsigned long long)ipb.addr, (unsigned long long)iov->addr, len); if (IS_ERR(mr)) { *mrp = NULL; rc = PTR_ERR(mr); dprintk("RPC: %s: failed with %i\n", __func__, rc); } else { *mrp = mr; iov->lkey = mr->lkey; rc = 0; } return rc; } static int rpcrdma_deregister_internal(struct rpcrdma_ia *ia, struct ib_mr *mr, struct ib_sge *iov) { int rc; ib_dma_unmap_single(ia->ri_id->device, iov->addr, iov->length, DMA_BIDIRECTIONAL); if (NULL == mr) return 0; rc = ib_dereg_mr(mr); if (rc) dprintk("RPC: %s: ib_dereg_mr failed %i\n", __func__, rc); return rc; } /** * rpcrdma_alloc_regbuf - kmalloc and register memory for SEND/RECV buffers * @ia: controlling rpcrdma_ia * @size: size of buffer to be allocated, in bytes * @flags: GFP flags * * Returns pointer to private header of an area of internally * registered memory, or an ERR_PTR. The registered buffer follows * the end of the private header. * * xprtrdma uses a regbuf for posting an outgoing RDMA SEND, or for * receiving the payload of RDMA RECV operations. regbufs are not * used for RDMA READ/WRITE operations, thus are registered only for * LOCAL access. */ struct rpcrdma_regbuf * rpcrdma_alloc_regbuf(struct rpcrdma_ia *ia, size_t size, gfp_t flags) { struct rpcrdma_regbuf *rb; int rc; rc = -ENOMEM; rb = kmalloc(sizeof(*rb) + size, flags); if (rb == NULL) goto out; rb->rg_size = size; rb->rg_owner = NULL; rc = rpcrdma_register_internal(ia, rb->rg_base, size, &rb->rg_mr, &rb->rg_iov); if (rc) goto out_free; return rb; out_free: kfree(rb); out: return ERR_PTR(rc); } /** * rpcrdma_free_regbuf - deregister and free registered buffer * @ia: controlling rpcrdma_ia * @rb: regbuf to be deregistered and freed */ void rpcrdma_free_regbuf(struct rpcrdma_ia *ia, struct rpcrdma_regbuf *rb) { if (rb) { rpcrdma_deregister_internal(ia, rb->rg_mr, &rb->rg_iov); kfree(rb); } } /* * Prepost any receive buffer, then post send. * * Receive buffer is donated to hardware, reclaimed upon recv completion. */ int rpcrdma_ep_post(struct rpcrdma_ia *ia, struct rpcrdma_ep *ep, struct rpcrdma_req *req) { struct ib_send_wr send_wr, *send_wr_fail; struct rpcrdma_rep *rep = req->rl_reply; int rc; if (rep) { rc = rpcrdma_ep_post_recv(ia, ep, rep); if (rc) goto out; req->rl_reply = NULL; } send_wr.next = NULL; send_wr.wr_id = RPCRDMA_IGNORE_COMPLETION; send_wr.sg_list = req->rl_send_iov; send_wr.num_sge = req->rl_niovs; send_wr.opcode = IB_WR_SEND; if (send_wr.num_sge == 4) /* no need to sync any pad (constant) */ ib_dma_sync_single_for_device(ia->ri_id->device, req->rl_send_iov[3].addr, req->rl_send_iov[3].length, DMA_TO_DEVICE); ib_dma_sync_single_for_device(ia->ri_id->device, req->rl_send_iov[1].addr, req->rl_send_iov[1].length, DMA_TO_DEVICE); ib_dma_sync_single_for_device(ia->ri_id->device, req->rl_send_iov[0].addr, req->rl_send_iov[0].length, DMA_TO_DEVICE); if (DECR_CQCOUNT(ep) > 0) send_wr.send_flags = 0; else { /* Provider must take a send completion every now and then */ INIT_CQCOUNT(ep); send_wr.send_flags = IB_SEND_SIGNALED; } rc = ib_post_send(ia->ri_id->qp, &send_wr, &send_wr_fail); if (rc) dprintk("RPC: %s: ib_post_send returned %i\n", __func__, rc); out: return rc; } /* * (Re)post a receive buffer. */ int rpcrdma_ep_post_recv(struct rpcrdma_ia *ia, struct rpcrdma_ep *ep, struct rpcrdma_rep *rep) { struct ib_recv_wr recv_wr, *recv_wr_fail; int rc; recv_wr.next = NULL; recv_wr.wr_id = (u64) (unsigned long) rep; recv_wr.sg_list = &rep->rr_rdmabuf->rg_iov; recv_wr.num_sge = 1; ib_dma_sync_single_for_cpu(ia->ri_id->device, rdmab_addr(rep->rr_rdmabuf), rdmab_length(rep->rr_rdmabuf), DMA_BIDIRECTIONAL); rc = ib_post_recv(ia->ri_id->qp, &recv_wr, &recv_wr_fail); if (rc) dprintk("RPC: %s: ib_post_recv returned %i\n", __func__, rc); return rc; } /* How many chunk list items fit within our inline buffers? */ unsigned int rpcrdma_max_segments(struct rpcrdma_xprt *r_xprt) { struct rpcrdma_create_data_internal *cdata = &r_xprt->rx_data; int bytes, segments; bytes = min_t(unsigned int, cdata->inline_wsize, cdata->inline_rsize); bytes -= RPCRDMA_HDRLEN_MIN; if (bytes < sizeof(struct rpcrdma_segment) * 2) { pr_warn("RPC: %s: inline threshold too small\n", __func__); return 0; } segments = 1 << (fls(bytes / sizeof(struct rpcrdma_segment)) - 1); dprintk("RPC: %s: max chunk list size = %d segments\n", __func__, segments); return segments; }