/* * net/tipc/link.c: TIPC link code * * Copyright (c) 1996-2007, 2012-2016, Ericsson AB * Copyright (c) 2004-2007, 2010-2013, Wind River Systems * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the names of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include "core.h" #include "subscr.h" #include "link.h" #include "bcast.h" #include "socket.h" #include "name_distr.h" #include "discover.h" #include "netlink.h" #include "monitor.h" #include "trace.h" #include "crypto.h" #include <linux/pkt_sched.h> struct tipc_stats { u32 sent_pkts; u32 recv_pkts; u32 sent_states; u32 recv_states; u32 sent_probes; u32 recv_probes; u32 sent_nacks; u32 recv_nacks; u32 sent_acks; u32 sent_bundled; u32 sent_bundles; u32 recv_bundled; u32 recv_bundles; u32 retransmitted; u32 sent_fragmented; u32 sent_fragments; u32 recv_fragmented; u32 recv_fragments; u32 link_congs; /* # port sends blocked by congestion */ u32 deferred_recv; u32 duplicates; u32 max_queue_sz; /* send queue size high water mark */ u32 accu_queue_sz; /* used for send queue size profiling */ u32 queue_sz_counts; /* used for send queue size profiling */ u32 msg_length_counts; /* used for message length profiling */ u32 msg_lengths_total; /* used for message length profiling */ u32 msg_length_profile[7]; /* used for msg. length profiling */ }; /** * struct tipc_link - TIPC link data structure * @addr: network address of link's peer node * @name: link name character string * @media_addr: media address to use when sending messages over link * @timer: link timer * @net: pointer to namespace struct * @refcnt: reference counter for permanent references (owner node & timer) * @peer_session: link session # being used by peer end of link * @peer_bearer_id: bearer id used by link's peer endpoint * @bearer_id: local bearer id used by link * @tolerance: minimum link continuity loss needed to reset link [in ms] * @abort_limit: # of unacknowledged continuity probes needed to reset link * @state: current state of link FSM * @peer_caps: bitmap describing capabilities of peer node * @silent_intv_cnt: # of timer intervals without any reception from peer * @proto_msg: template for control messages generated by link * @pmsg: convenience pointer to "proto_msg" field * @priority: current link priority * @net_plane: current link network plane ('A' through 'H') * @mon_state: cookie with information needed by link monitor * @backlog_limit: backlog queue congestion thresholds (indexed by importance) * @exp_msg_count: # of tunnelled messages expected during link changeover * @reset_rcv_checkpt: seq # of last acknowledged message at time of link reset * @mtu: current maximum packet size for this link * @advertised_mtu: advertised own mtu when link is being established * @transmitq: queue for sent, non-acked messages * @backlogq: queue for messages waiting to be sent * @snt_nxt: next sequence number to use for outbound messages * @ackers: # of peers that needs to ack each packet before it can be released * @acked: # last packet acked by a certain peer. Used for broadcast. * @rcv_nxt: next sequence number to expect for inbound messages * @deferred_queue: deferred queue saved OOS b'cast message received from node * @unacked_window: # of inbound messages rx'd without ack'ing back to peer * @inputq: buffer queue for messages to be delivered upwards * @namedq: buffer queue for name table messages to be delivered upwards * @next_out: ptr to first unsent outbound message in queue * @wakeupq: linked list of wakeup msgs waiting for link congestion to abate * @long_msg_seq_no: next identifier to use for outbound fragmented messages * @reasm_buf: head of partially reassembled inbound message fragments * @bc_rcvr: marks that this is a broadcast receiver link * @stats: collects statistics regarding link activity */ struct tipc_link { u32 addr; char name[TIPC_MAX_LINK_NAME]; struct net *net; /* Management and link supervision data */ u16 peer_session; u16 session; u16 snd_nxt_state; u16 rcv_nxt_state; u32 peer_bearer_id; u32 bearer_id; u32 tolerance; u32 abort_limit; u32 state; u16 peer_caps; bool in_session; bool active; u32 silent_intv_cnt; char if_name[TIPC_MAX_IF_NAME]; u32 priority; char net_plane; struct tipc_mon_state mon_state; u16 rst_cnt; /* Failover/synch */ u16 drop_point; struct sk_buff *failover_reasm_skb; struct sk_buff_head failover_deferdq; /* Max packet negotiation */ u16 mtu; u16 advertised_mtu; /* Sending */ struct sk_buff_head transmq; struct sk_buff_head backlogq; struct { u16 len; u16 limit; struct sk_buff *target_bskb; } backlog[5]; u16 snd_nxt; /* Reception */ u16 rcv_nxt; u32 rcv_unacked; struct sk_buff_head deferdq; struct sk_buff_head *inputq; struct sk_buff_head *namedq; /* Congestion handling */ struct sk_buff_head wakeupq; u16 window; u16 min_win; u16 ssthresh; u16 max_win; u16 cong_acks; u16 checkpoint; /* Fragmentation/reassembly */ struct sk_buff *reasm_buf; struct sk_buff *reasm_tnlmsg; /* Broadcast */ u16 ackers; u16 acked; u16 last_gap; struct tipc_gap_ack_blks *last_ga; struct tipc_link *bc_rcvlink; struct tipc_link *bc_sndlink; u8 nack_state; bool bc_peer_is_up; /* Statistics */ struct tipc_stats stats; }; /* * Error message prefixes */ static const char *link_co_err = "Link tunneling error, "; static const char *link_rst_msg = "Resetting link "; /* Send states for broadcast NACKs */ enum { BC_NACK_SND_CONDITIONAL, BC_NACK_SND_UNCONDITIONAL, BC_NACK_SND_SUPPRESS, }; #define TIPC_BC_RETR_LIM (jiffies + msecs_to_jiffies(10)) #define TIPC_UC_RETR_TIME (jiffies + msecs_to_jiffies(1)) /* * Interval between NACKs when packets arrive out of order */ #define TIPC_NACK_INTV (TIPC_MIN_LINK_WIN * 2) /* Link FSM states: */ enum { LINK_ESTABLISHED = 0xe, LINK_ESTABLISHING = 0xe << 4, LINK_RESET = 0x1 << 8, LINK_RESETTING = 0x2 << 12, LINK_PEER_RESET = 0xd << 16, LINK_FAILINGOVER = 0xf << 20, LINK_SYNCHING = 0xc << 24 }; /* Link FSM state checking routines */ static int link_is_up(struct tipc_link *l) { return l->state & (LINK_ESTABLISHED | LINK_SYNCHING); } static int tipc_link_proto_rcv(struct tipc_link *l, struct sk_buff *skb, struct sk_buff_head *xmitq); static void tipc_link_build_proto_msg(struct tipc_link *l, int mtyp, bool probe, bool probe_reply, u16 rcvgap, int tolerance, int priority, struct sk_buff_head *xmitq); static void link_print(struct tipc_link *l, const char *str); static int tipc_link_build_nack_msg(struct tipc_link *l, struct sk_buff_head *xmitq); static void tipc_link_build_bc_init_msg(struct tipc_link *l, struct sk_buff_head *xmitq); static u8 __tipc_build_gap_ack_blks(struct tipc_gap_ack_blks *ga, struct tipc_link *l, u8 start_index); static u16 tipc_build_gap_ack_blks(struct tipc_link *l, struct tipc_msg *hdr); static int tipc_link_advance_transmq(struct tipc_link *l, struct tipc_link *r, u16 acked, u16 gap, struct tipc_gap_ack_blks *ga, struct sk_buff_head *xmitq, bool *retransmitted, int *rc); static void tipc_link_update_cwin(struct tipc_link *l, int released, bool retransmitted); /* * Simple non-static link routines (i.e. referenced outside this file) */ bool tipc_link_is_up(struct tipc_link *l) { return link_is_up(l); } bool tipc_link_peer_is_down(struct tipc_link *l) { return l->state == LINK_PEER_RESET; } bool tipc_link_is_reset(struct tipc_link *l) { return l->state & (LINK_RESET | LINK_FAILINGOVER | LINK_ESTABLISHING); } bool tipc_link_is_establishing(struct tipc_link *l) { return l->state == LINK_ESTABLISHING; } bool tipc_link_is_synching(struct tipc_link *l) { return l->state == LINK_SYNCHING; } bool tipc_link_is_failingover(struct tipc_link *l) { return l->state == LINK_FAILINGOVER; } bool tipc_link_is_blocked(struct tipc_link *l) { return l->state & (LINK_RESETTING | LINK_PEER_RESET | LINK_FAILINGOVER); } static bool link_is_bc_sndlink(struct tipc_link *l) { return !l->bc_sndlink; } static bool link_is_bc_rcvlink(struct tipc_link *l) { return ((l->bc_rcvlink == l) && !link_is_bc_sndlink(l)); } void tipc_link_set_active(struct tipc_link *l, bool active) { l->active = active; } u32 tipc_link_id(struct tipc_link *l) { return l->peer_bearer_id << 16 | l->bearer_id; } int tipc_link_min_win(struct tipc_link *l) { return l->min_win; } int tipc_link_max_win(struct tipc_link *l) { return l->max_win; } int tipc_link_prio(struct tipc_link *l) { return l->priority; } unsigned long tipc_link_tolerance(struct tipc_link *l) { return l->tolerance; } struct sk_buff_head *tipc_link_inputq(struct tipc_link *l) { return l->inputq; } char tipc_link_plane(struct tipc_link *l) { return l->net_plane; } void tipc_link_update_caps(struct tipc_link *l, u16 capabilities) { l->peer_caps = capabilities; } void tipc_link_add_bc_peer(struct tipc_link *snd_l, struct tipc_link *uc_l, struct sk_buff_head *xmitq) { struct tipc_link *rcv_l = uc_l->bc_rcvlink; snd_l->ackers++; rcv_l->acked = snd_l->snd_nxt - 1; snd_l->state = LINK_ESTABLISHED; tipc_link_build_bc_init_msg(uc_l, xmitq); } void tipc_link_remove_bc_peer(struct tipc_link *snd_l, struct tipc_link *rcv_l, struct sk_buff_head *xmitq) { u16 ack = snd_l->snd_nxt - 1; snd_l->ackers--; rcv_l->bc_peer_is_up = true; rcv_l->state = LINK_ESTABLISHED; tipc_link_bc_ack_rcv(rcv_l, ack, 0, NULL, xmitq, NULL); trace_tipc_link_reset(rcv_l, TIPC_DUMP_ALL, "bclink removed!"); tipc_link_reset(rcv_l); rcv_l->state = LINK_RESET; if (!snd_l->ackers) { trace_tipc_link_reset(snd_l, TIPC_DUMP_ALL, "zero ackers!"); tipc_link_reset(snd_l); snd_l->state = LINK_RESET; __skb_queue_purge(xmitq); } } int tipc_link_bc_peers(struct tipc_link *l) { return l->ackers; } static u16 link_bc_rcv_gap(struct tipc_link *l) { struct sk_buff *skb = skb_peek(&l->deferdq); u16 gap = 0; if (more(l->snd_nxt, l->rcv_nxt)) gap = l->snd_nxt - l->rcv_nxt; if (skb) gap = buf_seqno(skb) - l->rcv_nxt; return gap; } void tipc_link_set_mtu(struct tipc_link *l, int mtu) { l->mtu = mtu; } int tipc_link_mtu(struct tipc_link *l) { return l->mtu; } int tipc_link_mss(struct tipc_link *l) { #ifdef CONFIG_TIPC_CRYPTO return l->mtu - INT_H_SIZE - EMSG_OVERHEAD; #else return l->mtu - INT_H_SIZE; #endif } u16 tipc_link_rcv_nxt(struct tipc_link *l) { return l->rcv_nxt; } u16 tipc_link_acked(struct tipc_link *l) { return l->acked; } char *tipc_link_name(struct tipc_link *l) { return l->name; } u32 tipc_link_state(struct tipc_link *l) { return l->state; } /** * tipc_link_create - create a new link * @n: pointer to associated node * @if_name: associated interface name * @bearer_id: id (index) of associated bearer * @tolerance: link tolerance to be used by link * @net_plane: network plane (A,B,c..) this link belongs to * @mtu: mtu to be advertised by link * @priority: priority to be used by link * @min_win: minimal send window to be used by link * @max_win: maximal send window to be used by link * @session: session to be used by link * @ownnode: identity of own node * @peer: node id of peer node * @peer_caps: bitmap describing peer node capabilities * @bc_sndlink: the namespace global link used for broadcast sending * @bc_rcvlink: the peer specific link used for broadcast reception * @inputq: queue to put messages ready for delivery * @namedq: queue to put binding table update messages ready for delivery * @link: return value, pointer to put the created link * * Returns true if link was created, otherwise false */ bool tipc_link_create(struct net *net, char *if_name, int bearer_id, int tolerance, char net_plane, u32 mtu, int priority, u32 min_win, u32 max_win, u32 session, u32 self, u32 peer, u8 *peer_id, u16 peer_caps, struct tipc_link *bc_sndlink, struct tipc_link *bc_rcvlink, struct sk_buff_head *inputq, struct sk_buff_head *namedq, struct tipc_link **link) { char peer_str[NODE_ID_STR_LEN] = {0,}; char self_str[NODE_ID_STR_LEN] = {0,}; struct tipc_link *l; l = kzalloc(sizeof(*l), GFP_ATOMIC); if (!l) return false; *link = l; l->session = session; /* Set link name for unicast links only */ if (peer_id) { tipc_nodeid2string(self_str, tipc_own_id(net)); if (strlen(self_str) > 16) sprintf(self_str, "%x", self); tipc_nodeid2string(peer_str, peer_id); if (strlen(peer_str) > 16) sprintf(peer_str, "%x", peer); } /* Peer i/f name will be completed by reset/activate message */ snprintf(l->name, sizeof(l->name), "%s:%s-%s:unknown", self_str, if_name, peer_str); strcpy(l->if_name, if_name); l->addr = peer; l->peer_caps = peer_caps; l->net = net; l->in_session = false; l->bearer_id = bearer_id; l->tolerance = tolerance; if (bc_rcvlink) bc_rcvlink->tolerance = tolerance; l->net_plane = net_plane; l->advertised_mtu = mtu; l->mtu = mtu; l->priority = priority; tipc_link_set_queue_limits(l, min_win, max_win); l->ackers = 1; l->bc_sndlink = bc_sndlink; l->bc_rcvlink = bc_rcvlink; l->inputq = inputq; l->namedq = namedq; l->state = LINK_RESETTING; __skb_queue_head_init(&l->transmq); __skb_queue_head_init(&l->backlogq); __skb_queue_head_init(&l->deferdq); __skb_queue_head_init(&l->failover_deferdq); skb_queue_head_init(&l->wakeupq); skb_queue_head_init(l->inputq); return true; } /** * tipc_link_bc_create - create new link to be used for broadcast * @n: pointer to associated node * @mtu: mtu to be used initially if no peers * @window: send window to be used * @inputq: queue to put messages ready for delivery * @namedq: queue to put binding table update messages ready for delivery * @link: return value, pointer to put the created link * * Returns true if link was created, otherwise false */ bool tipc_link_bc_create(struct net *net, u32 ownnode, u32 peer, u8 *peer_id, int mtu, u32 min_win, u32 max_win, u16 peer_caps, struct sk_buff_head *inputq, struct sk_buff_head *namedq, struct tipc_link *bc_sndlink, struct tipc_link **link) { struct tipc_link *l; if (!tipc_link_create(net, "", MAX_BEARERS, 0, 'Z', mtu, 0, min_win, max_win, 0, ownnode, peer, NULL, peer_caps, bc_sndlink, NULL, inputq, namedq, link)) return false; l = *link; if (peer_id) { char peer_str[NODE_ID_STR_LEN] = {0,}; tipc_nodeid2string(peer_str, peer_id); if (strlen(peer_str) > 16) sprintf(peer_str, "%x", peer); /* Broadcast receiver link name: "broadcast-link:<peer>" */ snprintf(l->name, sizeof(l->name), "%s:%s", tipc_bclink_name, peer_str); } else { strcpy(l->name, tipc_bclink_name); } trace_tipc_link_reset(l, TIPC_DUMP_ALL, "bclink created!"); tipc_link_reset(l); l->state = LINK_RESET; l->ackers = 0; l->bc_rcvlink = l; /* Broadcast send link is always up */ if (link_is_bc_sndlink(l)) l->state = LINK_ESTABLISHED; /* Disable replicast if even a single peer doesn't support it */ if (link_is_bc_rcvlink(l) && !(peer_caps & TIPC_BCAST_RCAST)) tipc_bcast_toggle_rcast(net, false); return true; } /** * tipc_link_fsm_evt - link finite state machine * @l: pointer to link * @evt: state machine event to be processed */ int tipc_link_fsm_evt(struct tipc_link *l, int evt) { int rc = 0; int old_state = l->state; switch (l->state) { case LINK_RESETTING: switch (evt) { case LINK_PEER_RESET_EVT: l->state = LINK_PEER_RESET; break; case LINK_RESET_EVT: l->state = LINK_RESET; break; case LINK_FAILURE_EVT: case LINK_FAILOVER_BEGIN_EVT: case LINK_ESTABLISH_EVT: case LINK_FAILOVER_END_EVT: case LINK_SYNCH_BEGIN_EVT: case LINK_SYNCH_END_EVT: default: goto illegal_evt; } break; case LINK_RESET: switch (evt) { case LINK_PEER_RESET_EVT: l->state = LINK_ESTABLISHING; break; case LINK_FAILOVER_BEGIN_EVT: l->state = LINK_FAILINGOVER; case LINK_FAILURE_EVT: case LINK_RESET_EVT: case LINK_ESTABLISH_EVT: case LINK_FAILOVER_END_EVT: break; case LINK_SYNCH_BEGIN_EVT: case LINK_SYNCH_END_EVT: default: goto illegal_evt; } break; case LINK_PEER_RESET: switch (evt) { case LINK_RESET_EVT: l->state = LINK_ESTABLISHING; break; case LINK_PEER_RESET_EVT: case LINK_ESTABLISH_EVT: case LINK_FAILURE_EVT: break; case LINK_SYNCH_BEGIN_EVT: case LINK_SYNCH_END_EVT: case LINK_FAILOVER_BEGIN_EVT: case LINK_FAILOVER_END_EVT: default: goto illegal_evt; } break; case LINK_FAILINGOVER: switch (evt) { case LINK_FAILOVER_END_EVT: l->state = LINK_RESET; break; case LINK_PEER_RESET_EVT: case LINK_RESET_EVT: case LINK_ESTABLISH_EVT: case LINK_FAILURE_EVT: break; case LINK_FAILOVER_BEGIN_EVT: case LINK_SYNCH_BEGIN_EVT: case LINK_SYNCH_END_EVT: default: goto illegal_evt; } break; case LINK_ESTABLISHING: switch (evt) { case LINK_ESTABLISH_EVT: l->state = LINK_ESTABLISHED; break; case LINK_FAILOVER_BEGIN_EVT: l->state = LINK_FAILINGOVER; break; case LINK_RESET_EVT: l->state = LINK_RESET; break; case LINK_FAILURE_EVT: case LINK_PEER_RESET_EVT: case LINK_SYNCH_BEGIN_EVT: case LINK_FAILOVER_END_EVT: break; case LINK_SYNCH_END_EVT: default: goto illegal_evt; } break; case LINK_ESTABLISHED: switch (evt) { case LINK_PEER_RESET_EVT: l->state = LINK_PEER_RESET; rc |= TIPC_LINK_DOWN_EVT; break; case LINK_FAILURE_EVT: l->state = LINK_RESETTING; rc |= TIPC_LINK_DOWN_EVT; break; case LINK_RESET_EVT: l->state = LINK_RESET; break; case LINK_ESTABLISH_EVT: case LINK_SYNCH_END_EVT: break; case LINK_SYNCH_BEGIN_EVT: l->state = LINK_SYNCHING; break; case LINK_FAILOVER_BEGIN_EVT: case LINK_FAILOVER_END_EVT: default: goto illegal_evt; } break; case LINK_SYNCHING: switch (evt) { case LINK_PEER_RESET_EVT: l->state = LINK_PEER_RESET; rc |= TIPC_LINK_DOWN_EVT; break; case LINK_FAILURE_EVT: l->state = LINK_RESETTING; rc |= TIPC_LINK_DOWN_EVT; break; case LINK_RESET_EVT: l->state = LINK_RESET; break; case LINK_ESTABLISH_EVT: case LINK_SYNCH_BEGIN_EVT: break; case LINK_SYNCH_END_EVT: l->state = LINK_ESTABLISHED; break; case LINK_FAILOVER_BEGIN_EVT: case LINK_FAILOVER_END_EVT: default: goto illegal_evt; } break; default: pr_err("Unknown FSM state %x in %s\n", l->state, l->name); } trace_tipc_link_fsm(l->name, old_state, l->state, evt); return rc; illegal_evt: pr_err("Illegal FSM event %x in state %x on link %s\n", evt, l->state, l->name); trace_tipc_link_fsm(l->name, old_state, l->state, evt); return rc; } /* link_profile_stats - update statistical profiling of traffic */ static void link_profile_stats(struct tipc_link *l) { struct sk_buff *skb; struct tipc_msg *msg; int length; /* Update counters used in statistical profiling of send traffic */ l->stats.accu_queue_sz += skb_queue_len(&l->transmq); l->stats.queue_sz_counts++; skb = skb_peek(&l->transmq); if (!skb) return; msg = buf_msg(skb); length = msg_size(msg); if (msg_user(msg) == MSG_FRAGMENTER) { if (msg_type(msg) != FIRST_FRAGMENT) return; length = msg_size(msg_inner_hdr(msg)); } l->stats.msg_lengths_total += length; l->stats.msg_length_counts++; if (length <= 64) l->stats.msg_length_profile[0]++; else if (length <= 256) l->stats.msg_length_profile[1]++; else if (length <= 1024) l->stats.msg_length_profile[2]++; else if (length <= 4096) l->stats.msg_length_profile[3]++; else if (length <= 16384) l->stats.msg_length_profile[4]++; else if (length <= 32768) l->stats.msg_length_profile[5]++; else l->stats.msg_length_profile[6]++; } /** * tipc_link_too_silent - check if link is "too silent" * @l: tipc link to be checked * * Returns true if the link 'silent_intv_cnt' is about to reach the * 'abort_limit' value, otherwise false */ bool tipc_link_too_silent(struct tipc_link *l) { return (l->silent_intv_cnt + 2 > l->abort_limit); } /* tipc_link_timeout - perform periodic task as instructed from node timeout */ int tipc_link_timeout(struct tipc_link *l, struct sk_buff_head *xmitq) { int mtyp = 0; int rc = 0; bool state = false; bool probe = false; bool setup = false; u16 bc_snt = l->bc_sndlink->snd_nxt - 1; u16 bc_acked = l->bc_rcvlink->acked; struct tipc_mon_state *mstate = &l->mon_state; trace_tipc_link_timeout(l, TIPC_DUMP_NONE, " "); trace_tipc_link_too_silent(l, TIPC_DUMP_ALL, " "); switch (l->state) { case LINK_ESTABLISHED: case LINK_SYNCHING: mtyp = STATE_MSG; link_profile_stats(l); tipc_mon_get_state(l->net, l->addr, mstate, l->bearer_id); if (mstate->reset || (l->silent_intv_cnt > l->abort_limit)) return tipc_link_fsm_evt(l, LINK_FAILURE_EVT); state = bc_acked != bc_snt; state |= l->bc_rcvlink->rcv_unacked; state |= l->rcv_unacked; state |= !skb_queue_empty(&l->transmq); state |= !skb_queue_empty(&l->deferdq); probe = mstate->probing; probe |= l->silent_intv_cnt; if (probe || mstate->monitoring) l->silent_intv_cnt++; if (l->snd_nxt == l->checkpoint) { tipc_link_update_cwin(l, 0, 0); probe = true; } l->checkpoint = l->snd_nxt; break; case LINK_RESET: setup = l->rst_cnt++ <= 4; setup |= !(l->rst_cnt % 16); mtyp = RESET_MSG; break; case LINK_ESTABLISHING: setup = true; mtyp = ACTIVATE_MSG; break; case LINK_PEER_RESET: case LINK_RESETTING: case LINK_FAILINGOVER: break; default: break; } if (state || probe || setup) tipc_link_build_proto_msg(l, mtyp, probe, 0, 0, 0, 0, xmitq); return rc; } /** * link_schedule_user - schedule a message sender for wakeup after congestion * @l: congested link * @hdr: header of message that is being sent * Create pseudo msg to send back to user when congestion abates */ static int link_schedule_user(struct tipc_link *l, struct tipc_msg *hdr) { u32 dnode = tipc_own_addr(l->net); u32 dport = msg_origport(hdr); struct sk_buff *skb; /* Create and schedule wakeup pseudo message */ skb = tipc_msg_create(SOCK_WAKEUP, 0, INT_H_SIZE, 0, dnode, l->addr, dport, 0, 0); if (!skb) return -ENOBUFS; msg_set_dest_droppable(buf_msg(skb), true); TIPC_SKB_CB(skb)->chain_imp = msg_importance(hdr); skb_queue_tail(&l->wakeupq, skb); l->stats.link_congs++; trace_tipc_link_conges(l, TIPC_DUMP_ALL, "wakeup scheduled!"); return -ELINKCONG; } /** * link_prepare_wakeup - prepare users for wakeup after congestion * @l: congested link * Wake up a number of waiting users, as permitted by available space * in the send queue */ static void link_prepare_wakeup(struct tipc_link *l) { struct sk_buff_head *wakeupq = &l->wakeupq; struct sk_buff_head *inputq = l->inputq; struct sk_buff *skb, *tmp; struct sk_buff_head tmpq; int avail[5] = {0,}; int imp = 0; __skb_queue_head_init(&tmpq); for (; imp <= TIPC_SYSTEM_IMPORTANCE; imp++) avail[imp] = l->backlog[imp].limit - l->backlog[imp].len; skb_queue_walk_safe(wakeupq, skb, tmp) { imp = TIPC_SKB_CB(skb)->chain_imp; if (avail[imp] <= 0) continue; avail[imp]--; __skb_unlink(skb, wakeupq); __skb_queue_tail(&tmpq, skb); } spin_lock_bh(&inputq->lock); skb_queue_splice_tail(&tmpq, inputq); spin_unlock_bh(&inputq->lock); } void tipc_link_reset(struct tipc_link *l) { struct sk_buff_head list; u32 imp; __skb_queue_head_init(&list); l->in_session = false; /* Force re-synch of peer session number before establishing */ l->peer_session--; l->session++; l->mtu = l->advertised_mtu; spin_lock_bh(&l->wakeupq.lock); skb_queue_splice_init(&l->wakeupq, &list); spin_unlock_bh(&l->wakeupq.lock); spin_lock_bh(&l->inputq->lock); skb_queue_splice_init(&list, l->inputq); spin_unlock_bh(&l->inputq->lock); __skb_queue_purge(&l->transmq); __skb_queue_purge(&l->deferdq); __skb_queue_purge(&l->backlogq); __skb_queue_purge(&l->failover_deferdq); for (imp = 0; imp <= TIPC_SYSTEM_IMPORTANCE; imp++) { l->backlog[imp].len = 0; l->backlog[imp].target_bskb = NULL; } kfree_skb(l->reasm_buf); kfree_skb(l->reasm_tnlmsg); kfree_skb(l->failover_reasm_skb); l->reasm_buf = NULL; l->reasm_tnlmsg = NULL; l->failover_reasm_skb = NULL; l->rcv_unacked = 0; l->snd_nxt = 1; l->rcv_nxt = 1; l->snd_nxt_state = 1; l->rcv_nxt_state = 1; l->acked = 0; l->last_gap = 0; kfree(l->last_ga); l->last_ga = NULL; l->silent_intv_cnt = 0; l->rst_cnt = 0; l->bc_peer_is_up = false; memset(&l->mon_state, 0, sizeof(l->mon_state)); tipc_link_reset_stats(l); } /** * tipc_link_xmit(): enqueue buffer list according to queue situation * @link: link to use * @list: chain of buffers containing message * @xmitq: returned list of packets to be sent by caller * * Consumes the buffer chain. * Returns 0 if success, or errno: -ELINKCONG, -EMSGSIZE or -ENOBUFS * Messages at TIPC_SYSTEM_IMPORTANCE are always accepted */ int tipc_link_xmit(struct tipc_link *l, struct sk_buff_head *list, struct sk_buff_head *xmitq) { struct tipc_msg *hdr = buf_msg(skb_peek(list)); struct sk_buff_head *backlogq = &l->backlogq; struct sk_buff_head *transmq = &l->transmq; struct sk_buff *skb, *_skb; u16 bc_ack = l->bc_rcvlink->rcv_nxt - 1; u16 ack = l->rcv_nxt - 1; u16 seqno = l->snd_nxt; int pkt_cnt = skb_queue_len(list); int imp = msg_importance(hdr); unsigned int mss = tipc_link_mss(l); unsigned int cwin = l->window; unsigned int mtu = l->mtu; bool new_bundle; int rc = 0; if (unlikely(msg_size(hdr) > mtu)) { pr_warn("Too large msg, purging xmit list %d %d %d %d %d!\n", skb_queue_len(list), msg_user(hdr), msg_type(hdr), msg_size(hdr), mtu); __skb_queue_purge(list); return -EMSGSIZE; } /* Allow oversubscription of one data msg per source at congestion */ if (unlikely(l->backlog[imp].len >= l->backlog[imp].limit)) { if (imp == TIPC_SYSTEM_IMPORTANCE) { pr_warn("%s<%s>, link overflow", link_rst_msg, l->name); return -ENOBUFS; } rc = link_schedule_user(l, hdr); } if (pkt_cnt > 1) { l->stats.sent_fragmented++; l->stats.sent_fragments += pkt_cnt; } /* Prepare each packet for sending, and add to relevant queue: */ while ((skb = __skb_dequeue(list))) { if (likely(skb_queue_len(transmq) < cwin)) { hdr = buf_msg(skb); msg_set_seqno(hdr, seqno); msg_set_ack(hdr, ack); msg_set_bcast_ack(hdr, bc_ack); _skb = skb_clone(skb, GFP_ATOMIC); if (!_skb) { kfree_skb(skb); __skb_queue_purge(list); return -ENOBUFS; } __skb_queue_tail(transmq, skb); /* next retransmit attempt */ if (link_is_bc_sndlink(l)) TIPC_SKB_CB(skb)->nxt_retr = TIPC_BC_RETR_LIM; __skb_queue_tail(xmitq, _skb); TIPC_SKB_CB(skb)->ackers = l->ackers; l->rcv_unacked = 0; l->stats.sent_pkts++; seqno++; continue; } if (tipc_msg_try_bundle(l->backlog[imp].target_bskb, &skb, mss, l->addr, &new_bundle)) { if (skb) { /* Keep a ref. to the skb for next try */ l->backlog[imp].target_bskb = skb; l->backlog[imp].len++; __skb_queue_tail(backlogq, skb); } else { if (new_bundle) { l->stats.sent_bundles++; l->stats.sent_bundled++; } l->stats.sent_bundled++; } continue; } l->backlog[imp].target_bskb = NULL; l->backlog[imp].len += (1 + skb_queue_len(list)); __skb_queue_tail(backlogq, skb); skb_queue_splice_tail_init(list, backlogq); } l->snd_nxt = seqno; return rc; } static void tipc_link_update_cwin(struct tipc_link *l, int released, bool retransmitted) { int bklog_len = skb_queue_len(&l->backlogq); struct sk_buff_head *txq = &l->transmq; int txq_len = skb_queue_len(txq); u16 cwin = l->window; /* Enter fast recovery */ if (unlikely(retransmitted)) { l->ssthresh = max_t(u16, l->window / 2, 300); l->window = min_t(u16, l->ssthresh, l->window); return; } /* Enter slow start */ if (unlikely(!released)) { l->ssthresh = max_t(u16, l->window / 2, 300); l->window = l->min_win; return; } /* Don't increase window if no pressure on the transmit queue */ if (txq_len + bklog_len < cwin) return; /* Don't increase window if there are holes the transmit queue */ if (txq_len && l->snd_nxt - buf_seqno(skb_peek(txq)) != txq_len) return; l->cong_acks += released; /* Slow start */ if (cwin <= l->ssthresh) { l->window = min_t(u16, cwin + released, l->max_win); return; } /* Congestion avoidance */ if (l->cong_acks < cwin) return; l->window = min_t(u16, ++cwin, l->max_win); l->cong_acks = 0; } static void tipc_link_advance_backlog(struct tipc_link *l, struct sk_buff_head *xmitq) { u16 bc_ack = l->bc_rcvlink->rcv_nxt - 1; struct sk_buff_head *txq = &l->transmq; struct sk_buff *skb, *_skb; u16 ack = l->rcv_nxt - 1; u16 seqno = l->snd_nxt; struct tipc_msg *hdr; u16 cwin = l->window; u32 imp; while (skb_queue_len(txq) < cwin) { skb = skb_peek(&l->backlogq); if (!skb) break; _skb = skb_clone(skb, GFP_ATOMIC); if (!_skb) break; __skb_dequeue(&l->backlogq); hdr = buf_msg(skb); imp = msg_importance(hdr); l->backlog[imp].len--; if (unlikely(skb == l->backlog[imp].target_bskb)) l->backlog[imp].target_bskb = NULL; __skb_queue_tail(&l->transmq, skb); /* next retransmit attempt */ if (link_is_bc_sndlink(l)) TIPC_SKB_CB(skb)->nxt_retr = TIPC_BC_RETR_LIM; __skb_queue_tail(xmitq, _skb); TIPC_SKB_CB(skb)->ackers = l->ackers; msg_set_seqno(hdr, seqno); msg_set_ack(hdr, ack); msg_set_bcast_ack(hdr, bc_ack); l->rcv_unacked = 0; l->stats.sent_pkts++; seqno++; } l->snd_nxt = seqno; } /** * link_retransmit_failure() - Detect repeated retransmit failures * @l: tipc link sender * @r: tipc link receiver (= l in case of unicast) * @rc: returned code * * Return: true if the repeated retransmit failures happens, otherwise * false */ static bool link_retransmit_failure(struct tipc_link *l, struct tipc_link *r, int *rc) { struct sk_buff *skb = skb_peek(&l->transmq); struct tipc_msg *hdr; if (!skb) return false; if (!TIPC_SKB_CB(skb)->retr_cnt) return false; if (!time_after(jiffies, TIPC_SKB_CB(skb)->retr_stamp + msecs_to_jiffies(r->tolerance * 10))) return false; hdr = buf_msg(skb); if (link_is_bc_sndlink(l) && !less(r->acked, msg_seqno(hdr))) return false; pr_warn("Retransmission failure on link <%s>\n", l->name); link_print(l, "State of link "); pr_info("Failed msg: usr %u, typ %u, len %u, err %u\n", msg_user(hdr), msg_type(hdr), msg_size(hdr), msg_errcode(hdr)); pr_info("sqno %u, prev: %x, dest: %x\n", msg_seqno(hdr), msg_prevnode(hdr), msg_destnode(hdr)); pr_info("retr_stamp %d, retr_cnt %d\n", jiffies_to_msecs(TIPC_SKB_CB(skb)->retr_stamp), TIPC_SKB_CB(skb)->retr_cnt); trace_tipc_list_dump(&l->transmq, true, "retrans failure!"); trace_tipc_link_dump(l, TIPC_DUMP_NONE, "retrans failure!"); trace_tipc_link_dump(r, TIPC_DUMP_NONE, "retrans failure!"); if (link_is_bc_sndlink(l)) { r->state = LINK_RESET; *rc |= TIPC_LINK_DOWN_EVT; } else { *rc |= tipc_link_fsm_evt(l, LINK_FAILURE_EVT); } return true; } /* tipc_data_input - deliver data and name distr msgs to upper layer * * Consumes buffer if message is of right type * Node lock must be held */ static bool tipc_data_input(struct tipc_link *l, struct sk_buff *skb, struct sk_buff_head *inputq) { struct sk_buff_head *mc_inputq = l->bc_rcvlink->inputq; struct tipc_msg *hdr = buf_msg(skb); switch (msg_user(hdr)) { case TIPC_LOW_IMPORTANCE: case TIPC_MEDIUM_IMPORTANCE: case TIPC_HIGH_IMPORTANCE: case TIPC_CRITICAL_IMPORTANCE: if (unlikely(msg_in_group(hdr) || msg_mcast(hdr))) { skb_queue_tail(mc_inputq, skb); return true; } /* fall through */ case CONN_MANAGER: skb_queue_tail(inputq, skb); return true; case GROUP_PROTOCOL: skb_queue_tail(mc_inputq, skb); return true; case NAME_DISTRIBUTOR: l->bc_rcvlink->state = LINK_ESTABLISHED; skb_queue_tail(l->namedq, skb); return true; case MSG_BUNDLER: case TUNNEL_PROTOCOL: case MSG_FRAGMENTER: case BCAST_PROTOCOL: return false; default: pr_warn("Dropping received illegal msg type\n"); kfree_skb(skb); return true; }; } /* tipc_link_input - process packet that has passed link protocol check * * Consumes buffer */ static int tipc_link_input(struct tipc_link *l, struct sk_buff *skb, struct sk_buff_head *inputq, struct sk_buff **reasm_skb) { struct tipc_msg *hdr = buf_msg(skb); struct sk_buff *iskb; struct sk_buff_head tmpq; int usr = msg_user(hdr); int pos = 0; if (usr == MSG_BUNDLER) { skb_queue_head_init(&tmpq); l->stats.recv_bundles++; l->stats.recv_bundled += msg_msgcnt(hdr); while (tipc_msg_extract(skb, &iskb, &pos)) tipc_data_input(l, iskb, &tmpq); tipc_skb_queue_splice_tail(&tmpq, inputq); return 0; } else if (usr == MSG_FRAGMENTER) { l->stats.recv_fragments++; if (tipc_buf_append(reasm_skb, &skb)) { l->stats.recv_fragmented++; tipc_data_input(l, skb, inputq); } else if (!*reasm_skb && !link_is_bc_rcvlink(l)) { pr_warn_ratelimited("Unable to build fragment list\n"); return tipc_link_fsm_evt(l, LINK_FAILURE_EVT); } return 0; } else if (usr == BCAST_PROTOCOL) { tipc_bcast_lock(l->net); tipc_link_bc_init_rcv(l->bc_rcvlink, hdr); tipc_bcast_unlock(l->net); } kfree_skb(skb); return 0; } /* tipc_link_tnl_rcv() - receive TUNNEL_PROTOCOL message, drop or process the * inner message along with the ones in the old link's * deferdq * @l: tunnel link * @skb: TUNNEL_PROTOCOL message * @inputq: queue to put messages ready for delivery */ static int tipc_link_tnl_rcv(struct tipc_link *l, struct sk_buff *skb, struct sk_buff_head *inputq) { struct sk_buff **reasm_skb = &l->failover_reasm_skb; struct sk_buff **reasm_tnlmsg = &l->reasm_tnlmsg; struct sk_buff_head *fdefq = &l->failover_deferdq; struct tipc_msg *hdr = buf_msg(skb); struct sk_buff *iskb; int ipos = 0; int rc = 0; u16 seqno; if (msg_type(hdr) == SYNCH_MSG) { kfree_skb(skb); return 0; } /* Not a fragment? */ if (likely(!msg_nof_fragms(hdr))) { if (unlikely(!tipc_msg_extract(skb, &iskb, &ipos))) { pr_warn_ratelimited("Unable to extract msg, defq: %d\n", skb_queue_len(fdefq)); return 0; } kfree_skb(skb); } else { /* Set fragment type for buf_append */ if (msg_fragm_no(hdr) == 1) msg_set_type(hdr, FIRST_FRAGMENT); else if (msg_fragm_no(hdr) < msg_nof_fragms(hdr)) msg_set_type(hdr, FRAGMENT); else msg_set_type(hdr, LAST_FRAGMENT); if (!tipc_buf_append(reasm_tnlmsg, &skb)) { /* Successful but non-complete reassembly? */ if (*reasm_tnlmsg || link_is_bc_rcvlink(l)) return 0; pr_warn_ratelimited("Unable to reassemble tunnel msg\n"); return tipc_link_fsm_evt(l, LINK_FAILURE_EVT); } iskb = skb; } do { seqno = buf_seqno(iskb); if (unlikely(less(seqno, l->drop_point))) { kfree_skb(iskb); continue; } if (unlikely(seqno != l->drop_point)) { __tipc_skb_queue_sorted(fdefq, seqno, iskb); continue; } l->drop_point++; if (!tipc_data_input(l, iskb, inputq)) rc |= tipc_link_input(l, iskb, inputq, reasm_skb); if (unlikely(rc)) break; } while ((iskb = __tipc_skb_dequeue(fdefq, l->drop_point))); return rc; } /** * tipc_get_gap_ack_blks - get Gap ACK blocks from PROTOCOL/STATE_MSG * @ga: returned pointer to the Gap ACK blocks if any * @l: the tipc link * @hdr: the PROTOCOL/STATE_MSG header * @uc: desired Gap ACK blocks type, i.e. unicast (= 1) or broadcast (= 0) * * Return: the total Gap ACK blocks size */ u16 tipc_get_gap_ack_blks(struct tipc_gap_ack_blks **ga, struct tipc_link *l, struct tipc_msg *hdr, bool uc) { struct tipc_gap_ack_blks *p; u16 sz = 0; /* Does peer support the Gap ACK blocks feature? */ if (l->peer_caps & TIPC_GAP_ACK_BLOCK) { p = (struct tipc_gap_ack_blks *)msg_data(hdr); sz = ntohs(p->len); /* Sanity check */ if (sz == tipc_gap_ack_blks_sz(p->ugack_cnt + p->bgack_cnt)) { /* Good, check if the desired type exists */ if ((uc && p->ugack_cnt) || (!uc && p->bgack_cnt)) goto ok; /* Backward compatible: peer might not support bc, but uc? */ } else if (uc && sz == tipc_gap_ack_blks_sz(p->ugack_cnt)) { if (p->ugack_cnt) { p->bgack_cnt = 0; goto ok; } } } /* Other cases: ignore! */ p = NULL; ok: *ga = p; return sz; } static u8 __tipc_build_gap_ack_blks(struct tipc_gap_ack_blks *ga, struct tipc_link *l, u8 start_index) { struct tipc_gap_ack *gacks = &ga->gacks[start_index]; struct sk_buff *skb = skb_peek(&l->deferdq); u16 expect, seqno = 0; u8 n = 0; if (!skb) return 0; expect = buf_seqno(skb); skb_queue_walk(&l->deferdq, skb) { seqno = buf_seqno(skb); if (unlikely(more(seqno, expect))) { gacks[n].ack = htons(expect - 1); gacks[n].gap = htons(seqno - expect); if (++n >= MAX_GAP_ACK_BLKS / 2) { pr_info_ratelimited("Gacks on %s: %d, ql: %d!\n", l->name, n, skb_queue_len(&l->deferdq)); return n; } } else if (unlikely(less(seqno, expect))) { pr_warn("Unexpected skb in deferdq!\n"); continue; } expect = seqno + 1; } /* last block */ gacks[n].ack = htons(seqno); gacks[n].gap = 0; n++; return n; } /* tipc_build_gap_ack_blks - build Gap ACK blocks * @l: tipc unicast link * @hdr: the tipc message buffer to store the Gap ACK blocks after built * * The function builds Gap ACK blocks for both the unicast & broadcast receiver * links of a certain peer, the buffer after built has the network data format * as found at the struct tipc_gap_ack_blks definition. * * returns the actual allocated memory size */ static u16 tipc_build_gap_ack_blks(struct tipc_link *l, struct tipc_msg *hdr) { struct tipc_link *bcl = l->bc_rcvlink; struct tipc_gap_ack_blks *ga; u16 len; ga = (struct tipc_gap_ack_blks *)msg_data(hdr); /* Start with broadcast link first */ tipc_bcast_lock(bcl->net); msg_set_bcast_ack(hdr, bcl->rcv_nxt - 1); msg_set_bc_gap(hdr, link_bc_rcv_gap(bcl)); ga->bgack_cnt = __tipc_build_gap_ack_blks(ga, bcl, 0); tipc_bcast_unlock(bcl->net); /* Now for unicast link, but an explicit NACK only (???) */ ga->ugack_cnt = (msg_seq_gap(hdr)) ? __tipc_build_gap_ack_blks(ga, l, ga->bgack_cnt) : 0; /* Total len */ len = tipc_gap_ack_blks_sz(ga->bgack_cnt + ga->ugack_cnt); ga->len = htons(len); return len; } /* tipc_link_advance_transmq - advance TIPC link transmq queue by releasing * acked packets, also doing retransmissions if * gaps found * @l: tipc link with transmq queue to be advanced * @r: tipc link "receiver" i.e. in case of broadcast (= "l" if unicast) * @acked: seqno of last packet acked by peer without any gaps before * @gap: # of gap packets * @ga: buffer pointer to Gap ACK blocks from peer * @xmitq: queue for accumulating the retransmitted packets if any * @retransmitted: returned boolean value if a retransmission is really issued * @rc: returned code e.g. TIPC_LINK_DOWN_EVT if a repeated retransmit failures * happens (- unlikely case) * * Return: the number of packets released from the link transmq */ static int tipc_link_advance_transmq(struct tipc_link *l, struct tipc_link *r, u16 acked, u16 gap, struct tipc_gap_ack_blks *ga, struct sk_buff_head *xmitq, bool *retransmitted, int *rc) { struct tipc_gap_ack_blks *last_ga = r->last_ga, *this_ga = NULL; struct tipc_gap_ack *gacks = NULL; struct sk_buff *skb, *_skb, *tmp; struct tipc_msg *hdr; u32 qlen = skb_queue_len(&l->transmq); u16 nacked = acked, ngap = gap, gack_cnt = 0; u16 bc_ack = l->bc_rcvlink->rcv_nxt - 1; u16 ack = l->rcv_nxt - 1; u16 seqno, n = 0; u16 end = r->acked, start = end, offset = r->last_gap; u16 si = (last_ga) ? last_ga->start_index : 0; bool is_uc = !link_is_bc_sndlink(l); bool bc_has_acked = false; trace_tipc_link_retrans(r, acked + 1, acked + gap, &l->transmq); /* Determine Gap ACK blocks if any for the particular link */ if (ga && is_uc) { /* Get the Gap ACKs, uc part */ gack_cnt = ga->ugack_cnt; gacks = &ga->gacks[ga->bgack_cnt]; } else if (ga) { /* Copy the Gap ACKs, bc part, for later renewal if needed */ this_ga = kmemdup(ga, tipc_gap_ack_blks_sz(ga->bgack_cnt), GFP_ATOMIC); if (likely(this_ga)) { this_ga->start_index = 0; /* Start with the bc Gap ACKs */ gack_cnt = this_ga->bgack_cnt; gacks = &this_ga->gacks[0]; } else { /* Hmm, we can get in trouble..., simply ignore it */ pr_warn_ratelimited("Ignoring bc Gap ACKs, no memory\n"); } } /* Advance the link transmq */ skb_queue_walk_safe(&l->transmq, skb, tmp) { seqno = buf_seqno(skb); next_gap_ack: if (less_eq(seqno, nacked)) { if (is_uc) goto release; /* Skip packets peer has already acked */ if (!more(seqno, r->acked)) continue; /* Get the next of last Gap ACK blocks */ while (more(seqno, end)) { if (!last_ga || si >= last_ga->bgack_cnt) break; start = end + offset + 1; end = ntohs(last_ga->gacks[si].ack); offset = ntohs(last_ga->gacks[si].gap); si++; WARN_ONCE(more(start, end) || (!offset && si < last_ga->bgack_cnt) || si > MAX_GAP_ACK_BLKS, "Corrupted Gap ACK: %d %d %d %d %d\n", start, end, offset, si, last_ga->bgack_cnt); } /* Check against the last Gap ACK block */ if (in_range(seqno, start, end)) continue; /* Update/release the packet peer is acking */ bc_has_acked = true; if (--TIPC_SKB_CB(skb)->ackers) continue; release: /* release skb */ __skb_unlink(skb, &l->transmq); kfree_skb(skb); } else if (less_eq(seqno, nacked + ngap)) { /* First gap: check if repeated retrans failures? */ if (unlikely(seqno == acked + 1 && link_retransmit_failure(l, r, rc))) { /* Ignore this bc Gap ACKs if any */ kfree(this_ga); this_ga = NULL; break; } /* retransmit skb if unrestricted*/ if (time_before(jiffies, TIPC_SKB_CB(skb)->nxt_retr)) continue; TIPC_SKB_CB(skb)->nxt_retr = (is_uc) ? TIPC_UC_RETR_TIME : TIPC_BC_RETR_LIM; _skb = pskb_copy(skb, GFP_ATOMIC); if (!_skb) continue; hdr = buf_msg(_skb); msg_set_ack(hdr, ack); msg_set_bcast_ack(hdr, bc_ack); _skb->priority = TC_PRIO_CONTROL; __skb_queue_tail(xmitq, _skb); l->stats.retransmitted++; if (!is_uc) r->stats.retransmitted++; *retransmitted = true; /* Increase actual retrans counter & mark first time */ if (!TIPC_SKB_CB(skb)->retr_cnt++) TIPC_SKB_CB(skb)->retr_stamp = jiffies; } else { /* retry with Gap ACK blocks if any */ if (n >= gack_cnt) break; nacked = ntohs(gacks[n].ack); ngap = ntohs(gacks[n].gap); n++; goto next_gap_ack; } } /* Renew last Gap ACK blocks for bc if needed */ if (bc_has_acked) { if (this_ga) { kfree(last_ga); r->last_ga = this_ga; r->last_gap = gap; } else if (last_ga) { if (less(acked, start)) { si--; offset = start - acked - 1; } else if (less(acked, end)) { acked = end; } if (si < last_ga->bgack_cnt) { last_ga->start_index = si; r->last_gap = offset; } else { kfree(last_ga); r->last_ga = NULL; r->last_gap = 0; } } else { r->last_gap = 0; } r->acked = acked; } else { kfree(this_ga); } return qlen - skb_queue_len(&l->transmq); } /* tipc_link_build_state_msg: prepare link state message for transmission * * Note that sending of broadcast ack is coordinated among nodes, to reduce * risk of ack storms towards the sender */ int tipc_link_build_state_msg(struct tipc_link *l, struct sk_buff_head *xmitq) { if (!l) return 0; /* Broadcast ACK must be sent via a unicast link => defer to caller */ if (link_is_bc_rcvlink(l)) { if (((l->rcv_nxt ^ tipc_own_addr(l->net)) & 0xf) != 0xf) return 0; l->rcv_unacked = 0; /* Use snd_nxt to store peer's snd_nxt in broadcast rcv link */ l->snd_nxt = l->rcv_nxt; return TIPC_LINK_SND_STATE; } /* Unicast ACK */ l->rcv_unacked = 0; l->stats.sent_acks++; tipc_link_build_proto_msg(l, STATE_MSG, 0, 0, 0, 0, 0, xmitq); return 0; } /* tipc_link_build_reset_msg: prepare link RESET or ACTIVATE message */ void tipc_link_build_reset_msg(struct tipc_link *l, struct sk_buff_head *xmitq) { int mtyp = RESET_MSG; struct sk_buff *skb; if (l->state == LINK_ESTABLISHING) mtyp = ACTIVATE_MSG; tipc_link_build_proto_msg(l, mtyp, 0, 0, 0, 0, 0, xmitq); /* Inform peer that this endpoint is going down if applicable */ skb = skb_peek_tail(xmitq); if (skb && (l->state == LINK_RESET)) msg_set_peer_stopping(buf_msg(skb), 1); } /* tipc_link_build_nack_msg: prepare link nack message for transmission * Note that sending of broadcast NACK is coordinated among nodes, to * reduce the risk of NACK storms towards the sender */ static int tipc_link_build_nack_msg(struct tipc_link *l, struct sk_buff_head *xmitq) { u32 def_cnt = ++l->stats.deferred_recv; struct sk_buff_head *dfq = &l->deferdq; u32 defq_len = skb_queue_len(dfq); int match1, match2; if (link_is_bc_rcvlink(l)) { match1 = def_cnt & 0xf; match2 = tipc_own_addr(l->net) & 0xf; if (match1 == match2) return TIPC_LINK_SND_STATE; return 0; } if (defq_len >= 3 && !((defq_len - 3) % 16)) { u16 rcvgap = buf_seqno(skb_peek(dfq)) - l->rcv_nxt; tipc_link_build_proto_msg(l, STATE_MSG, 0, 0, rcvgap, 0, 0, xmitq); } return 0; } /* tipc_link_rcv - process TIPC packets/messages arriving from off-node * @l: the link that should handle the message * @skb: TIPC packet * @xmitq: queue to place packets to be sent after this call */ int tipc_link_rcv(struct tipc_link *l, struct sk_buff *skb, struct sk_buff_head *xmitq) { struct sk_buff_head *defq = &l->deferdq; struct tipc_msg *hdr = buf_msg(skb); u16 seqno, rcv_nxt, win_lim; int released = 0; int rc = 0; /* Verify and update link state */ if (unlikely(msg_user(hdr) == LINK_PROTOCOL)) return tipc_link_proto_rcv(l, skb, xmitq); /* Don't send probe at next timeout expiration */ l->silent_intv_cnt = 0; do { hdr = buf_msg(skb); seqno = msg_seqno(hdr); rcv_nxt = l->rcv_nxt; win_lim = rcv_nxt + TIPC_MAX_LINK_WIN; if (unlikely(!link_is_up(l))) { if (l->state == LINK_ESTABLISHING) rc = TIPC_LINK_UP_EVT; kfree_skb(skb); break; } /* Drop if outside receive window */ if (unlikely(less(seqno, rcv_nxt) || more(seqno, win_lim))) { l->stats.duplicates++; kfree_skb(skb); break; } released += tipc_link_advance_transmq(l, l, msg_ack(hdr), 0, NULL, NULL, NULL, NULL); /* Defer delivery if sequence gap */ if (unlikely(seqno != rcv_nxt)) { if (!__tipc_skb_queue_sorted(defq, seqno, skb)) l->stats.duplicates++; rc |= tipc_link_build_nack_msg(l, xmitq); break; } /* Deliver packet */ l->rcv_nxt++; l->stats.recv_pkts++; if (unlikely(msg_user(hdr) == TUNNEL_PROTOCOL)) rc |= tipc_link_tnl_rcv(l, skb, l->inputq); else if (!tipc_data_input(l, skb, l->inputq)) rc |= tipc_link_input(l, skb, l->inputq, &l->reasm_buf); if (unlikely(++l->rcv_unacked >= TIPC_MIN_LINK_WIN)) rc |= tipc_link_build_state_msg(l, xmitq); if (unlikely(rc & ~TIPC_LINK_SND_STATE)) break; } while ((skb = __tipc_skb_dequeue(defq, l->rcv_nxt))); /* Forward queues and wake up waiting users */ if (released) { tipc_link_update_cwin(l, released, 0); tipc_link_advance_backlog(l, xmitq); if (unlikely(!skb_queue_empty(&l->wakeupq))) link_prepare_wakeup(l); } return rc; } static void tipc_link_build_proto_msg(struct tipc_link *l, int mtyp, bool probe, bool probe_reply, u16 rcvgap, int tolerance, int priority, struct sk_buff_head *xmitq) { struct tipc_mon_state *mstate = &l->mon_state; struct sk_buff_head *dfq = &l->deferdq; struct tipc_link *bcl = l->bc_rcvlink; struct tipc_msg *hdr; struct sk_buff *skb; bool node_up = link_is_up(bcl); u16 glen = 0, bc_rcvgap = 0; int dlen = 0; void *data; /* Don't send protocol message during reset or link failover */ if (tipc_link_is_blocked(l)) return; if (!tipc_link_is_up(l) && (mtyp == STATE_MSG)) return; if ((probe || probe_reply) && !skb_queue_empty(dfq)) rcvgap = buf_seqno(skb_peek(dfq)) - l->rcv_nxt; skb = tipc_msg_create(LINK_PROTOCOL, mtyp, INT_H_SIZE, tipc_max_domain_size + MAX_GAP_ACK_BLKS_SZ, l->addr, tipc_own_addr(l->net), 0, 0, 0); if (!skb) return; hdr = buf_msg(skb); data = msg_data(hdr); msg_set_session(hdr, l->session); msg_set_bearer_id(hdr, l->bearer_id); msg_set_net_plane(hdr, l->net_plane); msg_set_next_sent(hdr, l->snd_nxt); msg_set_ack(hdr, l->rcv_nxt - 1); msg_set_bcast_ack(hdr, bcl->rcv_nxt - 1); msg_set_bc_ack_invalid(hdr, !node_up); msg_set_last_bcast(hdr, l->bc_sndlink->snd_nxt - 1); msg_set_link_tolerance(hdr, tolerance); msg_set_linkprio(hdr, priority); msg_set_redundant_link(hdr, node_up); msg_set_seq_gap(hdr, 0); msg_set_seqno(hdr, l->snd_nxt + U16_MAX / 2); if (mtyp == STATE_MSG) { if (l->peer_caps & TIPC_LINK_PROTO_SEQNO) msg_set_seqno(hdr, l->snd_nxt_state++); msg_set_seq_gap(hdr, rcvgap); bc_rcvgap = link_bc_rcv_gap(bcl); msg_set_bc_gap(hdr, bc_rcvgap); msg_set_probe(hdr, probe); msg_set_is_keepalive(hdr, probe || probe_reply); if (l->peer_caps & TIPC_GAP_ACK_BLOCK) glen = tipc_build_gap_ack_blks(l, hdr); tipc_mon_prep(l->net, data + glen, &dlen, mstate, l->bearer_id); msg_set_size(hdr, INT_H_SIZE + glen + dlen); skb_trim(skb, INT_H_SIZE + glen + dlen); l->stats.sent_states++; l->rcv_unacked = 0; } else { /* RESET_MSG or ACTIVATE_MSG */ if (mtyp == ACTIVATE_MSG) { msg_set_dest_session_valid(hdr, 1); msg_set_dest_session(hdr, l->peer_session); } msg_set_max_pkt(hdr, l->advertised_mtu); strcpy(data, l->if_name); msg_set_size(hdr, INT_H_SIZE + TIPC_MAX_IF_NAME); skb_trim(skb, INT_H_SIZE + TIPC_MAX_IF_NAME); } if (probe) l->stats.sent_probes++; if (rcvgap) l->stats.sent_nacks++; if (bc_rcvgap) bcl->stats.sent_nacks++; skb->priority = TC_PRIO_CONTROL; __skb_queue_tail(xmitq, skb); trace_tipc_proto_build(skb, false, l->name); } void tipc_link_create_dummy_tnl_msg(struct tipc_link *l, struct sk_buff_head *xmitq) { u32 onode = tipc_own_addr(l->net); struct tipc_msg *hdr, *ihdr; struct sk_buff_head tnlq; struct sk_buff *skb; u32 dnode = l->addr; __skb_queue_head_init(&tnlq); skb = tipc_msg_create(TUNNEL_PROTOCOL, FAILOVER_MSG, INT_H_SIZE, BASIC_H_SIZE, dnode, onode, 0, 0, 0); if (!skb) { pr_warn("%sunable to create tunnel packet\n", link_co_err); return; } hdr = buf_msg(skb); msg_set_msgcnt(hdr, 1); msg_set_bearer_id(hdr, l->peer_bearer_id); ihdr = (struct tipc_msg *)msg_data(hdr); tipc_msg_init(onode, ihdr, TIPC_LOW_IMPORTANCE, TIPC_DIRECT_MSG, BASIC_H_SIZE, dnode); msg_set_errcode(ihdr, TIPC_ERR_NO_PORT); __skb_queue_tail(&tnlq, skb); tipc_link_xmit(l, &tnlq, xmitq); } /* tipc_link_tnl_prepare(): prepare and return a list of tunnel packets * with contents of the link's transmit and backlog queues. */ void tipc_link_tnl_prepare(struct tipc_link *l, struct tipc_link *tnl, int mtyp, struct sk_buff_head *xmitq) { struct sk_buff_head *fdefq = &tnl->failover_deferdq; struct sk_buff *skb, *tnlskb; struct tipc_msg *hdr, tnlhdr; struct sk_buff_head *queue = &l->transmq; struct sk_buff_head tmpxq, tnlq, frags; u16 pktlen, pktcnt, seqno = l->snd_nxt; bool pktcnt_need_update = false; u16 syncpt; int rc; if (!tnl) return; __skb_queue_head_init(&tnlq); /* Link Synching: * From now on, send only one single ("dummy") SYNCH message * to peer. The SYNCH message does not contain any data, just * a header conveying the synch point to the peer. */ if (mtyp == SYNCH_MSG && (tnl->peer_caps & TIPC_TUNNEL_ENHANCED)) { tnlskb = tipc_msg_create(TUNNEL_PROTOCOL, SYNCH_MSG, INT_H_SIZE, 0, l->addr, tipc_own_addr(l->net), 0, 0, 0); if (!tnlskb) { pr_warn("%sunable to create dummy SYNCH_MSG\n", link_co_err); return; } hdr = buf_msg(tnlskb); syncpt = l->snd_nxt + skb_queue_len(&l->backlogq) - 1; msg_set_syncpt(hdr, syncpt); msg_set_bearer_id(hdr, l->peer_bearer_id); __skb_queue_tail(&tnlq, tnlskb); tipc_link_xmit(tnl, &tnlq, xmitq); return; } __skb_queue_head_init(&tmpxq); __skb_queue_head_init(&frags); /* At least one packet required for safe algorithm => add dummy */ skb = tipc_msg_create(TIPC_LOW_IMPORTANCE, TIPC_DIRECT_MSG, BASIC_H_SIZE, 0, l->addr, tipc_own_addr(l->net), 0, 0, TIPC_ERR_NO_PORT); if (!skb) { pr_warn("%sunable to create tunnel packet\n", link_co_err); return; } __skb_queue_tail(&tnlq, skb); tipc_link_xmit(l, &tnlq, &tmpxq); __skb_queue_purge(&tmpxq); /* Initialize reusable tunnel packet header */ tipc_msg_init(tipc_own_addr(l->net), &tnlhdr, TUNNEL_PROTOCOL, mtyp, INT_H_SIZE, l->addr); if (mtyp == SYNCH_MSG) pktcnt = l->snd_nxt - buf_seqno(skb_peek(&l->transmq)); else pktcnt = skb_queue_len(&l->transmq); pktcnt += skb_queue_len(&l->backlogq); msg_set_msgcnt(&tnlhdr, pktcnt); msg_set_bearer_id(&tnlhdr, l->peer_bearer_id); tnl: /* Wrap each packet into a tunnel packet */ skb_queue_walk(queue, skb) { hdr = buf_msg(skb); if (queue == &l->backlogq) msg_set_seqno(hdr, seqno++); pktlen = msg_size(hdr); /* Tunnel link MTU is not large enough? This could be * due to: * 1) Link MTU has just changed or set differently; * 2) Or FAILOVER on the top of a SYNCH message * * The 2nd case should not happen if peer supports * TIPC_TUNNEL_ENHANCED */ if (pktlen > tnl->mtu - INT_H_SIZE) { if (mtyp == FAILOVER_MSG && (tnl->peer_caps & TIPC_TUNNEL_ENHANCED)) { rc = tipc_msg_fragment(skb, &tnlhdr, tnl->mtu, &frags); if (rc) { pr_warn("%sunable to frag msg: rc %d\n", link_co_err, rc); return; } pktcnt += skb_queue_len(&frags) - 1; pktcnt_need_update = true; skb_queue_splice_tail_init(&frags, &tnlq); continue; } /* Unluckily, peer doesn't have TIPC_TUNNEL_ENHANCED * => Just warn it and return! */ pr_warn_ratelimited("%stoo large msg <%d, %d>: %d!\n", link_co_err, msg_user(hdr), msg_type(hdr), msg_size(hdr)); return; } msg_set_size(&tnlhdr, pktlen + INT_H_SIZE); tnlskb = tipc_buf_acquire(pktlen + INT_H_SIZE, GFP_ATOMIC); if (!tnlskb) { pr_warn("%sunable to send packet\n", link_co_err); return; } skb_copy_to_linear_data(tnlskb, &tnlhdr, INT_H_SIZE); skb_copy_to_linear_data_offset(tnlskb, INT_H_SIZE, hdr, pktlen); __skb_queue_tail(&tnlq, tnlskb); } if (queue != &l->backlogq) { queue = &l->backlogq; goto tnl; } if (pktcnt_need_update) skb_queue_walk(&tnlq, skb) { hdr = buf_msg(skb); msg_set_msgcnt(hdr, pktcnt); } tipc_link_xmit(tnl, &tnlq, xmitq); if (mtyp == FAILOVER_MSG) { tnl->drop_point = l->rcv_nxt; tnl->failover_reasm_skb = l->reasm_buf; l->reasm_buf = NULL; /* Failover the link's deferdq */ if (unlikely(!skb_queue_empty(fdefq))) { pr_warn("Link failover deferdq not empty: %d!\n", skb_queue_len(fdefq)); __skb_queue_purge(fdefq); } skb_queue_splice_init(&l->deferdq, fdefq); } } /** * tipc_link_failover_prepare() - prepare tnl for link failover * * This is a special version of the precursor - tipc_link_tnl_prepare(), * see the tipc_node_link_failover() for details * * @l: failover link * @tnl: tunnel link * @xmitq: queue for messages to be xmited */ void tipc_link_failover_prepare(struct tipc_link *l, struct tipc_link *tnl, struct sk_buff_head *xmitq) { struct sk_buff_head *fdefq = &tnl->failover_deferdq; tipc_link_create_dummy_tnl_msg(tnl, xmitq); /* This failover link endpoint was never established before, * so it has not received anything from peer. * Otherwise, it must be a normal failover situation or the * node has entered SELF_DOWN_PEER_LEAVING and both peer nodes * would have to start over from scratch instead. */ tnl->drop_point = 1; tnl->failover_reasm_skb = NULL; /* Initiate the link's failover deferdq */ if (unlikely(!skb_queue_empty(fdefq))) { pr_warn("Link failover deferdq not empty: %d!\n", skb_queue_len(fdefq)); __skb_queue_purge(fdefq); } } /* tipc_link_validate_msg(): validate message against current link state * Returns true if message should be accepted, otherwise false */ bool tipc_link_validate_msg(struct tipc_link *l, struct tipc_msg *hdr) { u16 curr_session = l->peer_session; u16 session = msg_session(hdr); int mtyp = msg_type(hdr); if (msg_user(hdr) != LINK_PROTOCOL) return true; switch (mtyp) { case RESET_MSG: if (!l->in_session) return true; /* Accept only RESET with new session number */ return more(session, curr_session); case ACTIVATE_MSG: if (!l->in_session) return true; /* Accept only ACTIVATE with new or current session number */ return !less(session, curr_session); case STATE_MSG: /* Accept only STATE with current session number */ if (!l->in_session) return false; if (session != curr_session) return false; /* Extra sanity check */ if (!link_is_up(l) && msg_ack(hdr)) return false; if (!(l->peer_caps & TIPC_LINK_PROTO_SEQNO)) return true; /* Accept only STATE with new sequence number */ return !less(msg_seqno(hdr), l->rcv_nxt_state); default: return false; } } /* tipc_link_proto_rcv(): receive link level protocol message : * Note that network plane id propagates through the network, and may * change at any time. The node with lowest numerical id determines * network plane */ static int tipc_link_proto_rcv(struct tipc_link *l, struct sk_buff *skb, struct sk_buff_head *xmitq) { struct tipc_msg *hdr = buf_msg(skb); struct tipc_gap_ack_blks *ga = NULL; bool reply = msg_probe(hdr), retransmitted = false; u16 dlen = msg_data_sz(hdr), glen = 0; u16 peers_snd_nxt = msg_next_sent(hdr); u16 peers_tol = msg_link_tolerance(hdr); u16 peers_prio = msg_linkprio(hdr); u16 gap = msg_seq_gap(hdr); u16 ack = msg_ack(hdr); u16 rcv_nxt = l->rcv_nxt; u16 rcvgap = 0; int mtyp = msg_type(hdr); int rc = 0, released; char *if_name; void *data; trace_tipc_proto_rcv(skb, false, l->name); if (tipc_link_is_blocked(l) || !xmitq) goto exit; if (tipc_own_addr(l->net) > msg_prevnode(hdr)) l->net_plane = msg_net_plane(hdr); skb_linearize(skb); hdr = buf_msg(skb); data = msg_data(hdr); if (!tipc_link_validate_msg(l, hdr)) { trace_tipc_skb_dump(skb, false, "PROTO invalid (1)!"); trace_tipc_link_dump(l, TIPC_DUMP_NONE, "PROTO invalid (1)!"); goto exit; } switch (mtyp) { case RESET_MSG: case ACTIVATE_MSG: /* Complete own link name with peer's interface name */ if_name = strrchr(l->name, ':') + 1; if (sizeof(l->name) - (if_name - l->name) <= TIPC_MAX_IF_NAME) break; if (msg_data_sz(hdr) < TIPC_MAX_IF_NAME) break; strncpy(if_name, data, TIPC_MAX_IF_NAME); /* Update own tolerance if peer indicates a non-zero value */ if (in_range(peers_tol, TIPC_MIN_LINK_TOL, TIPC_MAX_LINK_TOL)) { l->tolerance = peers_tol; l->bc_rcvlink->tolerance = peers_tol; } /* Update own priority if peer's priority is higher */ if (in_range(peers_prio, l->priority + 1, TIPC_MAX_LINK_PRI)) l->priority = peers_prio; /* If peer is going down we want full re-establish cycle */ if (msg_peer_stopping(hdr)) { rc = tipc_link_fsm_evt(l, LINK_FAILURE_EVT); break; } /* If this endpoint was re-created while peer was ESTABLISHING * it doesn't know current session number. Force re-synch. */ if (mtyp == ACTIVATE_MSG && msg_dest_session_valid(hdr) && l->session != msg_dest_session(hdr)) { if (less(l->session, msg_dest_session(hdr))) l->session = msg_dest_session(hdr) + 1; break; } /* ACTIVATE_MSG serves as PEER_RESET if link is already down */ if (mtyp == RESET_MSG || !link_is_up(l)) rc = tipc_link_fsm_evt(l, LINK_PEER_RESET_EVT); /* ACTIVATE_MSG takes up link if it was already locally reset */ if (mtyp == ACTIVATE_MSG && l->state == LINK_ESTABLISHING) rc = TIPC_LINK_UP_EVT; l->peer_session = msg_session(hdr); l->in_session = true; l->peer_bearer_id = msg_bearer_id(hdr); if (l->mtu > msg_max_pkt(hdr)) l->mtu = msg_max_pkt(hdr); break; case STATE_MSG: l->rcv_nxt_state = msg_seqno(hdr) + 1; /* Update own tolerance if peer indicates a non-zero value */ if (in_range(peers_tol, TIPC_MIN_LINK_TOL, TIPC_MAX_LINK_TOL)) { l->tolerance = peers_tol; l->bc_rcvlink->tolerance = peers_tol; } /* Update own prio if peer indicates a different value */ if ((peers_prio != l->priority) && in_range(peers_prio, 1, TIPC_MAX_LINK_PRI)) { l->priority = peers_prio; rc = tipc_link_fsm_evt(l, LINK_FAILURE_EVT); } l->silent_intv_cnt = 0; l->stats.recv_states++; if (msg_probe(hdr)) l->stats.recv_probes++; if (!link_is_up(l)) { if (l->state == LINK_ESTABLISHING) rc = TIPC_LINK_UP_EVT; break; } /* Receive Gap ACK blocks from peer if any */ glen = tipc_get_gap_ack_blks(&ga, l, hdr, true); tipc_mon_rcv(l->net, data + glen, dlen - glen, l->addr, &l->mon_state, l->bearer_id); /* Send NACK if peer has sent pkts we haven't received yet */ if ((reply || msg_is_keepalive(hdr)) && more(peers_snd_nxt, rcv_nxt) && !tipc_link_is_synching(l) && skb_queue_empty(&l->deferdq)) rcvgap = peers_snd_nxt - l->rcv_nxt; if (rcvgap || reply) tipc_link_build_proto_msg(l, STATE_MSG, 0, reply, rcvgap, 0, 0, xmitq); released = tipc_link_advance_transmq(l, l, ack, gap, ga, xmitq, &retransmitted, &rc); if (gap) l->stats.recv_nacks++; if (released || retransmitted) tipc_link_update_cwin(l, released, retransmitted); if (released) tipc_link_advance_backlog(l, xmitq); if (unlikely(!skb_queue_empty(&l->wakeupq))) link_prepare_wakeup(l); } exit: kfree_skb(skb); return rc; } /* tipc_link_build_bc_proto_msg() - create broadcast protocol message */ static bool tipc_link_build_bc_proto_msg(struct tipc_link *l, bool bcast, u16 peers_snd_nxt, struct sk_buff_head *xmitq) { struct sk_buff *skb; struct tipc_msg *hdr; struct sk_buff *dfrd_skb = skb_peek(&l->deferdq); u16 ack = l->rcv_nxt - 1; u16 gap_to = peers_snd_nxt - 1; skb = tipc_msg_create(BCAST_PROTOCOL, STATE_MSG, INT_H_SIZE, 0, l->addr, tipc_own_addr(l->net), 0, 0, 0); if (!skb) return false; hdr = buf_msg(skb); msg_set_last_bcast(hdr, l->bc_sndlink->snd_nxt - 1); msg_set_bcast_ack(hdr, ack); msg_set_bcgap_after(hdr, ack); if (dfrd_skb) gap_to = buf_seqno(dfrd_skb) - 1; msg_set_bcgap_to(hdr, gap_to); msg_set_non_seq(hdr, bcast); __skb_queue_tail(xmitq, skb); return true; } /* tipc_link_build_bc_init_msg() - synchronize broadcast link endpoints. * * Give a newly added peer node the sequence number where it should * start receiving and acking broadcast packets. */ static void tipc_link_build_bc_init_msg(struct tipc_link *l, struct sk_buff_head *xmitq) { struct sk_buff_head list; __skb_queue_head_init(&list); if (!tipc_link_build_bc_proto_msg(l->bc_rcvlink, false, 0, &list)) return; msg_set_bc_ack_invalid(buf_msg(skb_peek(&list)), true); tipc_link_xmit(l, &list, xmitq); } /* tipc_link_bc_init_rcv - receive initial broadcast synch data from peer */ void tipc_link_bc_init_rcv(struct tipc_link *l, struct tipc_msg *hdr) { int mtyp = msg_type(hdr); u16 peers_snd_nxt = msg_bc_snd_nxt(hdr); if (link_is_up(l)) return; if (msg_user(hdr) == BCAST_PROTOCOL) { l->rcv_nxt = peers_snd_nxt; l->state = LINK_ESTABLISHED; return; } if (l->peer_caps & TIPC_BCAST_SYNCH) return; if (msg_peer_node_is_up(hdr)) return; /* Compatibility: accept older, less safe initial synch data */ if ((mtyp == RESET_MSG) || (mtyp == ACTIVATE_MSG)) l->rcv_nxt = peers_snd_nxt; } /* tipc_link_bc_sync_rcv - update rcv link according to peer's send state */ int tipc_link_bc_sync_rcv(struct tipc_link *l, struct tipc_msg *hdr, struct sk_buff_head *xmitq) { u16 peers_snd_nxt = msg_bc_snd_nxt(hdr); int rc = 0; if (!link_is_up(l)) return rc; if (!msg_peer_node_is_up(hdr)) return rc; /* Open when peer ackowledges our bcast init msg (pkt #1) */ if (msg_ack(hdr)) l->bc_peer_is_up = true; if (!l->bc_peer_is_up) return rc; /* Ignore if peers_snd_nxt goes beyond receive window */ if (more(peers_snd_nxt, l->rcv_nxt + l->window)) return rc; l->snd_nxt = peers_snd_nxt; if (link_bc_rcv_gap(l)) rc |= TIPC_LINK_SND_STATE; /* Return now if sender supports nack via STATE messages */ if (l->peer_caps & TIPC_BCAST_STATE_NACK) return rc; /* Otherwise, be backwards compatible */ if (!more(peers_snd_nxt, l->rcv_nxt)) { l->nack_state = BC_NACK_SND_CONDITIONAL; return 0; } /* Don't NACK if one was recently sent or peeked */ if (l->nack_state == BC_NACK_SND_SUPPRESS) { l->nack_state = BC_NACK_SND_UNCONDITIONAL; return 0; } /* Conditionally delay NACK sending until next synch rcv */ if (l->nack_state == BC_NACK_SND_CONDITIONAL) { l->nack_state = BC_NACK_SND_UNCONDITIONAL; if ((peers_snd_nxt - l->rcv_nxt) < TIPC_MIN_LINK_WIN) return 0; } /* Send NACK now but suppress next one */ tipc_link_build_bc_proto_msg(l, true, peers_snd_nxt, xmitq); l->nack_state = BC_NACK_SND_SUPPRESS; return 0; } int tipc_link_bc_ack_rcv(struct tipc_link *r, u16 acked, u16 gap, struct tipc_gap_ack_blks *ga, struct sk_buff_head *xmitq, struct sk_buff_head *retrq) { struct tipc_link *l = r->bc_sndlink; bool unused = false; int rc = 0; if (!link_is_up(r) || !r->bc_peer_is_up) return 0; if (gap) { l->stats.recv_nacks++; r->stats.recv_nacks++; } if (less(acked, r->acked) || (acked == r->acked && !gap && !ga)) return 0; trace_tipc_link_bc_ack(r, acked, gap, &l->transmq); tipc_link_advance_transmq(l, r, acked, gap, ga, retrq, &unused, &rc); tipc_link_advance_backlog(l, xmitq); if (unlikely(!skb_queue_empty(&l->wakeupq))) link_prepare_wakeup(l); return rc; } /* tipc_link_bc_nack_rcv(): receive broadcast nack message * This function is here for backwards compatibility, since * no BCAST_PROTOCOL/STATE messages occur from TIPC v2.5. */ int tipc_link_bc_nack_rcv(struct tipc_link *l, struct sk_buff *skb, struct sk_buff_head *xmitq) { struct tipc_msg *hdr = buf_msg(skb); u32 dnode = msg_destnode(hdr); int mtyp = msg_type(hdr); u16 acked = msg_bcast_ack(hdr); u16 from = acked + 1; u16 to = msg_bcgap_to(hdr); u16 peers_snd_nxt = to + 1; int rc = 0; kfree_skb(skb); if (!tipc_link_is_up(l) || !l->bc_peer_is_up) return 0; if (mtyp != STATE_MSG) return 0; if (dnode == tipc_own_addr(l->net)) { rc = tipc_link_bc_ack_rcv(l, acked, to - acked, NULL, xmitq, xmitq); l->stats.recv_nacks++; return rc; } /* Msg for other node => suppress own NACK at next sync if applicable */ if (more(peers_snd_nxt, l->rcv_nxt) && !less(l->rcv_nxt, from)) l->nack_state = BC_NACK_SND_SUPPRESS; return 0; } void tipc_link_set_queue_limits(struct tipc_link *l, u32 min_win, u32 max_win) { int max_bulk = TIPC_MAX_PUBL / (l->mtu / ITEM_SIZE); l->min_win = min_win; l->ssthresh = max_win; l->max_win = max_win; l->window = min_win; l->backlog[TIPC_LOW_IMPORTANCE].limit = min_win * 2; l->backlog[TIPC_MEDIUM_IMPORTANCE].limit = min_win * 4; l->backlog[TIPC_HIGH_IMPORTANCE].limit = min_win * 6; l->backlog[TIPC_CRITICAL_IMPORTANCE].limit = min_win * 8; l->backlog[TIPC_SYSTEM_IMPORTANCE].limit = max_bulk; } /** * link_reset_stats - reset link statistics * @l: pointer to link */ void tipc_link_reset_stats(struct tipc_link *l) { memset(&l->stats, 0, sizeof(l->stats)); } static void link_print(struct tipc_link *l, const char *str) { struct sk_buff *hskb = skb_peek(&l->transmq); u16 head = hskb ? msg_seqno(buf_msg(hskb)) : l->snd_nxt - 1; u16 tail = l->snd_nxt - 1; pr_info("%s Link <%s> state %x\n", str, l->name, l->state); pr_info("XMTQ: %u [%u-%u], BKLGQ: %u, SNDNX: %u, RCVNX: %u\n", skb_queue_len(&l->transmq), head, tail, skb_queue_len(&l->backlogq), l->snd_nxt, l->rcv_nxt); } /* Parse and validate nested (link) properties valid for media, bearer and link */ int tipc_nl_parse_link_prop(struct nlattr *prop, struct nlattr *props[]) { int err; err = nla_parse_nested_deprecated(props, TIPC_NLA_PROP_MAX, prop, tipc_nl_prop_policy, NULL); if (err) return err; if (props[TIPC_NLA_PROP_PRIO]) { u32 prio; prio = nla_get_u32(props[TIPC_NLA_PROP_PRIO]); if (prio > TIPC_MAX_LINK_PRI) return -EINVAL; } if (props[TIPC_NLA_PROP_TOL]) { u32 tol; tol = nla_get_u32(props[TIPC_NLA_PROP_TOL]); if ((tol < TIPC_MIN_LINK_TOL) || (tol > TIPC_MAX_LINK_TOL)) return -EINVAL; } if (props[TIPC_NLA_PROP_WIN]) { u32 max_win; max_win = nla_get_u32(props[TIPC_NLA_PROP_WIN]); if (max_win < TIPC_DEF_LINK_WIN || max_win > TIPC_MAX_LINK_WIN) return -EINVAL; } return 0; } static int __tipc_nl_add_stats(struct sk_buff *skb, struct tipc_stats *s) { int i; struct nlattr *stats; struct nla_map { u32 key; u32 val; }; struct nla_map map[] = { {TIPC_NLA_STATS_RX_INFO, 0}, {TIPC_NLA_STATS_RX_FRAGMENTS, s->recv_fragments}, {TIPC_NLA_STATS_RX_FRAGMENTED, s->recv_fragmented}, {TIPC_NLA_STATS_RX_BUNDLES, s->recv_bundles}, {TIPC_NLA_STATS_RX_BUNDLED, s->recv_bundled}, {TIPC_NLA_STATS_TX_INFO, 0}, {TIPC_NLA_STATS_TX_FRAGMENTS, s->sent_fragments}, {TIPC_NLA_STATS_TX_FRAGMENTED, s->sent_fragmented}, {TIPC_NLA_STATS_TX_BUNDLES, s->sent_bundles}, {TIPC_NLA_STATS_TX_BUNDLED, s->sent_bundled}, {TIPC_NLA_STATS_MSG_PROF_TOT, (s->msg_length_counts) ? s->msg_length_counts : 1}, {TIPC_NLA_STATS_MSG_LEN_CNT, s->msg_length_counts}, {TIPC_NLA_STATS_MSG_LEN_TOT, s->msg_lengths_total}, {TIPC_NLA_STATS_MSG_LEN_P0, s->msg_length_profile[0]}, {TIPC_NLA_STATS_MSG_LEN_P1, s->msg_length_profile[1]}, {TIPC_NLA_STATS_MSG_LEN_P2, s->msg_length_profile[2]}, {TIPC_NLA_STATS_MSG_LEN_P3, s->msg_length_profile[3]}, {TIPC_NLA_STATS_MSG_LEN_P4, s->msg_length_profile[4]}, {TIPC_NLA_STATS_MSG_LEN_P5, s->msg_length_profile[5]}, {TIPC_NLA_STATS_MSG_LEN_P6, s->msg_length_profile[6]}, {TIPC_NLA_STATS_RX_STATES, s->recv_states}, {TIPC_NLA_STATS_RX_PROBES, s->recv_probes}, {TIPC_NLA_STATS_RX_NACKS, s->recv_nacks}, {TIPC_NLA_STATS_RX_DEFERRED, s->deferred_recv}, {TIPC_NLA_STATS_TX_STATES, s->sent_states}, {TIPC_NLA_STATS_TX_PROBES, s->sent_probes}, {TIPC_NLA_STATS_TX_NACKS, s->sent_nacks}, {TIPC_NLA_STATS_TX_ACKS, s->sent_acks}, {TIPC_NLA_STATS_RETRANSMITTED, s->retransmitted}, {TIPC_NLA_STATS_DUPLICATES, s->duplicates}, {TIPC_NLA_STATS_LINK_CONGS, s->link_congs}, {TIPC_NLA_STATS_MAX_QUEUE, s->max_queue_sz}, {TIPC_NLA_STATS_AVG_QUEUE, s->queue_sz_counts ? (s->accu_queue_sz / s->queue_sz_counts) : 0} }; stats = nla_nest_start_noflag(skb, TIPC_NLA_LINK_STATS); if (!stats) return -EMSGSIZE; for (i = 0; i < ARRAY_SIZE(map); i++) if (nla_put_u32(skb, map[i].key, map[i].val)) goto msg_full; nla_nest_end(skb, stats); return 0; msg_full: nla_nest_cancel(skb, stats); return -EMSGSIZE; } /* Caller should hold appropriate locks to protect the link */ int __tipc_nl_add_link(struct net *net, struct tipc_nl_msg *msg, struct tipc_link *link, int nlflags) { u32 self = tipc_own_addr(net); struct nlattr *attrs; struct nlattr *prop; void *hdr; int err; hdr = genlmsg_put(msg->skb, msg->portid, msg->seq, &tipc_genl_family, nlflags, TIPC_NL_LINK_GET); if (!hdr) return -EMSGSIZE; attrs = nla_nest_start_noflag(msg->skb, TIPC_NLA_LINK); if (!attrs) goto msg_full; if (nla_put_string(msg->skb, TIPC_NLA_LINK_NAME, link->name)) goto attr_msg_full; if (nla_put_u32(msg->skb, TIPC_NLA_LINK_DEST, tipc_cluster_mask(self))) goto attr_msg_full; if (nla_put_u32(msg->skb, TIPC_NLA_LINK_MTU, link->mtu)) goto attr_msg_full; if (nla_put_u32(msg->skb, TIPC_NLA_LINK_RX, link->stats.recv_pkts)) goto attr_msg_full; if (nla_put_u32(msg->skb, TIPC_NLA_LINK_TX, link->stats.sent_pkts)) goto attr_msg_full; if (tipc_link_is_up(link)) if (nla_put_flag(msg->skb, TIPC_NLA_LINK_UP)) goto attr_msg_full; if (link->active) if (nla_put_flag(msg->skb, TIPC_NLA_LINK_ACTIVE)) goto attr_msg_full; prop = nla_nest_start_noflag(msg->skb, TIPC_NLA_LINK_PROP); if (!prop) goto attr_msg_full; if (nla_put_u32(msg->skb, TIPC_NLA_PROP_PRIO, link->priority)) goto prop_msg_full; if (nla_put_u32(msg->skb, TIPC_NLA_PROP_TOL, link->tolerance)) goto prop_msg_full; if (nla_put_u32(msg->skb, TIPC_NLA_PROP_WIN, link->window)) goto prop_msg_full; if (nla_put_u32(msg->skb, TIPC_NLA_PROP_PRIO, link->priority)) goto prop_msg_full; nla_nest_end(msg->skb, prop); err = __tipc_nl_add_stats(msg->skb, &link->stats); if (err) goto attr_msg_full; nla_nest_end(msg->skb, attrs); genlmsg_end(msg->skb, hdr); return 0; prop_msg_full: nla_nest_cancel(msg->skb, prop); attr_msg_full: nla_nest_cancel(msg->skb, attrs); msg_full: genlmsg_cancel(msg->skb, hdr); return -EMSGSIZE; } static int __tipc_nl_add_bc_link_stat(struct sk_buff *skb, struct tipc_stats *stats) { int i; struct nlattr *nest; struct nla_map { __u32 key; __u32 val; }; struct nla_map map[] = { {TIPC_NLA_STATS_RX_INFO, stats->recv_pkts}, {TIPC_NLA_STATS_RX_FRAGMENTS, stats->recv_fragments}, {TIPC_NLA_STATS_RX_FRAGMENTED, stats->recv_fragmented}, {TIPC_NLA_STATS_RX_BUNDLES, stats->recv_bundles}, {TIPC_NLA_STATS_RX_BUNDLED, stats->recv_bundled}, {TIPC_NLA_STATS_TX_INFO, stats->sent_pkts}, {TIPC_NLA_STATS_TX_FRAGMENTS, stats->sent_fragments}, {TIPC_NLA_STATS_TX_FRAGMENTED, stats->sent_fragmented}, {TIPC_NLA_STATS_TX_BUNDLES, stats->sent_bundles}, {TIPC_NLA_STATS_TX_BUNDLED, stats->sent_bundled}, {TIPC_NLA_STATS_RX_NACKS, stats->recv_nacks}, {TIPC_NLA_STATS_RX_DEFERRED, stats->deferred_recv}, {TIPC_NLA_STATS_TX_NACKS, stats->sent_nacks}, {TIPC_NLA_STATS_TX_ACKS, stats->sent_acks}, {TIPC_NLA_STATS_RETRANSMITTED, stats->retransmitted}, {TIPC_NLA_STATS_DUPLICATES, stats->duplicates}, {TIPC_NLA_STATS_LINK_CONGS, stats->link_congs}, {TIPC_NLA_STATS_MAX_QUEUE, stats->max_queue_sz}, {TIPC_NLA_STATS_AVG_QUEUE, stats->queue_sz_counts ? (stats->accu_queue_sz / stats->queue_sz_counts) : 0} }; nest = nla_nest_start_noflag(skb, TIPC_NLA_LINK_STATS); if (!nest) return -EMSGSIZE; for (i = 0; i < ARRAY_SIZE(map); i++) if (nla_put_u32(skb, map[i].key, map[i].val)) goto msg_full; nla_nest_end(skb, nest); return 0; msg_full: nla_nest_cancel(skb, nest); return -EMSGSIZE; } int tipc_nl_add_bc_link(struct net *net, struct tipc_nl_msg *msg, struct tipc_link *bcl) { int err; void *hdr; struct nlattr *attrs; struct nlattr *prop; u32 bc_mode = tipc_bcast_get_broadcast_mode(net); u32 bc_ratio = tipc_bcast_get_broadcast_ratio(net); if (!bcl) return 0; tipc_bcast_lock(net); hdr = genlmsg_put(msg->skb, msg->portid, msg->seq, &tipc_genl_family, NLM_F_MULTI, TIPC_NL_LINK_GET); if (!hdr) { tipc_bcast_unlock(net); return -EMSGSIZE; } attrs = nla_nest_start_noflag(msg->skb, TIPC_NLA_LINK); if (!attrs) goto msg_full; /* The broadcast link is always up */ if (nla_put_flag(msg->skb, TIPC_NLA_LINK_UP)) goto attr_msg_full; if (nla_put_flag(msg->skb, TIPC_NLA_LINK_BROADCAST)) goto attr_msg_full; if (nla_put_string(msg->skb, TIPC_NLA_LINK_NAME, bcl->name)) goto attr_msg_full; if (nla_put_u32(msg->skb, TIPC_NLA_LINK_RX, 0)) goto attr_msg_full; if (nla_put_u32(msg->skb, TIPC_NLA_LINK_TX, 0)) goto attr_msg_full; prop = nla_nest_start_noflag(msg->skb, TIPC_NLA_LINK_PROP); if (!prop) goto attr_msg_full; if (nla_put_u32(msg->skb, TIPC_NLA_PROP_WIN, bcl->max_win)) goto prop_msg_full; if (nla_put_u32(msg->skb, TIPC_NLA_PROP_BROADCAST, bc_mode)) goto prop_msg_full; if (bc_mode & BCLINK_MODE_SEL) if (nla_put_u32(msg->skb, TIPC_NLA_PROP_BROADCAST_RATIO, bc_ratio)) goto prop_msg_full; nla_nest_end(msg->skb, prop); err = __tipc_nl_add_bc_link_stat(msg->skb, &bcl->stats); if (err) goto attr_msg_full; tipc_bcast_unlock(net); nla_nest_end(msg->skb, attrs); genlmsg_end(msg->skb, hdr); return 0; prop_msg_full: nla_nest_cancel(msg->skb, prop); attr_msg_full: nla_nest_cancel(msg->skb, attrs); msg_full: tipc_bcast_unlock(net); genlmsg_cancel(msg->skb, hdr); return -EMSGSIZE; } void tipc_link_set_tolerance(struct tipc_link *l, u32 tol, struct sk_buff_head *xmitq) { l->tolerance = tol; if (l->bc_rcvlink) l->bc_rcvlink->tolerance = tol; if (link_is_up(l)) tipc_link_build_proto_msg(l, STATE_MSG, 0, 0, 0, tol, 0, xmitq); } void tipc_link_set_prio(struct tipc_link *l, u32 prio, struct sk_buff_head *xmitq) { l->priority = prio; tipc_link_build_proto_msg(l, STATE_MSG, 0, 0, 0, 0, prio, xmitq); } void tipc_link_set_abort_limit(struct tipc_link *l, u32 limit) { l->abort_limit = limit; } /** * tipc_link_dump - dump TIPC link data * @l: tipc link to be dumped * @dqueues: bitmask to decide if any link queue to be dumped? * - TIPC_DUMP_NONE: don't dump link queues * - TIPC_DUMP_TRANSMQ: dump link transmq queue * - TIPC_DUMP_BACKLOGQ: dump link backlog queue * - TIPC_DUMP_DEFERDQ: dump link deferd queue * - TIPC_DUMP_INPUTQ: dump link input queue * - TIPC_DUMP_WAKEUP: dump link wakeup queue * - TIPC_DUMP_ALL: dump all the link queues above * @buf: returned buffer of dump data in format */ int tipc_link_dump(struct tipc_link *l, u16 dqueues, char *buf) { int i = 0; size_t sz = (dqueues) ? LINK_LMAX : LINK_LMIN; struct sk_buff_head *list; struct sk_buff *hskb, *tskb; u32 len; if (!l) { i += scnprintf(buf, sz, "link data: (null)\n"); return i; } i += scnprintf(buf, sz, "link data: %x", l->addr); i += scnprintf(buf + i, sz - i, " %x", l->state); i += scnprintf(buf + i, sz - i, " %u", l->in_session); i += scnprintf(buf + i, sz - i, " %u", l->session); i += scnprintf(buf + i, sz - i, " %u", l->peer_session); i += scnprintf(buf + i, sz - i, " %u", l->snd_nxt); i += scnprintf(buf + i, sz - i, " %u", l->rcv_nxt); i += scnprintf(buf + i, sz - i, " %u", l->snd_nxt_state); i += scnprintf(buf + i, sz - i, " %u", l->rcv_nxt_state); i += scnprintf(buf + i, sz - i, " %x", l->peer_caps); i += scnprintf(buf + i, sz - i, " %u", l->silent_intv_cnt); i += scnprintf(buf + i, sz - i, " %u", l->rst_cnt); i += scnprintf(buf + i, sz - i, " %u", 0); i += scnprintf(buf + i, sz - i, " %u", 0); i += scnprintf(buf + i, sz - i, " %u", l->acked); list = &l->transmq; len = skb_queue_len(list); hskb = skb_peek(list); tskb = skb_peek_tail(list); i += scnprintf(buf + i, sz - i, " | %u %u %u", len, (hskb) ? msg_seqno(buf_msg(hskb)) : 0, (tskb) ? msg_seqno(buf_msg(tskb)) : 0); list = &l->deferdq; len = skb_queue_len(list); hskb = skb_peek(list); tskb = skb_peek_tail(list); i += scnprintf(buf + i, sz - i, " | %u %u %u", len, (hskb) ? msg_seqno(buf_msg(hskb)) : 0, (tskb) ? msg_seqno(buf_msg(tskb)) : 0); list = &l->backlogq; len = skb_queue_len(list); hskb = skb_peek(list); tskb = skb_peek_tail(list); i += scnprintf(buf + i, sz - i, " | %u %u %u", len, (hskb) ? msg_seqno(buf_msg(hskb)) : 0, (tskb) ? msg_seqno(buf_msg(tskb)) : 0); list = l->inputq; len = skb_queue_len(list); hskb = skb_peek(list); tskb = skb_peek_tail(list); i += scnprintf(buf + i, sz - i, " | %u %u %u\n", len, (hskb) ? msg_seqno(buf_msg(hskb)) : 0, (tskb) ? msg_seqno(buf_msg(tskb)) : 0); if (dqueues & TIPC_DUMP_TRANSMQ) { i += scnprintf(buf + i, sz - i, "transmq: "); i += tipc_list_dump(&l->transmq, false, buf + i); } if (dqueues & TIPC_DUMP_BACKLOGQ) { i += scnprintf(buf + i, sz - i, "backlogq: <%u %u %u %u %u>, ", l->backlog[TIPC_LOW_IMPORTANCE].len, l->backlog[TIPC_MEDIUM_IMPORTANCE].len, l->backlog[TIPC_HIGH_IMPORTANCE].len, l->backlog[TIPC_CRITICAL_IMPORTANCE].len, l->backlog[TIPC_SYSTEM_IMPORTANCE].len); i += tipc_list_dump(&l->backlogq, false, buf + i); } if (dqueues & TIPC_DUMP_DEFERDQ) { i += scnprintf(buf + i, sz - i, "deferdq: "); i += tipc_list_dump(&l->deferdq, false, buf + i); } if (dqueues & TIPC_DUMP_INPUTQ) { i += scnprintf(buf + i, sz - i, "inputq: "); i += tipc_list_dump(l->inputq, false, buf + i); } if (dqueues & TIPC_DUMP_WAKEUP) { i += scnprintf(buf + i, sz - i, "wakeup: "); i += tipc_list_dump(&l->wakeupq, false, buf + i); } return i; }