/* Basic authentication token and access key management * * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #include <linux/module.h> #include <linux/init.h> #include <linux/poison.h> #include <linux/sched.h> #include <linux/slab.h> #include <linux/security.h> #include <linux/workqueue.h> #include <linux/random.h> #include <linux/err.h> #include <linux/user_namespace.h> #include "internal.h" struct kmem_cache *key_jar; struct rb_root key_serial_tree; /* tree of keys indexed by serial */ DEFINE_SPINLOCK(key_serial_lock); struct rb_root key_user_tree; /* tree of quota records indexed by UID */ DEFINE_SPINLOCK(key_user_lock); unsigned int key_quota_root_maxkeys = 200; /* root's key count quota */ unsigned int key_quota_root_maxbytes = 20000; /* root's key space quota */ unsigned int key_quota_maxkeys = 200; /* general key count quota */ unsigned int key_quota_maxbytes = 20000; /* general key space quota */ static LIST_HEAD(key_types_list); static DECLARE_RWSEM(key_types_sem); /* We serialise key instantiation and link */ DEFINE_MUTEX(key_construction_mutex); #ifdef KEY_DEBUGGING void __key_check(const struct key *key) { printk("__key_check: key %p {%08x} should be {%08x}\n", key, key->magic, KEY_DEBUG_MAGIC); BUG(); } #endif /* * Get the key quota record for a user, allocating a new record if one doesn't * already exist. */ struct key_user *key_user_lookup(uid_t uid, struct user_namespace *user_ns) { struct key_user *candidate = NULL, *user; struct rb_node *parent = NULL; struct rb_node **p; try_again: p = &key_user_tree.rb_node; spin_lock(&key_user_lock); /* search the tree for a user record with a matching UID */ while (*p) { parent = *p; user = rb_entry(parent, struct key_user, node); if (uid < user->uid) p = &(*p)->rb_left; else if (uid > user->uid) p = &(*p)->rb_right; else if (user_ns < user->user_ns) p = &(*p)->rb_left; else if (user_ns > user->user_ns) p = &(*p)->rb_right; else goto found; } /* if we get here, we failed to find a match in the tree */ if (!candidate) { /* allocate a candidate user record if we don't already have * one */ spin_unlock(&key_user_lock); user = NULL; candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL); if (unlikely(!candidate)) goto out; /* the allocation may have scheduled, so we need to repeat the * search lest someone else added the record whilst we were * asleep */ goto try_again; } /* if we get here, then the user record still hadn't appeared on the * second pass - so we use the candidate record */ atomic_set(&candidate->usage, 1); atomic_set(&candidate->nkeys, 0); atomic_set(&candidate->nikeys, 0); candidate->uid = uid; candidate->user_ns = get_user_ns(user_ns); candidate->qnkeys = 0; candidate->qnbytes = 0; spin_lock_init(&candidate->lock); mutex_init(&candidate->cons_lock); rb_link_node(&candidate->node, parent, p); rb_insert_color(&candidate->node, &key_user_tree); spin_unlock(&key_user_lock); user = candidate; goto out; /* okay - we found a user record for this UID */ found: atomic_inc(&user->usage); spin_unlock(&key_user_lock); kfree(candidate); out: return user; } /* * Dispose of a user structure */ void key_user_put(struct key_user *user) { if (atomic_dec_and_lock(&user->usage, &key_user_lock)) { rb_erase(&user->node, &key_user_tree); spin_unlock(&key_user_lock); put_user_ns(user->user_ns); kfree(user); } } /* * Allocate a serial number for a key. These are assigned randomly to avoid * security issues through covert channel problems. */ static inline void key_alloc_serial(struct key *key) { struct rb_node *parent, **p; struct key *xkey; /* propose a random serial number and look for a hole for it in the * serial number tree */ do { get_random_bytes(&key->serial, sizeof(key->serial)); key->serial >>= 1; /* negative numbers are not permitted */ } while (key->serial < 3); spin_lock(&key_serial_lock); attempt_insertion: parent = NULL; p = &key_serial_tree.rb_node; while (*p) { parent = *p; xkey = rb_entry(parent, struct key, serial_node); if (key->serial < xkey->serial) p = &(*p)->rb_left; else if (key->serial > xkey->serial) p = &(*p)->rb_right; else goto serial_exists; } /* we've found a suitable hole - arrange for this key to occupy it */ rb_link_node(&key->serial_node, parent, p); rb_insert_color(&key->serial_node, &key_serial_tree); spin_unlock(&key_serial_lock); return; /* we found a key with the proposed serial number - walk the tree from * that point looking for the next unused serial number */ serial_exists: for (;;) { key->serial++; if (key->serial < 3) { key->serial = 3; goto attempt_insertion; } parent = rb_next(parent); if (!parent) goto attempt_insertion; xkey = rb_entry(parent, struct key, serial_node); if (key->serial < xkey->serial) goto attempt_insertion; } } /** * key_alloc - Allocate a key of the specified type. * @type: The type of key to allocate. * @desc: The key description to allow the key to be searched out. * @uid: The owner of the new key. * @gid: The group ID for the new key's group permissions. * @cred: The credentials specifying UID namespace. * @perm: The permissions mask of the new key. * @flags: Flags specifying quota properties. * * Allocate a key of the specified type with the attributes given. The key is * returned in an uninstantiated state and the caller needs to instantiate the * key before returning. * * The user's key count quota is updated to reflect the creation of the key and * the user's key data quota has the default for the key type reserved. The * instantiation function should amend this as necessary. If insufficient * quota is available, -EDQUOT will be returned. * * The LSM security modules can prevent a key being created, in which case * -EACCES will be returned. * * Returns a pointer to the new key if successful and an error code otherwise. * * Note that the caller needs to ensure the key type isn't uninstantiated. * Internally this can be done by locking key_types_sem. Externally, this can * be done by either never unregistering the key type, or making sure * key_alloc() calls don't race with module unloading. */ struct key *key_alloc(struct key_type *type, const char *desc, uid_t uid, gid_t gid, const struct cred *cred, key_perm_t perm, unsigned long flags) { struct key_user *user = NULL; struct key *key; size_t desclen, quotalen; int ret; key = ERR_PTR(-EINVAL); if (!desc || !*desc) goto error; if (type->vet_description) { ret = type->vet_description(desc); if (ret < 0) { key = ERR_PTR(ret); goto error; } } desclen = strlen(desc) + 1; quotalen = desclen + type->def_datalen; /* get hold of the key tracking for this user */ user = key_user_lookup(uid, cred->user_ns); if (!user) goto no_memory_1; /* check that the user's quota permits allocation of another key and * its description */ if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) { unsigned maxkeys = (uid == 0) ? key_quota_root_maxkeys : key_quota_maxkeys; unsigned maxbytes = (uid == 0) ? key_quota_root_maxbytes : key_quota_maxbytes; spin_lock(&user->lock); if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) { if (user->qnkeys + 1 >= maxkeys || user->qnbytes + quotalen >= maxbytes || user->qnbytes + quotalen < user->qnbytes) goto no_quota; } user->qnkeys++; user->qnbytes += quotalen; spin_unlock(&user->lock); } /* allocate and initialise the key and its description */ key = kmem_cache_alloc(key_jar, GFP_KERNEL); if (!key) goto no_memory_2; if (desc) { key->description = kmemdup(desc, desclen, GFP_KERNEL); if (!key->description) goto no_memory_3; } atomic_set(&key->usage, 1); init_rwsem(&key->sem); lockdep_set_class(&key->sem, &type->lock_class); key->type = type; key->user = user; key->quotalen = quotalen; key->datalen = type->def_datalen; key->uid = uid; key->gid = gid; key->perm = perm; key->flags = 0; key->expiry = 0; key->payload.data = NULL; key->security = NULL; if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) key->flags |= 1 << KEY_FLAG_IN_QUOTA; memset(&key->type_data, 0, sizeof(key->type_data)); #ifdef KEY_DEBUGGING key->magic = KEY_DEBUG_MAGIC; #endif /* let the security module know about the key */ ret = security_key_alloc(key, cred, flags); if (ret < 0) goto security_error; /* publish the key by giving it a serial number */ atomic_inc(&user->nkeys); key_alloc_serial(key); error: return key; security_error: kfree(key->description); kmem_cache_free(key_jar, key); if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) { spin_lock(&user->lock); user->qnkeys--; user->qnbytes -= quotalen; spin_unlock(&user->lock); } key_user_put(user); key = ERR_PTR(ret); goto error; no_memory_3: kmem_cache_free(key_jar, key); no_memory_2: if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) { spin_lock(&user->lock); user->qnkeys--; user->qnbytes -= quotalen; spin_unlock(&user->lock); } key_user_put(user); no_memory_1: key = ERR_PTR(-ENOMEM); goto error; no_quota: spin_unlock(&user->lock); key_user_put(user); key = ERR_PTR(-EDQUOT); goto error; } EXPORT_SYMBOL(key_alloc); /** * key_payload_reserve - Adjust data quota reservation for the key's payload * @key: The key to make the reservation for. * @datalen: The amount of data payload the caller now wants. * * Adjust the amount of the owning user's key data quota that a key reserves. * If the amount is increased, then -EDQUOT may be returned if there isn't * enough free quota available. * * If successful, 0 is returned. */ int key_payload_reserve(struct key *key, size_t datalen) { int delta = (int)datalen - key->datalen; int ret = 0; key_check(key); /* contemplate the quota adjustment */ if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) { unsigned maxbytes = (key->user->uid == 0) ? key_quota_root_maxbytes : key_quota_maxbytes; spin_lock(&key->user->lock); if (delta > 0 && (key->user->qnbytes + delta >= maxbytes || key->user->qnbytes + delta < key->user->qnbytes)) { ret = -EDQUOT; } else { key->user->qnbytes += delta; key->quotalen += delta; } spin_unlock(&key->user->lock); } /* change the recorded data length if that didn't generate an error */ if (ret == 0) key->datalen = datalen; return ret; } EXPORT_SYMBOL(key_payload_reserve); /* * Instantiate a key and link it into the target keyring atomically. Must be * called with the target keyring's semaphore writelocked. The target key's * semaphore need not be locked as instantiation is serialised by * key_construction_mutex. */ static int __key_instantiate_and_link(struct key *key, const void *data, size_t datalen, struct key *keyring, struct key *authkey, unsigned long *_prealloc) { int ret, awaken; key_check(key); key_check(keyring); awaken = 0; ret = -EBUSY; mutex_lock(&key_construction_mutex); /* can't instantiate twice */ if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) { /* instantiate the key */ ret = key->type->instantiate(key, data, datalen); if (ret == 0) { /* mark the key as being instantiated */ atomic_inc(&key->user->nikeys); set_bit(KEY_FLAG_INSTANTIATED, &key->flags); if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags)) awaken = 1; /* and link it into the destination keyring */ if (keyring) __key_link(keyring, key, _prealloc); /* disable the authorisation key */ if (authkey) key_revoke(authkey); } } mutex_unlock(&key_construction_mutex); /* wake up anyone waiting for a key to be constructed */ if (awaken) wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT); return ret; } /** * key_instantiate_and_link - Instantiate a key and link it into the keyring. * @key: The key to instantiate. * @data: The data to use to instantiate the keyring. * @datalen: The length of @data. * @keyring: Keyring to create a link in on success (or NULL). * @authkey: The authorisation token permitting instantiation. * * Instantiate a key that's in the uninstantiated state using the provided data * and, if successful, link it in to the destination keyring if one is * supplied. * * If successful, 0 is returned, the authorisation token is revoked and anyone * waiting for the key is woken up. If the key was already instantiated, * -EBUSY will be returned. */ int key_instantiate_and_link(struct key *key, const void *data, size_t datalen, struct key *keyring, struct key *authkey) { unsigned long prealloc; int ret; if (keyring) { ret = __key_link_begin(keyring, key->type, key->description, &prealloc); if (ret < 0) return ret; } ret = __key_instantiate_and_link(key, data, datalen, keyring, authkey, &prealloc); if (keyring) __key_link_end(keyring, key->type, prealloc); return ret; } EXPORT_SYMBOL(key_instantiate_and_link); /** * key_reject_and_link - Negatively instantiate a key and link it into the keyring. * @key: The key to instantiate. * @timeout: The timeout on the negative key. * @error: The error to return when the key is hit. * @keyring: Keyring to create a link in on success (or NULL). * @authkey: The authorisation token permitting instantiation. * * Negatively instantiate a key that's in the uninstantiated state and, if * successful, set its timeout and stored error and link it in to the * destination keyring if one is supplied. The key and any links to the key * will be automatically garbage collected after the timeout expires. * * Negative keys are used to rate limit repeated request_key() calls by causing * them to return the stored error code (typically ENOKEY) until the negative * key expires. * * If successful, 0 is returned, the authorisation token is revoked and anyone * waiting for the key is woken up. If the key was already instantiated, * -EBUSY will be returned. */ int key_reject_and_link(struct key *key, unsigned timeout, unsigned error, struct key *keyring, struct key *authkey) { unsigned long prealloc; struct timespec now; int ret, awaken, link_ret = 0; key_check(key); key_check(keyring); awaken = 0; ret = -EBUSY; if (keyring) link_ret = __key_link_begin(keyring, key->type, key->description, &prealloc); mutex_lock(&key_construction_mutex); /* can't instantiate twice */ if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) { /* mark the key as being negatively instantiated */ atomic_inc(&key->user->nikeys); set_bit(KEY_FLAG_NEGATIVE, &key->flags); set_bit(KEY_FLAG_INSTANTIATED, &key->flags); key->type_data.reject_error = -error; now = current_kernel_time(); key->expiry = now.tv_sec + timeout; key_schedule_gc(key->expiry + key_gc_delay); if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags)) awaken = 1; ret = 0; /* and link it into the destination keyring */ if (keyring && link_ret == 0) __key_link(keyring, key, &prealloc); /* disable the authorisation key */ if (authkey) key_revoke(authkey); } mutex_unlock(&key_construction_mutex); if (keyring) __key_link_end(keyring, key->type, prealloc); /* wake up anyone waiting for a key to be constructed */ if (awaken) wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT); return ret == 0 ? link_ret : ret; } EXPORT_SYMBOL(key_reject_and_link); /** * key_put - Discard a reference to a key. * @key: The key to discard a reference from. * * Discard a reference to a key, and when all the references are gone, we * schedule the cleanup task to come and pull it out of the tree in process * context at some later time. */ void key_put(struct key *key) { if (key) { key_check(key); if (atomic_dec_and_test(&key->usage)) queue_work(system_nrt_wq, &key_gc_work); } } EXPORT_SYMBOL(key_put); /* * Find a key by its serial number. */ struct key *key_lookup(key_serial_t id) { struct rb_node *n; struct key *key; spin_lock(&key_serial_lock); /* search the tree for the specified key */ n = key_serial_tree.rb_node; while (n) { key = rb_entry(n, struct key, serial_node); if (id < key->serial) n = n->rb_left; else if (id > key->serial) n = n->rb_right; else goto found; } not_found: key = ERR_PTR(-ENOKEY); goto error; found: /* pretend it doesn't exist if it is awaiting deletion */ if (atomic_read(&key->usage) == 0) goto not_found; /* this races with key_put(), but that doesn't matter since key_put() * doesn't actually change the key */ atomic_inc(&key->usage); error: spin_unlock(&key_serial_lock); return key; } /* * Find and lock the specified key type against removal. * * We return with the sem read-locked if successful. If the type wasn't * available -ENOKEY is returned instead. */ struct key_type *key_type_lookup(const char *type) { struct key_type *ktype; down_read(&key_types_sem); /* look up the key type to see if it's one of the registered kernel * types */ list_for_each_entry(ktype, &key_types_list, link) { if (strcmp(ktype->name, type) == 0) goto found_kernel_type; } up_read(&key_types_sem); ktype = ERR_PTR(-ENOKEY); found_kernel_type: return ktype; } void key_set_timeout(struct key *key, unsigned timeout) { struct timespec now; time_t expiry = 0; /* make the changes with the locks held to prevent races */ down_write(&key->sem); if (timeout > 0) { now = current_kernel_time(); expiry = now.tv_sec + timeout; } key->expiry = expiry; key_schedule_gc(key->expiry + key_gc_delay); up_write(&key->sem); } EXPORT_SYMBOL_GPL(key_set_timeout); /* * Unlock a key type locked by key_type_lookup(). */ void key_type_put(struct key_type *ktype) { up_read(&key_types_sem); } /* * Attempt to update an existing key. * * The key is given to us with an incremented refcount that we need to discard * if we get an error. */ static inline key_ref_t __key_update(key_ref_t key_ref, const void *payload, size_t plen) { struct key *key = key_ref_to_ptr(key_ref); int ret; /* need write permission on the key to update it */ ret = key_permission(key_ref, KEY_WRITE); if (ret < 0) goto error; ret = -EEXIST; if (!key->type->update) goto error; down_write(&key->sem); ret = key->type->update(key, payload, plen); if (ret == 0) /* updating a negative key instantiates it */ clear_bit(KEY_FLAG_NEGATIVE, &key->flags); up_write(&key->sem); if (ret < 0) goto error; out: return key_ref; error: key_put(key); key_ref = ERR_PTR(ret); goto out; } /** * key_create_or_update - Update or create and instantiate a key. * @keyring_ref: A pointer to the destination keyring with possession flag. * @type: The type of key. * @description: The searchable description for the key. * @payload: The data to use to instantiate or update the key. * @plen: The length of @payload. * @perm: The permissions mask for a new key. * @flags: The quota flags for a new key. * * Search the destination keyring for a key of the same description and if one * is found, update it, otherwise create and instantiate a new one and create a * link to it from that keyring. * * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be * concocted. * * Returns a pointer to the new key if successful, -ENODEV if the key type * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the * caller isn't permitted to modify the keyring or the LSM did not permit * creation of the key. * * On success, the possession flag from the keyring ref will be tacked on to * the key ref before it is returned. */ key_ref_t key_create_or_update(key_ref_t keyring_ref, const char *type, const char *description, const void *payload, size_t plen, key_perm_t perm, unsigned long flags) { unsigned long prealloc; const struct cred *cred = current_cred(); struct key_type *ktype; struct key *keyring, *key = NULL; key_ref_t key_ref; int ret; /* look up the key type to see if it's one of the registered kernel * types */ ktype = key_type_lookup(type); if (IS_ERR(ktype)) { key_ref = ERR_PTR(-ENODEV); goto error; } key_ref = ERR_PTR(-EINVAL); if (!ktype->match || !ktype->instantiate) goto error_2; keyring = key_ref_to_ptr(keyring_ref); key_check(keyring); key_ref = ERR_PTR(-ENOTDIR); if (keyring->type != &key_type_keyring) goto error_2; ret = __key_link_begin(keyring, ktype, description, &prealloc); if (ret < 0) goto error_2; /* if we're going to allocate a new key, we're going to have * to modify the keyring */ ret = key_permission(keyring_ref, KEY_WRITE); if (ret < 0) { key_ref = ERR_PTR(ret); goto error_3; } /* if it's possible to update this type of key, search for an existing * key of the same type and description in the destination keyring and * update that instead if possible */ if (ktype->update) { key_ref = __keyring_search_one(keyring_ref, ktype, description, 0); if (!IS_ERR(key_ref)) goto found_matching_key; } /* if the client doesn't provide, decide on the permissions we want */ if (perm == KEY_PERM_UNDEF) { perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR; perm |= KEY_USR_VIEW | KEY_USR_SEARCH | KEY_USR_LINK | KEY_USR_SETATTR; if (ktype->read) perm |= KEY_POS_READ | KEY_USR_READ; if (ktype == &key_type_keyring || ktype->update) perm |= KEY_USR_WRITE; } /* allocate a new key */ key = key_alloc(ktype, description, cred->fsuid, cred->fsgid, cred, perm, flags); if (IS_ERR(key)) { key_ref = ERR_CAST(key); goto error_3; } /* instantiate it and link it into the target keyring */ ret = __key_instantiate_and_link(key, payload, plen, keyring, NULL, &prealloc); if (ret < 0) { key_put(key); key_ref = ERR_PTR(ret); goto error_3; } key_ref = make_key_ref(key, is_key_possessed(keyring_ref)); error_3: __key_link_end(keyring, ktype, prealloc); error_2: key_type_put(ktype); error: return key_ref; found_matching_key: /* we found a matching key, so we're going to try to update it * - we can drop the locks first as we have the key pinned */ __key_link_end(keyring, ktype, prealloc); key_type_put(ktype); key_ref = __key_update(key_ref, payload, plen); goto error; } EXPORT_SYMBOL(key_create_or_update); /** * key_update - Update a key's contents. * @key_ref: The pointer (plus possession flag) to the key. * @payload: The data to be used to update the key. * @plen: The length of @payload. * * Attempt to update the contents of a key with the given payload data. The * caller must be granted Write permission on the key. Negative keys can be * instantiated by this method. * * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key * type does not support updating. The key type may return other errors. */ int key_update(key_ref_t key_ref, const void *payload, size_t plen) { struct key *key = key_ref_to_ptr(key_ref); int ret; key_check(key); /* the key must be writable */ ret = key_permission(key_ref, KEY_WRITE); if (ret < 0) goto error; /* attempt to update it if supported */ ret = -EOPNOTSUPP; if (key->type->update) { down_write(&key->sem); ret = key->type->update(key, payload, plen); if (ret == 0) /* updating a negative key instantiates it */ clear_bit(KEY_FLAG_NEGATIVE, &key->flags); up_write(&key->sem); } error: return ret; } EXPORT_SYMBOL(key_update); /** * key_revoke - Revoke a key. * @key: The key to be revoked. * * Mark a key as being revoked and ask the type to free up its resources. The * revocation timeout is set and the key and all its links will be * automatically garbage collected after key_gc_delay amount of time if they * are not manually dealt with first. */ void key_revoke(struct key *key) { struct timespec now; time_t time; key_check(key); /* make sure no one's trying to change or use the key when we mark it * - we tell lockdep that we might nest because we might be revoking an * authorisation key whilst holding the sem on a key we've just * instantiated */ down_write_nested(&key->sem, 1); if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags) && key->type->revoke) key->type->revoke(key); /* set the death time to no more than the expiry time */ now = current_kernel_time(); time = now.tv_sec; if (key->revoked_at == 0 || key->revoked_at > time) { key->revoked_at = time; key_schedule_gc(key->revoked_at + key_gc_delay); } up_write(&key->sem); } EXPORT_SYMBOL(key_revoke); /** * key_invalidate - Invalidate a key. * @key: The key to be invalidated. * * Mark a key as being invalidated and have it cleaned up immediately. The key * is ignored by all searches and other operations from this point. */ void key_invalidate(struct key *key) { kenter("%d", key_serial(key)); key_check(key); if (!test_bit(KEY_FLAG_INVALIDATED, &key->flags)) { down_write_nested(&key->sem, 1); if (!test_and_set_bit(KEY_FLAG_INVALIDATED, &key->flags)) key_schedule_gc_links(); up_write(&key->sem); } } EXPORT_SYMBOL(key_invalidate); /** * register_key_type - Register a type of key. * @ktype: The new key type. * * Register a new key type. * * Returns 0 on success or -EEXIST if a type of this name already exists. */ int register_key_type(struct key_type *ktype) { struct key_type *p; int ret; memset(&ktype->lock_class, 0, sizeof(ktype->lock_class)); ret = -EEXIST; down_write(&key_types_sem); /* disallow key types with the same name */ list_for_each_entry(p, &key_types_list, link) { if (strcmp(p->name, ktype->name) == 0) goto out; } /* store the type */ list_add(&ktype->link, &key_types_list); pr_notice("Key type %s registered\n", ktype->name); ret = 0; out: up_write(&key_types_sem); return ret; } EXPORT_SYMBOL(register_key_type); /** * unregister_key_type - Unregister a type of key. * @ktype: The key type. * * Unregister a key type and mark all the extant keys of this type as dead. * Those keys of this type are then destroyed to get rid of their payloads and * they and their links will be garbage collected as soon as possible. */ void unregister_key_type(struct key_type *ktype) { down_write(&key_types_sem); list_del_init(&ktype->link); downgrade_write(&key_types_sem); key_gc_keytype(ktype); pr_notice("Key type %s unregistered\n", ktype->name); up_read(&key_types_sem); } EXPORT_SYMBOL(unregister_key_type); /* * Initialise the key management state. */ void __init key_init(void) { /* allocate a slab in which we can store keys */ key_jar = kmem_cache_create("key_jar", sizeof(struct key), 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); /* add the special key types */ list_add_tail(&key_type_keyring.link, &key_types_list); list_add_tail(&key_type_dead.link, &key_types_list); list_add_tail(&key_type_user.link, &key_types_list); list_add_tail(&key_type_logon.link, &key_types_list); /* record the root user tracking */ rb_link_node(&root_key_user.node, NULL, &key_user_tree.rb_node); rb_insert_color(&root_key_user.node, &key_user_tree); }