// SPDX-License-Identifier: GPL-2.0 // ff-protocol-former.c - a part of driver for RME Fireface series // // Copyright (c) 2019 Takashi Sakamoto // // Licensed under the terms of the GNU General Public License, version 2. #include #include "ff.h" #define FORMER_REG_SYNC_STATUS 0x0000801c0000ull /* For block write request. */ #define FORMER_REG_FETCH_PCM_FRAMES 0x0000801c0000ull static int former_switch_fetching_mode(struct snd_ff *ff, bool enable) { unsigned int count; __le32 *reg; int i; int err; count = 0; for (i = 0; i < SND_FF_STREAM_MODE_COUNT; ++i) count = max(count, ff->spec->pcm_playback_channels[i]); reg = kcalloc(count, sizeof(__le32), GFP_KERNEL); if (!reg) return -ENOMEM; if (!enable) { /* * Each quadlet is corresponding to data channels in a data * blocks in reverse order. Precisely, quadlets for available * data channels should be enabled. Here, I take second best * to fetch PCM frames from all of data channels regardless of * stf. */ for (i = 0; i < count; ++i) reg[i] = cpu_to_le32(0x00000001); } err = snd_fw_transaction(ff->unit, TCODE_WRITE_BLOCK_REQUEST, FORMER_REG_FETCH_PCM_FRAMES, reg, sizeof(__le32) * count, 0); kfree(reg); return err; } static void dump_clock_config(struct snd_ff *ff, struct snd_info_buffer *buffer) { __le32 reg; u32 data; unsigned int rate; const char *src; int err; err = snd_fw_transaction(ff->unit, TCODE_READ_BLOCK_REQUEST, SND_FF_REG_CLOCK_CONFIG, ®, sizeof(reg), 0); if (err < 0) return; data = le32_to_cpu(reg); snd_iprintf(buffer, "Output S/PDIF format: %s (Emphasis: %s)\n", (data & 0x20) ? "Professional" : "Consumer", (data & 0x40) ? "on" : "off"); snd_iprintf(buffer, "Optical output interface format: %s\n", ((data >> 8) & 0x01) ? "S/PDIF" : "ADAT"); snd_iprintf(buffer, "Word output single speed: %s\n", ((data >> 8) & 0x20) ? "on" : "off"); snd_iprintf(buffer, "S/PDIF input interface: %s\n", ((data >> 8) & 0x02) ? "Optical" : "Coaxial"); switch ((data >> 1) & 0x03) { case 0x01: rate = 32000; break; case 0x00: rate = 44100; break; case 0x03: rate = 48000; break; case 0x02: default: return; } if (data & 0x08) rate *= 2; else if (data & 0x10) rate *= 4; snd_iprintf(buffer, "Sampling rate: %d\n", rate); if (data & 0x01) { src = "Internal"; } else { switch ((data >> 10) & 0x07) { case 0x00: src = "ADAT1"; break; case 0x01: src = "ADAT2"; break; case 0x03: src = "S/PDIF"; break; case 0x04: src = "Word"; break; case 0x05: src = "LTC"; break; default: return; } } snd_iprintf(buffer, "Sync to clock source: %s\n", src); } static void dump_sync_status(struct snd_ff *ff, struct snd_info_buffer *buffer) { __le32 reg; u32 data; int err; err = snd_fw_transaction(ff->unit, TCODE_READ_QUADLET_REQUEST, FORMER_REG_SYNC_STATUS, ®, sizeof(reg), 0); if (err < 0) return; data = le32_to_cpu(reg); snd_iprintf(buffer, "External source detection:\n"); snd_iprintf(buffer, "Word Clock:"); if ((data >> 24) & 0x20) { if ((data >> 24) & 0x40) snd_iprintf(buffer, "sync\n"); else snd_iprintf(buffer, "lock\n"); } else { snd_iprintf(buffer, "none\n"); } snd_iprintf(buffer, "S/PDIF:"); if ((data >> 16) & 0x10) { if ((data >> 16) & 0x04) snd_iprintf(buffer, "sync\n"); else snd_iprintf(buffer, "lock\n"); } else { snd_iprintf(buffer, "none\n"); } snd_iprintf(buffer, "ADAT1:"); if ((data >> 8) & 0x04) { if ((data >> 8) & 0x10) snd_iprintf(buffer, "sync\n"); else snd_iprintf(buffer, "lock\n"); } else { snd_iprintf(buffer, "none\n"); } snd_iprintf(buffer, "ADAT2:"); if ((data >> 8) & 0x08) { if ((data >> 8) & 0x20) snd_iprintf(buffer, "sync\n"); else snd_iprintf(buffer, "lock\n"); } else { snd_iprintf(buffer, "none\n"); } snd_iprintf(buffer, "\nUsed external source:\n"); if (((data >> 22) & 0x07) == 0x07) { snd_iprintf(buffer, "None\n"); } else { switch ((data >> 22) & 0x07) { case 0x00: snd_iprintf(buffer, "ADAT1:"); break; case 0x01: snd_iprintf(buffer, "ADAT2:"); break; case 0x03: snd_iprintf(buffer, "S/PDIF:"); break; case 0x04: snd_iprintf(buffer, "Word:"); break; case 0x07: snd_iprintf(buffer, "Nothing:"); break; case 0x02: case 0x05: case 0x06: default: snd_iprintf(buffer, "unknown:"); break; } if ((data >> 25) & 0x07) { switch ((data >> 25) & 0x07) { case 0x01: snd_iprintf(buffer, "32000\n"); break; case 0x02: snd_iprintf(buffer, "44100\n"); break; case 0x03: snd_iprintf(buffer, "48000\n"); break; case 0x04: snd_iprintf(buffer, "64000\n"); break; case 0x05: snd_iprintf(buffer, "88200\n"); break; case 0x06: snd_iprintf(buffer, "96000\n"); break; case 0x07: snd_iprintf(buffer, "128000\n"); break; case 0x08: snd_iprintf(buffer, "176400\n"); break; case 0x09: snd_iprintf(buffer, "192000\n"); break; case 0x00: snd_iprintf(buffer, "unknown\n"); break; } } } snd_iprintf(buffer, "Multiplied:"); snd_iprintf(buffer, "%d\n", (data & 0x3ff) * 250); } static void former_dump_status(struct snd_ff *ff, struct snd_info_buffer *buffer) { dump_clock_config(ff, buffer); dump_sync_status(ff, buffer); } #define FF800_STF 0x0000fc88f000 #define FF800_RX_PACKET_FORMAT 0x0000fc88f004 #define FF800_ALLOC_TX_STREAM 0x0000fc88f008 #define FF800_ISOC_COMM_START 0x0000fc88f00c #define FF800_TX_S800_FLAG 0x00000800 #define FF800_ISOC_COMM_STOP 0x0000fc88f010 #define FF800_TX_PACKET_ISOC_CH 0x0000801c0008 static int allocate_rx_resources(struct snd_ff *ff) { u32 data; __le32 reg; int err; // Controllers should allocate isochronous resources for rx stream. err = fw_iso_resources_allocate(&ff->rx_resources, amdtp_stream_get_max_payload(&ff->rx_stream), fw_parent_device(ff->unit)->max_speed); if (err < 0) return err; // Set isochronous channel and the number of quadlets of rx packets. data = ff->rx_stream.data_block_quadlets << 3; data = (data << 8) | ff->rx_resources.channel; reg = cpu_to_le32(data); return snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST, FF800_RX_PACKET_FORMAT, ®, sizeof(reg), 0); } static int allocate_tx_resources(struct snd_ff *ff) { __le32 reg; unsigned int count; unsigned int tx_isoc_channel; int err; reg = cpu_to_le32(ff->tx_stream.data_block_quadlets); err = snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST, FF800_ALLOC_TX_STREAM, ®, sizeof(reg), 0); if (err < 0) return err; // Wait till the format of tx packet is available. count = 0; while (count++ < 10) { u32 data; err = snd_fw_transaction(ff->unit, TCODE_READ_QUADLET_REQUEST, FF800_TX_PACKET_ISOC_CH, ®, sizeof(reg), 0); if (err < 0) return err; data = le32_to_cpu(reg); if (data != 0xffffffff) { tx_isoc_channel = data; break; } msleep(50); } if (count >= 10) return -ETIMEDOUT; // NOTE: this is a makeshift to start OHCI 1394 IR context in the // channel. On the other hand, 'struct fw_iso_resources.allocated' is // not true and it's not deallocated at stop. ff->tx_resources.channel = tx_isoc_channel; return 0; } static int ff800_begin_session(struct snd_ff *ff, unsigned int rate) { __le32 reg; int err; reg = cpu_to_le32(rate); err = snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST, FF800_STF, ®, sizeof(reg), 0); if (err < 0) return err; // If starting isochronous communication immediately, change of STF has // no effect. In this case, the communication runs based on former STF. // Let's sleep for a bit. msleep(100); err = allocate_rx_resources(ff); if (err < 0) return err; err = allocate_tx_resources(ff); if (err < 0) return err; reg = cpu_to_le32(0x80000000); reg |= cpu_to_le32(ff->tx_stream.data_block_quadlets); if (fw_parent_device(ff->unit)->max_speed == SCODE_800) reg |= cpu_to_le32(FF800_TX_S800_FLAG); return snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST, FF800_ISOC_COMM_START, ®, sizeof(reg), 0); } static void ff800_finish_session(struct snd_ff *ff) { __le32 reg; reg = cpu_to_le32(0x80000000); snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST, FF800_ISOC_COMM_STOP, ®, sizeof(reg), 0); } static void ff800_handle_midi_msg(struct snd_ff *ff, __le32 *buf, size_t length) { int i; for (i = 0; i < length / 4; i++) { u8 byte = le32_to_cpu(buf[i]) & 0xff; struct snd_rawmidi_substream *substream; substream = READ_ONCE(ff->tx_midi_substreams[0]); if (substream) snd_rawmidi_receive(substream, &byte, 1); } } const struct snd_ff_protocol snd_ff_protocol_ff800 = { .handle_midi_msg = ff800_handle_midi_msg, .switch_fetching_mode = former_switch_fetching_mode, .begin_session = ff800_begin_session, .finish_session = ff800_finish_session, .dump_status = former_dump_status, }; #define FF400_STF 0x000080100500ull #define FF400_RX_PACKET_FORMAT 0x000080100504ull #define FF400_ISOC_COMM_START 0x000080100508ull #define FF400_TX_PACKET_FORMAT 0x00008010050cull #define FF400_ISOC_COMM_STOP 0x000080100510ull /* * Fireface 400 manages isochronous channel number in 3 bit field. Therefore, * we can allocate between 0 and 7 channel. */ static int keep_resources(struct snd_ff *ff, unsigned int rate) { enum snd_ff_stream_mode mode; int i; int err; // Check whether the given value is supported or not. for (i = 0; i < CIP_SFC_COUNT; i++) { if (amdtp_rate_table[i] == rate) break; } if (i >= CIP_SFC_COUNT) return -EINVAL; err = snd_ff_stream_get_multiplier_mode(i, &mode); if (err < 0) return err; /* Keep resources for in-stream. */ ff->tx_resources.channels_mask = 0x00000000000000ffuLL; err = fw_iso_resources_allocate(&ff->tx_resources, amdtp_stream_get_max_payload(&ff->tx_stream), fw_parent_device(ff->unit)->max_speed); if (err < 0) return err; /* Keep resources for out-stream. */ ff->rx_resources.channels_mask = 0x00000000000000ffuLL; err = fw_iso_resources_allocate(&ff->rx_resources, amdtp_stream_get_max_payload(&ff->rx_stream), fw_parent_device(ff->unit)->max_speed); if (err < 0) fw_iso_resources_free(&ff->tx_resources); return err; } static int ff400_begin_session(struct snd_ff *ff, unsigned int rate) { __le32 reg; int err; err = keep_resources(ff, rate); if (err < 0) return err; /* Set the number of data blocks transferred in a second. */ reg = cpu_to_le32(rate); err = snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST, FF400_STF, ®, sizeof(reg), 0); if (err < 0) return err; msleep(100); /* * Set isochronous channel and the number of quadlets of received * packets. */ reg = cpu_to_le32(((ff->rx_stream.data_block_quadlets << 3) << 8) | ff->rx_resources.channel); err = snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST, FF400_RX_PACKET_FORMAT, ®, sizeof(reg), 0); if (err < 0) return err; /* * Set isochronous channel and the number of quadlets of transmitted * packet. */ /* TODO: investigate the purpose of this 0x80. */ reg = cpu_to_le32((0x80 << 24) | (ff->tx_resources.channel << 5) | (ff->tx_stream.data_block_quadlets)); err = snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST, FF400_TX_PACKET_FORMAT, ®, sizeof(reg), 0); if (err < 0) return err; /* Allow to transmit packets. */ reg = cpu_to_le32(0x00000001); return snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST, FF400_ISOC_COMM_START, ®, sizeof(reg), 0); } static void ff400_finish_session(struct snd_ff *ff) { __le32 reg; reg = cpu_to_le32(0x80000000); snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST, FF400_ISOC_COMM_STOP, ®, sizeof(reg), 0); } static void ff400_handle_midi_msg(struct snd_ff *ff, __le32 *buf, size_t length) { int i; for (i = 0; i < length / 4; i++) { u32 quad = le32_to_cpu(buf[i]); u8 byte; unsigned int index; struct snd_rawmidi_substream *substream; /* Message in first port. */ /* * This value may represent the index of this unit when the same * units are on the same IEEE 1394 bus. This driver doesn't use * it. */ index = (quad >> 8) & 0xff; if (index > 0) { substream = READ_ONCE(ff->tx_midi_substreams[0]); if (substream != NULL) { byte = quad & 0xff; snd_rawmidi_receive(substream, &byte, 1); } } /* Message in second port. */ index = (quad >> 24) & 0xff; if (index > 0) { substream = READ_ONCE(ff->tx_midi_substreams[1]); if (substream != NULL) { byte = (quad >> 16) & 0xff; snd_rawmidi_receive(substream, &byte, 1); } } } } const struct snd_ff_protocol snd_ff_protocol_ff400 = { .handle_midi_msg = ff400_handle_midi_msg, .switch_fetching_mode = former_switch_fetching_mode, .begin_session = ff400_begin_session, .finish_session = ff400_finish_session, .dump_status = former_dump_status, };