/* * ALSA SoC McASP Audio Layer for TI DAVINCI processor * * Multi-channel Audio Serial Port Driver * * Author: Nirmal Pandey , * Suresh Rajashekara * Steve Chen * * Copyright: (C) 2009 MontaVista Software, Inc., * Copyright: (C) 2009 Texas Instruments, India * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "edma-pcm.h" #include "davinci-mcasp.h" #define MCASP_MAX_AFIFO_DEPTH 64 static u32 context_regs[] = { DAVINCI_MCASP_TXFMCTL_REG, DAVINCI_MCASP_RXFMCTL_REG, DAVINCI_MCASP_TXFMT_REG, DAVINCI_MCASP_RXFMT_REG, DAVINCI_MCASP_ACLKXCTL_REG, DAVINCI_MCASP_ACLKRCTL_REG, DAVINCI_MCASP_AHCLKXCTL_REG, DAVINCI_MCASP_AHCLKRCTL_REG, DAVINCI_MCASP_PDIR_REG, DAVINCI_MCASP_RXMASK_REG, DAVINCI_MCASP_TXMASK_REG, DAVINCI_MCASP_RXTDM_REG, DAVINCI_MCASP_TXTDM_REG, }; struct davinci_mcasp_context { u32 config_regs[ARRAY_SIZE(context_regs)]; u32 afifo_regs[2]; /* for read/write fifo control registers */ u32 *xrsr_regs; /* for serializer configuration */ bool pm_state; }; struct davinci_mcasp_ruledata { struct davinci_mcasp *mcasp; int serializers; }; struct davinci_mcasp { struct snd_dmaengine_dai_dma_data dma_data[2]; void __iomem *base; u32 fifo_base; struct device *dev; struct snd_pcm_substream *substreams[2]; /* McASP specific data */ int tdm_slots; u32 tdm_mask[2]; int slot_width; u8 op_mode; u8 num_serializer; u8 *serial_dir; u8 version; u8 bclk_div; int streams; u32 irq_request[2]; int dma_request[2]; int sysclk_freq; bool bclk_master; /* McASP FIFO related */ u8 txnumevt; u8 rxnumevt; bool dat_port; /* Used for comstraint setting on the second stream */ u32 channels; #ifdef CONFIG_PM_SLEEP struct davinci_mcasp_context context; #endif struct davinci_mcasp_ruledata ruledata[2]; struct snd_pcm_hw_constraint_list chconstr[2]; }; static inline void mcasp_set_bits(struct davinci_mcasp *mcasp, u32 offset, u32 val) { void __iomem *reg = mcasp->base + offset; __raw_writel(__raw_readl(reg) | val, reg); } static inline void mcasp_clr_bits(struct davinci_mcasp *mcasp, u32 offset, u32 val) { void __iomem *reg = mcasp->base + offset; __raw_writel((__raw_readl(reg) & ~(val)), reg); } static inline void mcasp_mod_bits(struct davinci_mcasp *mcasp, u32 offset, u32 val, u32 mask) { void __iomem *reg = mcasp->base + offset; __raw_writel((__raw_readl(reg) & ~mask) | val, reg); } static inline void mcasp_set_reg(struct davinci_mcasp *mcasp, u32 offset, u32 val) { __raw_writel(val, mcasp->base + offset); } static inline u32 mcasp_get_reg(struct davinci_mcasp *mcasp, u32 offset) { return (u32)__raw_readl(mcasp->base + offset); } static void mcasp_set_ctl_reg(struct davinci_mcasp *mcasp, u32 ctl_reg, u32 val) { int i = 0; mcasp_set_bits(mcasp, ctl_reg, val); /* programming GBLCTL needs to read back from GBLCTL and verfiy */ /* loop count is to avoid the lock-up */ for (i = 0; i < 1000; i++) { if ((mcasp_get_reg(mcasp, ctl_reg) & val) == val) break; } if (i == 1000 && ((mcasp_get_reg(mcasp, ctl_reg) & val) != val)) printk(KERN_ERR "GBLCTL write error\n"); } static bool mcasp_is_synchronous(struct davinci_mcasp *mcasp) { u32 rxfmctl = mcasp_get_reg(mcasp, DAVINCI_MCASP_RXFMCTL_REG); u32 aclkxctl = mcasp_get_reg(mcasp, DAVINCI_MCASP_ACLKXCTL_REG); return !(aclkxctl & TX_ASYNC) && rxfmctl & AFSRE; } static void mcasp_start_rx(struct davinci_mcasp *mcasp) { if (mcasp->rxnumevt) { /* enable FIFO */ u32 reg = mcasp->fifo_base + MCASP_RFIFOCTL_OFFSET; mcasp_clr_bits(mcasp, reg, FIFO_ENABLE); mcasp_set_bits(mcasp, reg, FIFO_ENABLE); } /* Start clocks */ mcasp_set_ctl_reg(mcasp, DAVINCI_MCASP_GBLCTLR_REG, RXHCLKRST); mcasp_set_ctl_reg(mcasp, DAVINCI_MCASP_GBLCTLR_REG, RXCLKRST); /* * When ASYNC == 0 the transmit and receive sections operate * synchronously from the transmit clock and frame sync. We need to make * sure that the TX signlas are enabled when starting reception. */ if (mcasp_is_synchronous(mcasp)) { mcasp_set_ctl_reg(mcasp, DAVINCI_MCASP_GBLCTLX_REG, TXHCLKRST); mcasp_set_ctl_reg(mcasp, DAVINCI_MCASP_GBLCTLX_REG, TXCLKRST); } /* Activate serializer(s) */ mcasp_set_ctl_reg(mcasp, DAVINCI_MCASP_GBLCTLR_REG, RXSERCLR); /* Release RX state machine */ mcasp_set_ctl_reg(mcasp, DAVINCI_MCASP_GBLCTLR_REG, RXSMRST); /* Release Frame Sync generator */ mcasp_set_ctl_reg(mcasp, DAVINCI_MCASP_GBLCTLR_REG, RXFSRST); if (mcasp_is_synchronous(mcasp)) mcasp_set_ctl_reg(mcasp, DAVINCI_MCASP_GBLCTLX_REG, TXFSRST); /* enable receive IRQs */ mcasp_set_bits(mcasp, DAVINCI_MCASP_EVTCTLR_REG, mcasp->irq_request[SNDRV_PCM_STREAM_CAPTURE]); } static void mcasp_start_tx(struct davinci_mcasp *mcasp) { u32 cnt; if (mcasp->txnumevt) { /* enable FIFO */ u32 reg = mcasp->fifo_base + MCASP_WFIFOCTL_OFFSET; mcasp_clr_bits(mcasp, reg, FIFO_ENABLE); mcasp_set_bits(mcasp, reg, FIFO_ENABLE); } /* Start clocks */ mcasp_set_ctl_reg(mcasp, DAVINCI_MCASP_GBLCTLX_REG, TXHCLKRST); mcasp_set_ctl_reg(mcasp, DAVINCI_MCASP_GBLCTLX_REG, TXCLKRST); /* Activate serializer(s) */ mcasp_set_ctl_reg(mcasp, DAVINCI_MCASP_GBLCTLX_REG, TXSERCLR); /* wait for XDATA to be cleared */ cnt = 0; while (!(mcasp_get_reg(mcasp, DAVINCI_MCASP_TXSTAT_REG) & ~XRDATA) && (cnt < 100000)) cnt++; /* Release TX state machine */ mcasp_set_ctl_reg(mcasp, DAVINCI_MCASP_GBLCTLX_REG, TXSMRST); /* Release Frame Sync generator */ mcasp_set_ctl_reg(mcasp, DAVINCI_MCASP_GBLCTLX_REG, TXFSRST); /* enable transmit IRQs */ mcasp_set_bits(mcasp, DAVINCI_MCASP_EVTCTLX_REG, mcasp->irq_request[SNDRV_PCM_STREAM_PLAYBACK]); } static void davinci_mcasp_start(struct davinci_mcasp *mcasp, int stream) { mcasp->streams++; if (stream == SNDRV_PCM_STREAM_PLAYBACK) mcasp_start_tx(mcasp); else mcasp_start_rx(mcasp); } static void mcasp_stop_rx(struct davinci_mcasp *mcasp) { /* disable IRQ sources */ mcasp_clr_bits(mcasp, DAVINCI_MCASP_EVTCTLR_REG, mcasp->irq_request[SNDRV_PCM_STREAM_CAPTURE]); /* * In synchronous mode stop the TX clocks if no other stream is * running */ if (mcasp_is_synchronous(mcasp) && !mcasp->streams) mcasp_set_reg(mcasp, DAVINCI_MCASP_GBLCTLX_REG, 0); mcasp_set_reg(mcasp, DAVINCI_MCASP_GBLCTLR_REG, 0); mcasp_set_reg(mcasp, DAVINCI_MCASP_RXSTAT_REG, 0xFFFFFFFF); if (mcasp->rxnumevt) { /* disable FIFO */ u32 reg = mcasp->fifo_base + MCASP_RFIFOCTL_OFFSET; mcasp_clr_bits(mcasp, reg, FIFO_ENABLE); } } static void mcasp_stop_tx(struct davinci_mcasp *mcasp) { u32 val = 0; /* disable IRQ sources */ mcasp_clr_bits(mcasp, DAVINCI_MCASP_EVTCTLX_REG, mcasp->irq_request[SNDRV_PCM_STREAM_PLAYBACK]); /* * In synchronous mode keep TX clocks running if the capture stream is * still running. */ if (mcasp_is_synchronous(mcasp) && mcasp->streams) val = TXHCLKRST | TXCLKRST | TXFSRST; mcasp_set_reg(mcasp, DAVINCI_MCASP_GBLCTLX_REG, val); mcasp_set_reg(mcasp, DAVINCI_MCASP_TXSTAT_REG, 0xFFFFFFFF); if (mcasp->txnumevt) { /* disable FIFO */ u32 reg = mcasp->fifo_base + MCASP_WFIFOCTL_OFFSET; mcasp_clr_bits(mcasp, reg, FIFO_ENABLE); } } static void davinci_mcasp_stop(struct davinci_mcasp *mcasp, int stream) { mcasp->streams--; if (stream == SNDRV_PCM_STREAM_PLAYBACK) mcasp_stop_tx(mcasp); else mcasp_stop_rx(mcasp); } static irqreturn_t davinci_mcasp_tx_irq_handler(int irq, void *data) { struct davinci_mcasp *mcasp = (struct davinci_mcasp *)data; struct snd_pcm_substream *substream; u32 irq_mask = mcasp->irq_request[SNDRV_PCM_STREAM_PLAYBACK]; u32 handled_mask = 0; u32 stat; stat = mcasp_get_reg(mcasp, DAVINCI_MCASP_TXSTAT_REG); if (stat & XUNDRN & irq_mask) { dev_warn(mcasp->dev, "Transmit buffer underflow\n"); handled_mask |= XUNDRN; substream = mcasp->substreams[SNDRV_PCM_STREAM_PLAYBACK]; if (substream) { snd_pcm_stream_lock_irq(substream); if (snd_pcm_running(substream)) snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN); snd_pcm_stream_unlock_irq(substream); } } if (!handled_mask) dev_warn(mcasp->dev, "unhandled tx event. txstat: 0x%08x\n", stat); if (stat & XRERR) handled_mask |= XRERR; /* Ack the handled event only */ mcasp_set_reg(mcasp, DAVINCI_MCASP_TXSTAT_REG, handled_mask); return IRQ_RETVAL(handled_mask); } static irqreturn_t davinci_mcasp_rx_irq_handler(int irq, void *data) { struct davinci_mcasp *mcasp = (struct davinci_mcasp *)data; struct snd_pcm_substream *substream; u32 irq_mask = mcasp->irq_request[SNDRV_PCM_STREAM_CAPTURE]; u32 handled_mask = 0; u32 stat; stat = mcasp_get_reg(mcasp, DAVINCI_MCASP_RXSTAT_REG); if (stat & ROVRN & irq_mask) { dev_warn(mcasp->dev, "Receive buffer overflow\n"); handled_mask |= ROVRN; substream = mcasp->substreams[SNDRV_PCM_STREAM_CAPTURE]; if (substream) { snd_pcm_stream_lock_irq(substream); if (snd_pcm_running(substream)) snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN); snd_pcm_stream_unlock_irq(substream); } } if (!handled_mask) dev_warn(mcasp->dev, "unhandled rx event. rxstat: 0x%08x\n", stat); if (stat & XRERR) handled_mask |= XRERR; /* Ack the handled event only */ mcasp_set_reg(mcasp, DAVINCI_MCASP_RXSTAT_REG, handled_mask); return IRQ_RETVAL(handled_mask); } static irqreturn_t davinci_mcasp_common_irq_handler(int irq, void *data) { struct davinci_mcasp *mcasp = (struct davinci_mcasp *)data; irqreturn_t ret = IRQ_NONE; if (mcasp->substreams[SNDRV_PCM_STREAM_PLAYBACK]) ret = davinci_mcasp_tx_irq_handler(irq, data); if (mcasp->substreams[SNDRV_PCM_STREAM_CAPTURE]) ret |= davinci_mcasp_rx_irq_handler(irq, data); return ret; } static int davinci_mcasp_set_dai_fmt(struct snd_soc_dai *cpu_dai, unsigned int fmt) { struct davinci_mcasp *mcasp = snd_soc_dai_get_drvdata(cpu_dai); int ret = 0; u32 data_delay; bool fs_pol_rising; bool inv_fs = false; pm_runtime_get_sync(mcasp->dev); switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) { case SND_SOC_DAIFMT_DSP_A: mcasp_clr_bits(mcasp, DAVINCI_MCASP_TXFMCTL_REG, FSXDUR); mcasp_clr_bits(mcasp, DAVINCI_MCASP_RXFMCTL_REG, FSRDUR); /* 1st data bit occur one ACLK cycle after the frame sync */ data_delay = 1; break; case SND_SOC_DAIFMT_DSP_B: case SND_SOC_DAIFMT_AC97: mcasp_clr_bits(mcasp, DAVINCI_MCASP_TXFMCTL_REG, FSXDUR); mcasp_clr_bits(mcasp, DAVINCI_MCASP_RXFMCTL_REG, FSRDUR); /* No delay after FS */ data_delay = 0; break; case SND_SOC_DAIFMT_I2S: /* configure a full-word SYNC pulse (LRCLK) */ mcasp_set_bits(mcasp, DAVINCI_MCASP_TXFMCTL_REG, FSXDUR); mcasp_set_bits(mcasp, DAVINCI_MCASP_RXFMCTL_REG, FSRDUR); /* 1st data bit occur one ACLK cycle after the frame sync */ data_delay = 1; /* FS need to be inverted */ inv_fs = true; break; case SND_SOC_DAIFMT_LEFT_J: /* configure a full-word SYNC pulse (LRCLK) */ mcasp_set_bits(mcasp, DAVINCI_MCASP_TXFMCTL_REG, FSXDUR); mcasp_set_bits(mcasp, DAVINCI_MCASP_RXFMCTL_REG, FSRDUR); /* No delay after FS */ data_delay = 0; break; default: ret = -EINVAL; goto out; } mcasp_mod_bits(mcasp, DAVINCI_MCASP_TXFMT_REG, FSXDLY(data_delay), FSXDLY(3)); mcasp_mod_bits(mcasp, DAVINCI_MCASP_RXFMT_REG, FSRDLY(data_delay), FSRDLY(3)); switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) { case SND_SOC_DAIFMT_CBS_CFS: /* codec is clock and frame slave */ mcasp_set_bits(mcasp, DAVINCI_MCASP_ACLKXCTL_REG, ACLKXE); mcasp_set_bits(mcasp, DAVINCI_MCASP_TXFMCTL_REG, AFSXE); mcasp_set_bits(mcasp, DAVINCI_MCASP_ACLKRCTL_REG, ACLKRE); mcasp_set_bits(mcasp, DAVINCI_MCASP_RXFMCTL_REG, AFSRE); mcasp_set_bits(mcasp, DAVINCI_MCASP_PDIR_REG, ACLKX | ACLKR); mcasp_set_bits(mcasp, DAVINCI_MCASP_PDIR_REG, AFSX | AFSR); mcasp->bclk_master = 1; break; case SND_SOC_DAIFMT_CBS_CFM: /* codec is clock slave and frame master */ mcasp_set_bits(mcasp, DAVINCI_MCASP_ACLKXCTL_REG, ACLKXE); mcasp_clr_bits(mcasp, DAVINCI_MCASP_TXFMCTL_REG, AFSXE); mcasp_set_bits(mcasp, DAVINCI_MCASP_ACLKRCTL_REG, ACLKRE); mcasp_clr_bits(mcasp, DAVINCI_MCASP_RXFMCTL_REG, AFSRE); mcasp_set_bits(mcasp, DAVINCI_MCASP_PDIR_REG, ACLKX | ACLKR); mcasp_clr_bits(mcasp, DAVINCI_MCASP_PDIR_REG, AFSX | AFSR); mcasp->bclk_master = 1; break; case SND_SOC_DAIFMT_CBM_CFS: /* codec is clock master and frame slave */ mcasp_clr_bits(mcasp, DAVINCI_MCASP_ACLKXCTL_REG, ACLKXE); mcasp_set_bits(mcasp, DAVINCI_MCASP_TXFMCTL_REG, AFSXE); mcasp_clr_bits(mcasp, DAVINCI_MCASP_ACLKRCTL_REG, ACLKRE); mcasp_set_bits(mcasp, DAVINCI_MCASP_RXFMCTL_REG, AFSRE); mcasp_clr_bits(mcasp, DAVINCI_MCASP_PDIR_REG, ACLKX | ACLKR); mcasp_set_bits(mcasp, DAVINCI_MCASP_PDIR_REG, AFSX | AFSR); mcasp->bclk_master = 0; break; case SND_SOC_DAIFMT_CBM_CFM: /* codec is clock and frame master */ mcasp_clr_bits(mcasp, DAVINCI_MCASP_ACLKXCTL_REG, ACLKXE); mcasp_clr_bits(mcasp, DAVINCI_MCASP_TXFMCTL_REG, AFSXE); mcasp_clr_bits(mcasp, DAVINCI_MCASP_ACLKRCTL_REG, ACLKRE); mcasp_clr_bits(mcasp, DAVINCI_MCASP_RXFMCTL_REG, AFSRE); mcasp_clr_bits(mcasp, DAVINCI_MCASP_PDIR_REG, ACLKX | AHCLKX | AFSX | ACLKR | AHCLKR | AFSR); mcasp->bclk_master = 0; break; default: ret = -EINVAL; goto out; } switch (fmt & SND_SOC_DAIFMT_INV_MASK) { case SND_SOC_DAIFMT_IB_NF: mcasp_clr_bits(mcasp, DAVINCI_MCASP_ACLKXCTL_REG, ACLKXPOL); mcasp_clr_bits(mcasp, DAVINCI_MCASP_ACLKRCTL_REG, ACLKRPOL); fs_pol_rising = true; break; case SND_SOC_DAIFMT_NB_IF: mcasp_set_bits(mcasp, DAVINCI_MCASP_ACLKXCTL_REG, ACLKXPOL); mcasp_set_bits(mcasp, DAVINCI_MCASP_ACLKRCTL_REG, ACLKRPOL); fs_pol_rising = false; break; case SND_SOC_DAIFMT_IB_IF: mcasp_clr_bits(mcasp, DAVINCI_MCASP_ACLKXCTL_REG, ACLKXPOL); mcasp_clr_bits(mcasp, DAVINCI_MCASP_ACLKRCTL_REG, ACLKRPOL); fs_pol_rising = false; break; case SND_SOC_DAIFMT_NB_NF: mcasp_set_bits(mcasp, DAVINCI_MCASP_ACLKXCTL_REG, ACLKXPOL); mcasp_set_bits(mcasp, DAVINCI_MCASP_ACLKRCTL_REG, ACLKRPOL); fs_pol_rising = true; break; default: ret = -EINVAL; goto out; } if (inv_fs) fs_pol_rising = !fs_pol_rising; if (fs_pol_rising) { mcasp_clr_bits(mcasp, DAVINCI_MCASP_TXFMCTL_REG, FSXPOL); mcasp_clr_bits(mcasp, DAVINCI_MCASP_RXFMCTL_REG, FSRPOL); } else { mcasp_set_bits(mcasp, DAVINCI_MCASP_TXFMCTL_REG, FSXPOL); mcasp_set_bits(mcasp, DAVINCI_MCASP_RXFMCTL_REG, FSRPOL); } out: pm_runtime_put(mcasp->dev); return ret; } static int __davinci_mcasp_set_clkdiv(struct snd_soc_dai *dai, int div_id, int div, bool explicit) { struct davinci_mcasp *mcasp = snd_soc_dai_get_drvdata(dai); pm_runtime_get_sync(mcasp->dev); switch (div_id) { case 0: /* MCLK divider */ mcasp_mod_bits(mcasp, DAVINCI_MCASP_AHCLKXCTL_REG, AHCLKXDIV(div - 1), AHCLKXDIV_MASK); mcasp_mod_bits(mcasp, DAVINCI_MCASP_AHCLKRCTL_REG, AHCLKRDIV(div - 1), AHCLKRDIV_MASK); break; case 1: /* BCLK divider */ mcasp_mod_bits(mcasp, DAVINCI_MCASP_ACLKXCTL_REG, ACLKXDIV(div - 1), ACLKXDIV_MASK); mcasp_mod_bits(mcasp, DAVINCI_MCASP_ACLKRCTL_REG, ACLKRDIV(div - 1), ACLKRDIV_MASK); if (explicit) mcasp->bclk_div = div; break; case 2: /* * BCLK/LRCLK ratio descries how many bit-clock cycles * fit into one frame. The clock ratio is given for a * full period of data (for I2S format both left and * right channels), so it has to be divided by number * of tdm-slots (for I2S - divided by 2). * Instead of storing this ratio, we calculate a new * tdm_slot width by dividing the the ratio by the * number of configured tdm slots. */ mcasp->slot_width = div / mcasp->tdm_slots; if (div % mcasp->tdm_slots) dev_warn(mcasp->dev, "%s(): BCLK/LRCLK %d is not divisible by %d tdm slots", __func__, div, mcasp->tdm_slots); break; default: return -EINVAL; } pm_runtime_put(mcasp->dev); return 0; } static int davinci_mcasp_set_clkdiv(struct snd_soc_dai *dai, int div_id, int div) { return __davinci_mcasp_set_clkdiv(dai, div_id, div, 1); } static int davinci_mcasp_set_sysclk(struct snd_soc_dai *dai, int clk_id, unsigned int freq, int dir) { struct davinci_mcasp *mcasp = snd_soc_dai_get_drvdata(dai); pm_runtime_get_sync(mcasp->dev); if (dir == SND_SOC_CLOCK_OUT) { mcasp_set_bits(mcasp, DAVINCI_MCASP_AHCLKXCTL_REG, AHCLKXE); mcasp_set_bits(mcasp, DAVINCI_MCASP_AHCLKRCTL_REG, AHCLKRE); mcasp_set_bits(mcasp, DAVINCI_MCASP_PDIR_REG, AHCLKX); } else { mcasp_clr_bits(mcasp, DAVINCI_MCASP_AHCLKXCTL_REG, AHCLKXE); mcasp_clr_bits(mcasp, DAVINCI_MCASP_AHCLKRCTL_REG, AHCLKRE); mcasp_clr_bits(mcasp, DAVINCI_MCASP_PDIR_REG, AHCLKX); } mcasp->sysclk_freq = freq; pm_runtime_put(mcasp->dev); return 0; } /* All serializers must have equal number of channels */ static int davinci_mcasp_ch_constraint(struct davinci_mcasp *mcasp, int stream, int serializers) { struct snd_pcm_hw_constraint_list *cl = &mcasp->chconstr[stream]; unsigned int *list = (unsigned int *) cl->list; int slots = mcasp->tdm_slots; int i, count = 0; if (mcasp->tdm_mask[stream]) slots = hweight32(mcasp->tdm_mask[stream]); for (i = 2; i <= slots; i++) list[count++] = i; for (i = 2; i <= serializers; i++) list[count++] = i*slots; cl->count = count; return 0; } static int davinci_mcasp_set_ch_constraints(struct davinci_mcasp *mcasp) { int rx_serializers = 0, tx_serializers = 0, ret, i; for (i = 0; i < mcasp->num_serializer; i++) if (mcasp->serial_dir[i] == TX_MODE) tx_serializers++; else if (mcasp->serial_dir[i] == RX_MODE) rx_serializers++; ret = davinci_mcasp_ch_constraint(mcasp, SNDRV_PCM_STREAM_PLAYBACK, tx_serializers); if (ret) return ret; ret = davinci_mcasp_ch_constraint(mcasp, SNDRV_PCM_STREAM_CAPTURE, rx_serializers); return ret; } static int davinci_mcasp_set_tdm_slot(struct snd_soc_dai *dai, unsigned int tx_mask, unsigned int rx_mask, int slots, int slot_width) { struct davinci_mcasp *mcasp = snd_soc_dai_get_drvdata(dai); dev_dbg(mcasp->dev, "%s() tx_mask 0x%08x rx_mask 0x%08x slots %d width %d\n", __func__, tx_mask, rx_mask, slots, slot_width); if (tx_mask >= (1<= (1<dev, "Bad tdm mask tx: 0x%08x rx: 0x%08x slots %d\n", tx_mask, rx_mask, slots); return -EINVAL; } if (slot_width && (slot_width < 8 || slot_width > 32 || slot_width % 4 != 0)) { dev_err(mcasp->dev, "%s: Unsupported slot_width %d\n", __func__, slot_width); return -EINVAL; } mcasp->tdm_slots = slots; mcasp->tdm_mask[SNDRV_PCM_STREAM_PLAYBACK] = tx_mask; mcasp->tdm_mask[SNDRV_PCM_STREAM_CAPTURE] = rx_mask; mcasp->slot_width = slot_width; return davinci_mcasp_set_ch_constraints(mcasp); } static int davinci_config_channel_size(struct davinci_mcasp *mcasp, int sample_width) { u32 fmt; u32 tx_rotate = (sample_width / 4) & 0x7; u32 mask = (1ULL << sample_width) - 1; u32 slot_width = sample_width; /* * For captured data we should not rotate, inversion and masking is * enoguh to get the data to the right position: * Format data from bus after reverse (XRBUF) * S16_LE: |LSB|MSB|xxx|xxx| |xxx|xxx|MSB|LSB| * S24_3LE: |LSB|DAT|MSB|xxx| |xxx|MSB|DAT|LSB| * S24_LE: |LSB|DAT|MSB|xxx| |xxx|MSB|DAT|LSB| * S32_LE: |LSB|DAT|DAT|MSB| |MSB|DAT|DAT|LSB| */ u32 rx_rotate = 0; /* * Setting the tdm slot width either with set_clkdiv() or * set_tdm_slot() allows us to for example send 32 bits per * channel to the codec, while only 16 of them carry audio * payload. */ if (mcasp->slot_width) { /* * When we have more bclk then it is needed for the * data, we need to use the rotation to move the * received samples to have correct alignment. */ slot_width = mcasp->slot_width; rx_rotate = (slot_width - sample_width) / 4; } /* mapping of the XSSZ bit-field as described in the datasheet */ fmt = (slot_width >> 1) - 1; if (mcasp->op_mode != DAVINCI_MCASP_DIT_MODE) { mcasp_mod_bits(mcasp, DAVINCI_MCASP_RXFMT_REG, RXSSZ(fmt), RXSSZ(0x0F)); mcasp_mod_bits(mcasp, DAVINCI_MCASP_TXFMT_REG, TXSSZ(fmt), TXSSZ(0x0F)); mcasp_mod_bits(mcasp, DAVINCI_MCASP_TXFMT_REG, TXROT(tx_rotate), TXROT(7)); mcasp_mod_bits(mcasp, DAVINCI_MCASP_RXFMT_REG, RXROT(rx_rotate), RXROT(7)); mcasp_set_reg(mcasp, DAVINCI_MCASP_RXMASK_REG, mask); } mcasp_set_reg(mcasp, DAVINCI_MCASP_TXMASK_REG, mask); return 0; } static int mcasp_common_hw_param(struct davinci_mcasp *mcasp, int stream, int period_words, int channels) { struct snd_dmaengine_dai_dma_data *dma_data = &mcasp->dma_data[stream]; int i; u8 tx_ser = 0; u8 rx_ser = 0; u8 slots = mcasp->tdm_slots; u8 max_active_serializers = (channels + slots - 1) / slots; int active_serializers, numevt; u32 reg; /* Default configuration */ if (mcasp->version < MCASP_VERSION_3) mcasp_set_bits(mcasp, DAVINCI_MCASP_PWREMUMGT_REG, MCASP_SOFT); /* All PINS as McASP */ mcasp_set_reg(mcasp, DAVINCI_MCASP_PFUNC_REG, 0x00000000); if (stream == SNDRV_PCM_STREAM_PLAYBACK) { mcasp_set_reg(mcasp, DAVINCI_MCASP_TXSTAT_REG, 0xFFFFFFFF); mcasp_clr_bits(mcasp, DAVINCI_MCASP_XEVTCTL_REG, TXDATADMADIS); } else { mcasp_set_reg(mcasp, DAVINCI_MCASP_RXSTAT_REG, 0xFFFFFFFF); mcasp_clr_bits(mcasp, DAVINCI_MCASP_REVTCTL_REG, RXDATADMADIS); } for (i = 0; i < mcasp->num_serializer; i++) { mcasp_set_bits(mcasp, DAVINCI_MCASP_XRSRCTL_REG(i), mcasp->serial_dir[i]); if (mcasp->serial_dir[i] == TX_MODE && tx_ser < max_active_serializers) { mcasp_set_bits(mcasp, DAVINCI_MCASP_PDIR_REG, AXR(i)); mcasp_mod_bits(mcasp, DAVINCI_MCASP_XRSRCTL_REG(i), DISMOD_LOW, DISMOD_MASK); tx_ser++; } else if (mcasp->serial_dir[i] == RX_MODE && rx_ser < max_active_serializers) { mcasp_clr_bits(mcasp, DAVINCI_MCASP_PDIR_REG, AXR(i)); rx_ser++; } else { mcasp_mod_bits(mcasp, DAVINCI_MCASP_XRSRCTL_REG(i), SRMOD_INACTIVE, SRMOD_MASK); } } if (stream == SNDRV_PCM_STREAM_PLAYBACK) { active_serializers = tx_ser; numevt = mcasp->txnumevt; reg = mcasp->fifo_base + MCASP_WFIFOCTL_OFFSET; } else { active_serializers = rx_ser; numevt = mcasp->rxnumevt; reg = mcasp->fifo_base + MCASP_RFIFOCTL_OFFSET; } if (active_serializers < max_active_serializers) { dev_warn(mcasp->dev, "stream has more channels (%d) than are " "enabled in mcasp (%d)\n", channels, active_serializers * slots); return -EINVAL; } /* AFIFO is not in use */ if (!numevt) { /* Configure the burst size for platform drivers */ if (active_serializers > 1) { /* * If more than one serializers are in use we have one * DMA request to provide data for all serializers. * For example if three serializers are enabled the DMA * need to transfer three words per DMA request. */ dma_data->maxburst = active_serializers; } else { dma_data->maxburst = 0; } return 0; } if (period_words % active_serializers) { dev_err(mcasp->dev, "Invalid combination of period words and " "active serializers: %d, %d\n", period_words, active_serializers); return -EINVAL; } /* * Calculate the optimal AFIFO depth for platform side: * The number of words for numevt need to be in steps of active * serializers. */ numevt = (numevt / active_serializers) * active_serializers; while (period_words % numevt && numevt > 0) numevt -= active_serializers; if (numevt <= 0) numevt = active_serializers; mcasp_mod_bits(mcasp, reg, active_serializers, NUMDMA_MASK); mcasp_mod_bits(mcasp, reg, NUMEVT(numevt), NUMEVT_MASK); /* Configure the burst size for platform drivers */ if (numevt == 1) numevt = 0; dma_data->maxburst = numevt; return 0; } static int mcasp_i2s_hw_param(struct davinci_mcasp *mcasp, int stream, int channels) { int i, active_slots; int total_slots; int active_serializers; u32 mask = 0; u32 busel = 0; total_slots = mcasp->tdm_slots; /* * If more than one serializer is needed, then use them with * all the specified tdm_slots. Otherwise, one serializer can * cope with the transaction using just as many slots as there * are channels in the stream. */ if (mcasp->tdm_mask[stream]) { active_slots = hweight32(mcasp->tdm_mask[stream]); active_serializers = (channels + active_slots - 1) / active_slots; if (active_serializers == 1) { active_slots = channels; for (i = 0; i < total_slots; i++) { if ((1 << i) & mcasp->tdm_mask[stream]) { mask |= (1 << i); if (--active_slots <= 0) break; } } } } else { active_serializers = (channels + total_slots - 1) / total_slots; if (active_serializers == 1) active_slots = channels; else active_slots = total_slots; for (i = 0; i < active_slots; i++) mask |= (1 << i); } mcasp_clr_bits(mcasp, DAVINCI_MCASP_ACLKXCTL_REG, TX_ASYNC); if (!mcasp->dat_port) busel = TXSEL; if (stream == SNDRV_PCM_STREAM_PLAYBACK) { mcasp_set_reg(mcasp, DAVINCI_MCASP_TXTDM_REG, mask); mcasp_set_bits(mcasp, DAVINCI_MCASP_TXFMT_REG, busel | TXORD); mcasp_mod_bits(mcasp, DAVINCI_MCASP_TXFMCTL_REG, FSXMOD(total_slots), FSXMOD(0x1FF)); } else if (stream == SNDRV_PCM_STREAM_CAPTURE) { mcasp_set_reg(mcasp, DAVINCI_MCASP_RXTDM_REG, mask); mcasp_set_bits(mcasp, DAVINCI_MCASP_RXFMT_REG, busel | RXORD); mcasp_mod_bits(mcasp, DAVINCI_MCASP_RXFMCTL_REG, FSRMOD(total_slots), FSRMOD(0x1FF)); } return 0; } /* S/PDIF */ static int mcasp_dit_hw_param(struct davinci_mcasp *mcasp, unsigned int rate) { u32 cs_value = 0; u8 *cs_bytes = (u8*) &cs_value; /* Set the TX format : 24 bit right rotation, 32 bit slot, Pad 0 and LSB first */ mcasp_set_bits(mcasp, DAVINCI_MCASP_TXFMT_REG, TXROT(6) | TXSSZ(15)); /* Set TX frame synch : DIT Mode, 1 bit width, internal, rising edge */ mcasp_set_reg(mcasp, DAVINCI_MCASP_TXFMCTL_REG, AFSXE | FSXMOD(0x180)); /* Set the TX tdm : for all the slots */ mcasp_set_reg(mcasp, DAVINCI_MCASP_TXTDM_REG, 0xFFFFFFFF); /* Set the TX clock controls : div = 1 and internal */ mcasp_set_bits(mcasp, DAVINCI_MCASP_ACLKXCTL_REG, ACLKXE | TX_ASYNC); mcasp_clr_bits(mcasp, DAVINCI_MCASP_XEVTCTL_REG, TXDATADMADIS); /* Only 44100 and 48000 are valid, both have the same setting */ mcasp_set_bits(mcasp, DAVINCI_MCASP_AHCLKXCTL_REG, AHCLKXDIV(3)); /* Enable the DIT */ mcasp_set_bits(mcasp, DAVINCI_MCASP_TXDITCTL_REG, DITEN); /* Set S/PDIF channel status bits */ cs_bytes[0] = IEC958_AES0_CON_NOT_COPYRIGHT; cs_bytes[1] = IEC958_AES1_CON_PCM_CODER; switch (rate) { case 22050: cs_bytes[3] |= IEC958_AES3_CON_FS_22050; break; case 24000: cs_bytes[3] |= IEC958_AES3_CON_FS_24000; break; case 32000: cs_bytes[3] |= IEC958_AES3_CON_FS_32000; break; case 44100: cs_bytes[3] |= IEC958_AES3_CON_FS_44100; break; case 48000: cs_bytes[3] |= IEC958_AES3_CON_FS_48000; break; case 88200: cs_bytes[3] |= IEC958_AES3_CON_FS_88200; break; case 96000: cs_bytes[3] |= IEC958_AES3_CON_FS_96000; break; case 176400: cs_bytes[3] |= IEC958_AES3_CON_FS_176400; break; case 192000: cs_bytes[3] |= IEC958_AES3_CON_FS_192000; break; default: printk(KERN_WARNING "unsupported sampling rate: %d\n", rate); return -EINVAL; } mcasp_set_reg(mcasp, DAVINCI_MCASP_DITCSRA_REG, cs_value); mcasp_set_reg(mcasp, DAVINCI_MCASP_DITCSRB_REG, cs_value); return 0; } static int davinci_mcasp_calc_clk_div(struct davinci_mcasp *mcasp, unsigned int bclk_freq, int *error_ppm) { int div = mcasp->sysclk_freq / bclk_freq; int rem = mcasp->sysclk_freq % bclk_freq; if (rem != 0) { if (div == 0 || ((mcasp->sysclk_freq / div) - bclk_freq) > (bclk_freq - (mcasp->sysclk_freq / (div+1)))) { div++; rem = rem - bclk_freq; } } if (error_ppm) *error_ppm = (div*1000000 + (int)div64_long(1000000LL*rem, (int)bclk_freq)) /div - 1000000; return div; } static int davinci_mcasp_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params, struct snd_soc_dai *cpu_dai) { struct davinci_mcasp *mcasp = snd_soc_dai_get_drvdata(cpu_dai); int word_length; int channels = params_channels(params); int period_size = params_period_size(params); int ret; /* * If mcasp is BCLK master, and a BCLK divider was not provided by * the machine driver, we need to calculate the ratio. */ if (mcasp->bclk_master && mcasp->bclk_div == 0 && mcasp->sysclk_freq) { int slots = mcasp->tdm_slots; int rate = params_rate(params); int sbits = params_width(params); int ppm, div; if (mcasp->slot_width) sbits = mcasp->slot_width; div = davinci_mcasp_calc_clk_div(mcasp, rate*sbits*slots, &ppm); if (ppm) dev_info(mcasp->dev, "Sample-rate is off by %d PPM\n", ppm); __davinci_mcasp_set_clkdiv(cpu_dai, 1, div, 0); } ret = mcasp_common_hw_param(mcasp, substream->stream, period_size * channels, channels); if (ret) return ret; if (mcasp->op_mode == DAVINCI_MCASP_DIT_MODE) ret = mcasp_dit_hw_param(mcasp, params_rate(params)); else ret = mcasp_i2s_hw_param(mcasp, substream->stream, channels); if (ret) return ret; switch (params_format(params)) { case SNDRV_PCM_FORMAT_U8: case SNDRV_PCM_FORMAT_S8: word_length = 8; break; case SNDRV_PCM_FORMAT_U16_LE: case SNDRV_PCM_FORMAT_S16_LE: word_length = 16; break; case SNDRV_PCM_FORMAT_U24_3LE: case SNDRV_PCM_FORMAT_S24_3LE: word_length = 24; break; case SNDRV_PCM_FORMAT_U24_LE: case SNDRV_PCM_FORMAT_S24_LE: word_length = 24; break; case SNDRV_PCM_FORMAT_U32_LE: case SNDRV_PCM_FORMAT_S32_LE: word_length = 32; break; default: printk(KERN_WARNING "davinci-mcasp: unsupported PCM format"); return -EINVAL; } davinci_config_channel_size(mcasp, word_length); if (mcasp->op_mode == DAVINCI_MCASP_IIS_MODE) mcasp->channels = channels; return 0; } static int davinci_mcasp_trigger(struct snd_pcm_substream *substream, int cmd, struct snd_soc_dai *cpu_dai) { struct davinci_mcasp *mcasp = snd_soc_dai_get_drvdata(cpu_dai); int ret = 0; switch (cmd) { case SNDRV_PCM_TRIGGER_RESUME: case SNDRV_PCM_TRIGGER_START: case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: davinci_mcasp_start(mcasp, substream->stream); break; case SNDRV_PCM_TRIGGER_SUSPEND: case SNDRV_PCM_TRIGGER_STOP: case SNDRV_PCM_TRIGGER_PAUSE_PUSH: davinci_mcasp_stop(mcasp, substream->stream); break; default: ret = -EINVAL; } return ret; } static const unsigned int davinci_mcasp_dai_rates[] = { 8000, 11025, 16000, 22050, 32000, 44100, 48000, 64000, 88200, 96000, 176400, 192000, }; #define DAVINCI_MAX_RATE_ERROR_PPM 1000 static int davinci_mcasp_hw_rule_rate(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule) { struct davinci_mcasp_ruledata *rd = rule->private; struct snd_interval *ri = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE); int sbits = params_width(params); int slots = rd->mcasp->tdm_slots; struct snd_interval range; int i; if (rd->mcasp->slot_width) sbits = rd->mcasp->slot_width; snd_interval_any(&range); range.empty = 1; for (i = 0; i < ARRAY_SIZE(davinci_mcasp_dai_rates); i++) { if (snd_interval_test(ri, davinci_mcasp_dai_rates[i])) { uint bclk_freq = sbits*slots* davinci_mcasp_dai_rates[i]; int ppm; davinci_mcasp_calc_clk_div(rd->mcasp, bclk_freq, &ppm); if (abs(ppm) < DAVINCI_MAX_RATE_ERROR_PPM) { if (range.empty) { range.min = davinci_mcasp_dai_rates[i]; range.empty = 0; } range.max = davinci_mcasp_dai_rates[i]; } } } dev_dbg(rd->mcasp->dev, "Frequencies %d-%d -> %d-%d for %d sbits and %d tdm slots\n", ri->min, ri->max, range.min, range.max, sbits, slots); return snd_interval_refine(hw_param_interval(params, rule->var), &range); } static int davinci_mcasp_hw_rule_format(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule) { struct davinci_mcasp_ruledata *rd = rule->private; struct snd_mask *fmt = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT); struct snd_mask nfmt; int rate = params_rate(params); int slots = rd->mcasp->tdm_slots; int i, count = 0; snd_mask_none(&nfmt); for (i = 0; i < SNDRV_PCM_FORMAT_LAST; i++) { if (snd_mask_test(fmt, i)) { uint sbits = snd_pcm_format_width(i); int ppm; if (rd->mcasp->slot_width) sbits = rd->mcasp->slot_width; davinci_mcasp_calc_clk_div(rd->mcasp, sbits*slots*rate, &ppm); if (abs(ppm) < DAVINCI_MAX_RATE_ERROR_PPM) { snd_mask_set(&nfmt, i); count++; } } } dev_dbg(rd->mcasp->dev, "%d possible sample format for %d Hz and %d tdm slots\n", count, rate, slots); return snd_mask_refine(fmt, &nfmt); } static int davinci_mcasp_startup(struct snd_pcm_substream *substream, struct snd_soc_dai *cpu_dai) { struct davinci_mcasp *mcasp = snd_soc_dai_get_drvdata(cpu_dai); struct davinci_mcasp_ruledata *ruledata = &mcasp->ruledata[substream->stream]; u32 max_channels = 0; int i, dir; int tdm_slots = mcasp->tdm_slots; if (mcasp->tdm_mask[substream->stream]) tdm_slots = hweight32(mcasp->tdm_mask[substream->stream]); mcasp->substreams[substream->stream] = substream; if (mcasp->op_mode == DAVINCI_MCASP_DIT_MODE) return 0; /* * Limit the maximum allowed channels for the first stream: * number of serializers for the direction * tdm slots per serializer */ if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) dir = TX_MODE; else dir = RX_MODE; for (i = 0; i < mcasp->num_serializer; i++) { if (mcasp->serial_dir[i] == dir) max_channels++; } ruledata->serializers = max_channels; max_channels *= tdm_slots; /* * If the already active stream has less channels than the calculated * limnit based on the seirializers * tdm_slots, we need to use that as * a constraint for the second stream. * Otherwise (first stream or less allowed channels) we use the * calculated constraint. */ if (mcasp->channels && mcasp->channels < max_channels) max_channels = mcasp->channels; /* * But we can always allow channels upto the amount of * the available tdm_slots. */ if (max_channels < tdm_slots) max_channels = tdm_slots; snd_pcm_hw_constraint_minmax(substream->runtime, SNDRV_PCM_HW_PARAM_CHANNELS, 2, max_channels); snd_pcm_hw_constraint_list(substream->runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &mcasp->chconstr[substream->stream]); if (mcasp->slot_width) snd_pcm_hw_constraint_minmax(substream->runtime, SNDRV_PCM_HW_PARAM_SAMPLE_BITS, 8, mcasp->slot_width); /* * If we rely on implicit BCLK divider setting we should * set constraints based on what we can provide. */ if (mcasp->bclk_master && mcasp->bclk_div == 0 && mcasp->sysclk_freq) { int ret; ruledata->mcasp = mcasp; ret = snd_pcm_hw_rule_add(substream->runtime, 0, SNDRV_PCM_HW_PARAM_RATE, davinci_mcasp_hw_rule_rate, ruledata, SNDRV_PCM_HW_PARAM_FORMAT, -1); if (ret) return ret; ret = snd_pcm_hw_rule_add(substream->runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT, davinci_mcasp_hw_rule_format, ruledata, SNDRV_PCM_HW_PARAM_RATE, -1); if (ret) return ret; } return 0; } static void davinci_mcasp_shutdown(struct snd_pcm_substream *substream, struct snd_soc_dai *cpu_dai) { struct davinci_mcasp *mcasp = snd_soc_dai_get_drvdata(cpu_dai); mcasp->substreams[substream->stream] = NULL; if (mcasp->op_mode == DAVINCI_MCASP_DIT_MODE) return; if (!cpu_dai->active) mcasp->channels = 0; } static const struct snd_soc_dai_ops davinci_mcasp_dai_ops = { .startup = davinci_mcasp_startup, .shutdown = davinci_mcasp_shutdown, .trigger = davinci_mcasp_trigger, .hw_params = davinci_mcasp_hw_params, .set_fmt = davinci_mcasp_set_dai_fmt, .set_clkdiv = davinci_mcasp_set_clkdiv, .set_sysclk = davinci_mcasp_set_sysclk, .set_tdm_slot = davinci_mcasp_set_tdm_slot, }; static int davinci_mcasp_dai_probe(struct snd_soc_dai *dai) { struct davinci_mcasp *mcasp = snd_soc_dai_get_drvdata(dai); dai->playback_dma_data = &mcasp->dma_data[SNDRV_PCM_STREAM_PLAYBACK]; dai->capture_dma_data = &mcasp->dma_data[SNDRV_PCM_STREAM_CAPTURE]; return 0; } #ifdef CONFIG_PM_SLEEP static int davinci_mcasp_suspend(struct snd_soc_dai *dai) { struct davinci_mcasp *mcasp = snd_soc_dai_get_drvdata(dai); struct davinci_mcasp_context *context = &mcasp->context; u32 reg; int i; context->pm_state = pm_runtime_active(mcasp->dev); if (!context->pm_state) pm_runtime_get_sync(mcasp->dev); for (i = 0; i < ARRAY_SIZE(context_regs); i++) context->config_regs[i] = mcasp_get_reg(mcasp, context_regs[i]); if (mcasp->txnumevt) { reg = mcasp->fifo_base + MCASP_WFIFOCTL_OFFSET; context->afifo_regs[0] = mcasp_get_reg(mcasp, reg); } if (mcasp->rxnumevt) { reg = mcasp->fifo_base + MCASP_RFIFOCTL_OFFSET; context->afifo_regs[1] = mcasp_get_reg(mcasp, reg); } for (i = 0; i < mcasp->num_serializer; i++) context->xrsr_regs[i] = mcasp_get_reg(mcasp, DAVINCI_MCASP_XRSRCTL_REG(i)); pm_runtime_put_sync(mcasp->dev); return 0; } static int davinci_mcasp_resume(struct snd_soc_dai *dai) { struct davinci_mcasp *mcasp = snd_soc_dai_get_drvdata(dai); struct davinci_mcasp_context *context = &mcasp->context; u32 reg; int i; pm_runtime_get_sync(mcasp->dev); for (i = 0; i < ARRAY_SIZE(context_regs); i++) mcasp_set_reg(mcasp, context_regs[i], context->config_regs[i]); if (mcasp->txnumevt) { reg = mcasp->fifo_base + MCASP_WFIFOCTL_OFFSET; mcasp_set_reg(mcasp, reg, context->afifo_regs[0]); } if (mcasp->rxnumevt) { reg = mcasp->fifo_base + MCASP_RFIFOCTL_OFFSET; mcasp_set_reg(mcasp, reg, context->afifo_regs[1]); } for (i = 0; i < mcasp->num_serializer; i++) mcasp_set_reg(mcasp, DAVINCI_MCASP_XRSRCTL_REG(i), context->xrsr_regs[i]); if (!context->pm_state) pm_runtime_put_sync(mcasp->dev); return 0; } #else #define davinci_mcasp_suspend NULL #define davinci_mcasp_resume NULL #endif #define DAVINCI_MCASP_RATES SNDRV_PCM_RATE_8000_192000 #define DAVINCI_MCASP_PCM_FMTS (SNDRV_PCM_FMTBIT_S8 | \ SNDRV_PCM_FMTBIT_U8 | \ SNDRV_PCM_FMTBIT_S16_LE | \ SNDRV_PCM_FMTBIT_U16_LE | \ SNDRV_PCM_FMTBIT_S24_LE | \ SNDRV_PCM_FMTBIT_U24_LE | \ SNDRV_PCM_FMTBIT_S24_3LE | \ SNDRV_PCM_FMTBIT_U24_3LE | \ SNDRV_PCM_FMTBIT_S32_LE | \ SNDRV_PCM_FMTBIT_U32_LE) static struct snd_soc_dai_driver davinci_mcasp_dai[] = { { .name = "davinci-mcasp.0", .probe = davinci_mcasp_dai_probe, .suspend = davinci_mcasp_suspend, .resume = davinci_mcasp_resume, .playback = { .channels_min = 2, .channels_max = 32 * 16, .rates = DAVINCI_MCASP_RATES, .formats = DAVINCI_MCASP_PCM_FMTS, }, .capture = { .channels_min = 2, .channels_max = 32 * 16, .rates = DAVINCI_MCASP_RATES, .formats = DAVINCI_MCASP_PCM_FMTS, }, .ops = &davinci_mcasp_dai_ops, .symmetric_samplebits = 1, .symmetric_rates = 1, }, { .name = "davinci-mcasp.1", .probe = davinci_mcasp_dai_probe, .playback = { .channels_min = 1, .channels_max = 384, .rates = DAVINCI_MCASP_RATES, .formats = DAVINCI_MCASP_PCM_FMTS, }, .ops = &davinci_mcasp_dai_ops, }, }; static const struct snd_soc_component_driver davinci_mcasp_component = { .name = "davinci-mcasp", }; /* Some HW specific values and defaults. The rest is filled in from DT. */ static struct davinci_mcasp_pdata dm646x_mcasp_pdata = { .tx_dma_offset = 0x400, .rx_dma_offset = 0x400, .version = MCASP_VERSION_1, }; static struct davinci_mcasp_pdata da830_mcasp_pdata = { .tx_dma_offset = 0x2000, .rx_dma_offset = 0x2000, .version = MCASP_VERSION_2, }; static struct davinci_mcasp_pdata am33xx_mcasp_pdata = { .tx_dma_offset = 0, .rx_dma_offset = 0, .version = MCASP_VERSION_3, }; static struct davinci_mcasp_pdata dra7_mcasp_pdata = { .tx_dma_offset = 0x200, .rx_dma_offset = 0x284, .version = MCASP_VERSION_4, }; static const struct of_device_id mcasp_dt_ids[] = { { .compatible = "ti,dm646x-mcasp-audio", .data = &dm646x_mcasp_pdata, }, { .compatible = "ti,da830-mcasp-audio", .data = &da830_mcasp_pdata, }, { .compatible = "ti,am33xx-mcasp-audio", .data = &am33xx_mcasp_pdata, }, { .compatible = "ti,dra7-mcasp-audio", .data = &dra7_mcasp_pdata, }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, mcasp_dt_ids); static int mcasp_reparent_fck(struct platform_device *pdev) { struct device_node *node = pdev->dev.of_node; struct clk *gfclk, *parent_clk; const char *parent_name; int ret; if (!node) return 0; parent_name = of_get_property(node, "fck_parent", NULL); if (!parent_name) return 0; gfclk = clk_get(&pdev->dev, "fck"); if (IS_ERR(gfclk)) { dev_err(&pdev->dev, "failed to get fck\n"); return PTR_ERR(gfclk); } parent_clk = clk_get(NULL, parent_name); if (IS_ERR(parent_clk)) { dev_err(&pdev->dev, "failed to get parent clock\n"); ret = PTR_ERR(parent_clk); goto err1; } ret = clk_set_parent(gfclk, parent_clk); if (ret) { dev_err(&pdev->dev, "failed to reparent fck\n"); goto err2; } err2: clk_put(parent_clk); err1: clk_put(gfclk); return ret; } static struct davinci_mcasp_pdata *davinci_mcasp_set_pdata_from_of( struct platform_device *pdev) { struct device_node *np = pdev->dev.of_node; struct davinci_mcasp_pdata *pdata = NULL; const struct of_device_id *match = of_match_device(mcasp_dt_ids, &pdev->dev); struct of_phandle_args dma_spec; const u32 *of_serial_dir32; u32 val; int i, ret = 0; if (pdev->dev.platform_data) { pdata = pdev->dev.platform_data; return pdata; } else if (match) { pdata = (struct davinci_mcasp_pdata*) match->data; } else { /* control shouldn't reach here. something is wrong */ ret = -EINVAL; goto nodata; } ret = of_property_read_u32(np, "op-mode", &val); if (ret >= 0) pdata->op_mode = val; ret = of_property_read_u32(np, "tdm-slots", &val); if (ret >= 0) { if (val < 2 || val > 32) { dev_err(&pdev->dev, "tdm-slots must be in rage [2-32]\n"); ret = -EINVAL; goto nodata; } pdata->tdm_slots = val; } of_serial_dir32 = of_get_property(np, "serial-dir", &val); val /= sizeof(u32); if (of_serial_dir32) { u8 *of_serial_dir = devm_kzalloc(&pdev->dev, (sizeof(*of_serial_dir) * val), GFP_KERNEL); if (!of_serial_dir) { ret = -ENOMEM; goto nodata; } for (i = 0; i < val; i++) of_serial_dir[i] = be32_to_cpup(&of_serial_dir32[i]); pdata->num_serializer = val; pdata->serial_dir = of_serial_dir; } ret = of_property_match_string(np, "dma-names", "tx"); if (ret < 0) goto nodata; ret = of_parse_phandle_with_args(np, "dmas", "#dma-cells", ret, &dma_spec); if (ret < 0) goto nodata; pdata->tx_dma_channel = dma_spec.args[0]; /* RX is not valid in DIT mode */ if (pdata->op_mode != DAVINCI_MCASP_DIT_MODE) { ret = of_property_match_string(np, "dma-names", "rx"); if (ret < 0) goto nodata; ret = of_parse_phandle_with_args(np, "dmas", "#dma-cells", ret, &dma_spec); if (ret < 0) goto nodata; pdata->rx_dma_channel = dma_spec.args[0]; } ret = of_property_read_u32(np, "tx-num-evt", &val); if (ret >= 0) pdata->txnumevt = val; ret = of_property_read_u32(np, "rx-num-evt", &val); if (ret >= 0) pdata->rxnumevt = val; ret = of_property_read_u32(np, "sram-size-playback", &val); if (ret >= 0) pdata->sram_size_playback = val; ret = of_property_read_u32(np, "sram-size-capture", &val); if (ret >= 0) pdata->sram_size_capture = val; return pdata; nodata: if (ret < 0) { dev_err(&pdev->dev, "Error populating platform data, err %d\n", ret); pdata = NULL; } return pdata; } enum { PCM_EDMA, PCM_SDMA, }; static const char *sdma_prefix = "ti,omap"; static int davinci_mcasp_get_dma_type(struct davinci_mcasp *mcasp) { struct dma_chan *chan; const char *tmp; int ret = PCM_EDMA; if (!mcasp->dev->of_node) return PCM_EDMA; tmp = mcasp->dma_data[SNDRV_PCM_STREAM_PLAYBACK].filter_data; chan = dma_request_slave_channel_reason(mcasp->dev, tmp); if (IS_ERR(chan)) { if (PTR_ERR(chan) != -EPROBE_DEFER) dev_err(mcasp->dev, "Can't verify DMA configuration (%ld)\n", PTR_ERR(chan)); return PTR_ERR(chan); } BUG_ON(!chan->device || !chan->device->dev); if (chan->device->dev->of_node) ret = of_property_read_string(chan->device->dev->of_node, "compatible", &tmp); else dev_dbg(mcasp->dev, "DMA controller has no of-node\n"); dma_release_channel(chan); if (ret) return ret; dev_dbg(mcasp->dev, "DMA controller compatible = \"%s\"\n", tmp); if (!strncmp(tmp, sdma_prefix, strlen(sdma_prefix))) return PCM_SDMA; return PCM_EDMA; } static int davinci_mcasp_probe(struct platform_device *pdev) { struct snd_dmaengine_dai_dma_data *dma_data; struct resource *mem, *res, *dat; struct davinci_mcasp_pdata *pdata; struct davinci_mcasp *mcasp; char *irq_name; int *dma; int irq; int ret; if (!pdev->dev.platform_data && !pdev->dev.of_node) { dev_err(&pdev->dev, "No platform data supplied\n"); return -EINVAL; } mcasp = devm_kzalloc(&pdev->dev, sizeof(struct davinci_mcasp), GFP_KERNEL); if (!mcasp) return -ENOMEM; pdata = davinci_mcasp_set_pdata_from_of(pdev); if (!pdata) { dev_err(&pdev->dev, "no platform data\n"); return -EINVAL; } mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "mpu"); if (!mem) { dev_warn(mcasp->dev, "\"mpu\" mem resource not found, using index 0\n"); mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!mem) { dev_err(&pdev->dev, "no mem resource?\n"); return -ENODEV; } } mcasp->base = devm_ioremap_resource(&pdev->dev, mem); if (IS_ERR(mcasp->base)) return PTR_ERR(mcasp->base); pm_runtime_enable(&pdev->dev); mcasp->op_mode = pdata->op_mode; /* sanity check for tdm slots parameter */ if (mcasp->op_mode == DAVINCI_MCASP_IIS_MODE) { if (pdata->tdm_slots < 2) { dev_err(&pdev->dev, "invalid tdm slots: %d\n", pdata->tdm_slots); mcasp->tdm_slots = 2; } else if (pdata->tdm_slots > 32) { dev_err(&pdev->dev, "invalid tdm slots: %d\n", pdata->tdm_slots); mcasp->tdm_slots = 32; } else { mcasp->tdm_slots = pdata->tdm_slots; } } mcasp->num_serializer = pdata->num_serializer; #ifdef CONFIG_PM_SLEEP mcasp->context.xrsr_regs = devm_kzalloc(&pdev->dev, sizeof(u32) * mcasp->num_serializer, GFP_KERNEL); #endif mcasp->serial_dir = pdata->serial_dir; mcasp->version = pdata->version; mcasp->txnumevt = pdata->txnumevt; mcasp->rxnumevt = pdata->rxnumevt; mcasp->dev = &pdev->dev; irq = platform_get_irq_byname(pdev, "common"); if (irq >= 0) { irq_name = devm_kasprintf(&pdev->dev, GFP_KERNEL, "%s_common", dev_name(&pdev->dev)); ret = devm_request_threaded_irq(&pdev->dev, irq, NULL, davinci_mcasp_common_irq_handler, IRQF_ONESHOT | IRQF_SHARED, irq_name, mcasp); if (ret) { dev_err(&pdev->dev, "common IRQ request failed\n"); goto err; } mcasp->irq_request[SNDRV_PCM_STREAM_PLAYBACK] = XUNDRN; mcasp->irq_request[SNDRV_PCM_STREAM_CAPTURE] = ROVRN; } irq = platform_get_irq_byname(pdev, "rx"); if (irq >= 0) { irq_name = devm_kasprintf(&pdev->dev, GFP_KERNEL, "%s_rx", dev_name(&pdev->dev)); ret = devm_request_threaded_irq(&pdev->dev, irq, NULL, davinci_mcasp_rx_irq_handler, IRQF_ONESHOT, irq_name, mcasp); if (ret) { dev_err(&pdev->dev, "RX IRQ request failed\n"); goto err; } mcasp->irq_request[SNDRV_PCM_STREAM_CAPTURE] = ROVRN; } irq = platform_get_irq_byname(pdev, "tx"); if (irq >= 0) { irq_name = devm_kasprintf(&pdev->dev, GFP_KERNEL, "%s_tx", dev_name(&pdev->dev)); ret = devm_request_threaded_irq(&pdev->dev, irq, NULL, davinci_mcasp_tx_irq_handler, IRQF_ONESHOT, irq_name, mcasp); if (ret) { dev_err(&pdev->dev, "TX IRQ request failed\n"); goto err; } mcasp->irq_request[SNDRV_PCM_STREAM_PLAYBACK] = XUNDRN; } dat = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dat"); if (dat) mcasp->dat_port = true; dma_data = &mcasp->dma_data[SNDRV_PCM_STREAM_PLAYBACK]; if (dat) dma_data->addr = dat->start; else dma_data->addr = mem->start + pdata->tx_dma_offset; dma = &mcasp->dma_request[SNDRV_PCM_STREAM_PLAYBACK]; res = platform_get_resource(pdev, IORESOURCE_DMA, 0); if (res) *dma = res->start; else *dma = pdata->tx_dma_channel; /* dmaengine filter data for DT and non-DT boot */ if (pdev->dev.of_node) dma_data->filter_data = "tx"; else dma_data->filter_data = dma; /* RX is not valid in DIT mode */ if (mcasp->op_mode != DAVINCI_MCASP_DIT_MODE) { dma_data = &mcasp->dma_data[SNDRV_PCM_STREAM_CAPTURE]; if (dat) dma_data->addr = dat->start; else dma_data->addr = mem->start + pdata->rx_dma_offset; dma = &mcasp->dma_request[SNDRV_PCM_STREAM_CAPTURE]; res = platform_get_resource(pdev, IORESOURCE_DMA, 1); if (res) *dma = res->start; else *dma = pdata->rx_dma_channel; /* dmaengine filter data for DT and non-DT boot */ if (pdev->dev.of_node) dma_data->filter_data = "rx"; else dma_data->filter_data = dma; } if (mcasp->version < MCASP_VERSION_3) { mcasp->fifo_base = DAVINCI_MCASP_V2_AFIFO_BASE; /* dma_params->dma_addr is pointing to the data port address */ mcasp->dat_port = true; } else { mcasp->fifo_base = DAVINCI_MCASP_V3_AFIFO_BASE; } /* Allocate memory for long enough list for all possible * scenarios. Maximum number tdm slots is 32 and there cannot * be more serializers than given in the configuration. The * serializer directions could be taken into account, but it * would make code much more complex and save only couple of * bytes. */ mcasp->chconstr[SNDRV_PCM_STREAM_PLAYBACK].list = devm_kzalloc(mcasp->dev, sizeof(unsigned int) * (32 + mcasp->num_serializer - 2), GFP_KERNEL); mcasp->chconstr[SNDRV_PCM_STREAM_CAPTURE].list = devm_kzalloc(mcasp->dev, sizeof(unsigned int) * (32 + mcasp->num_serializer - 2), GFP_KERNEL); if (!mcasp->chconstr[SNDRV_PCM_STREAM_PLAYBACK].list || !mcasp->chconstr[SNDRV_PCM_STREAM_CAPTURE].list) return -ENOMEM; ret = davinci_mcasp_set_ch_constraints(mcasp); if (ret) goto err; dev_set_drvdata(&pdev->dev, mcasp); mcasp_reparent_fck(pdev); ret = devm_snd_soc_register_component(&pdev->dev, &davinci_mcasp_component, &davinci_mcasp_dai[pdata->op_mode], 1); if (ret != 0) goto err; ret = davinci_mcasp_get_dma_type(mcasp); switch (ret) { case PCM_EDMA: #if IS_BUILTIN(CONFIG_SND_EDMA_SOC) || \ (IS_MODULE(CONFIG_SND_DAVINCI_SOC_MCASP) && \ IS_MODULE(CONFIG_SND_EDMA_SOC)) ret = edma_pcm_platform_register(&pdev->dev); #else dev_err(&pdev->dev, "Missing SND_EDMA_SOC\n"); ret = -EINVAL; goto err; #endif break; case PCM_SDMA: #if IS_BUILTIN(CONFIG_SND_OMAP_SOC) || \ (IS_MODULE(CONFIG_SND_DAVINCI_SOC_MCASP) && \ IS_MODULE(CONFIG_SND_OMAP_SOC)) ret = omap_pcm_platform_register(&pdev->dev); #else dev_err(&pdev->dev, "Missing SND_SDMA_SOC\n"); ret = -EINVAL; goto err; #endif break; default: dev_err(&pdev->dev, "No DMA controller found (%d)\n", ret); case -EPROBE_DEFER: goto err; break; } if (ret) { dev_err(&pdev->dev, "register PCM failed: %d\n", ret); goto err; } return 0; err: pm_runtime_disable(&pdev->dev); return ret; } static int davinci_mcasp_remove(struct platform_device *pdev) { pm_runtime_disable(&pdev->dev); return 0; } static struct platform_driver davinci_mcasp_driver = { .probe = davinci_mcasp_probe, .remove = davinci_mcasp_remove, .driver = { .name = "davinci-mcasp", .of_match_table = mcasp_dt_ids, }, }; module_platform_driver(davinci_mcasp_driver); MODULE_AUTHOR("Steve Chen"); MODULE_DESCRIPTION("TI DAVINCI McASP SoC Interface"); MODULE_LICENSE("GPL");