// SPDX-License-Identifier: GPL-2.0 // // Freescale ASRC ALSA SoC Digital Audio Interface (DAI) driver // // Copyright (C) 2014 Freescale Semiconductor, Inc. // // Author: Nicolin Chen #include #include #include #include #include #include #include #include #include #include "fsl_asrc.h" #define IDEAL_RATIO_DECIMAL_DEPTH 26 #define pair_err(fmt, ...) \ dev_err(&asrc->pdev->dev, "Pair %c: " fmt, 'A' + index, ##__VA_ARGS__) #define pair_dbg(fmt, ...) \ dev_dbg(&asrc->pdev->dev, "Pair %c: " fmt, 'A' + index, ##__VA_ARGS__) /* Corresponding to process_option */ static unsigned int supported_asrc_rate[] = { 5512, 8000, 11025, 12000, 16000, 22050, 24000, 32000, 44100, 48000, 64000, 88200, 96000, 128000, 176400, 192000, }; static struct snd_pcm_hw_constraint_list fsl_asrc_rate_constraints = { .count = ARRAY_SIZE(supported_asrc_rate), .list = supported_asrc_rate, }; /** * The following tables map the relationship between asrc_inclk/asrc_outclk in * fsl_asrc.h and the registers of ASRCSR */ static unsigned char input_clk_map_imx35[ASRC_CLK_MAP_LEN] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, }; static unsigned char output_clk_map_imx35[ASRC_CLK_MAP_LEN] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, }; /* i.MX53 uses the same map for input and output */ static unsigned char input_clk_map_imx53[ASRC_CLK_MAP_LEN] = { /* 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xa 0xb 0xc 0xd 0xe 0xf */ 0x0, 0x1, 0x2, 0x7, 0x4, 0x5, 0x6, 0x3, 0x8, 0x9, 0xa, 0xb, 0xc, 0xf, 0xe, 0xd, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, }; static unsigned char output_clk_map_imx53[ASRC_CLK_MAP_LEN] = { /* 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xa 0xb 0xc 0xd 0xe 0xf */ 0x8, 0x9, 0xa, 0x7, 0xc, 0x5, 0x6, 0xb, 0x0, 0x1, 0x2, 0x3, 0x4, 0xf, 0xe, 0xd, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, }; /** * i.MX8QM/i.MX8QXP uses the same map for input and output. * clk_map_imx8qm[0] is for i.MX8QM asrc0 * clk_map_imx8qm[1] is for i.MX8QM asrc1 * clk_map_imx8qxp[0] is for i.MX8QXP asrc0 * clk_map_imx8qxp[1] is for i.MX8QXP asrc1 */ static unsigned char clk_map_imx8qm[2][ASRC_CLK_MAP_LEN] = { { 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0x0, 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, }, { 0xf, 0xf, 0xf, 0xf, 0xf, 0x7, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0x0, 0x0, 0x1, 0x2, 0x3, 0xb, 0xc, 0xf, 0xf, 0xd, 0xe, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0x4, 0x5, 0x6, 0xf, 0x8, 0x9, 0xa, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, }, }; static unsigned char clk_map_imx8qxp[2][ASRC_CLK_MAP_LEN] = { { 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0x0, 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0xf, 0x7, 0x8, 0x9, 0xa, 0xb, 0xc, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, }, { 0xf, 0xf, 0xf, 0xf, 0xf, 0x7, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0x0, 0x0, 0x1, 0x2, 0x3, 0x7, 0x8, 0xf, 0xf, 0x9, 0xa, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0x6, 0xf, 0xf, 0xf, 0xa, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, }, }; /** * Select the pre-processing and post-processing options * Make sure to exclude following unsupported cases before * calling this function: * 1) inrate > 8.125 * outrate * 2) inrate > 16.125 * outrate * * inrate: input sample rate * outrate: output sample rate * pre_proc: return value for pre-processing option * post_proc: return value for post-processing option */ static void fsl_asrc_sel_proc(int inrate, int outrate, int *pre_proc, int *post_proc) { bool post_proc_cond2; bool post_proc_cond0; /* select pre_proc between [0, 2] */ if (inrate * 8 > 33 * outrate) *pre_proc = 2; else if (inrate * 8 > 15 * outrate) { if (inrate > 152000) *pre_proc = 2; else *pre_proc = 1; } else if (inrate < 76000) *pre_proc = 0; else if (inrate > 152000) *pre_proc = 2; else *pre_proc = 1; /* Condition for selection of post-processing */ post_proc_cond2 = (inrate * 15 > outrate * 16 && outrate < 56000) || (inrate > 56000 && outrate < 56000); post_proc_cond0 = inrate * 23 < outrate * 8; if (post_proc_cond2) *post_proc = 2; else if (post_proc_cond0) *post_proc = 0; else *post_proc = 1; } /** * Request ASRC pair * * It assigns pair by the order of A->C->B because allocation of pair B, * within range [ANCA, ANCA+ANCB-1], depends on the channels of pair A * while pair A and pair C are comparatively independent. */ int fsl_asrc_request_pair(int channels, struct fsl_asrc_pair *pair) { enum asrc_pair_index index = ASRC_INVALID_PAIR; struct fsl_asrc *asrc = pair->asrc; struct device *dev = &asrc->pdev->dev; unsigned long lock_flags; int i, ret = 0; spin_lock_irqsave(&asrc->lock, lock_flags); for (i = ASRC_PAIR_A; i < ASRC_PAIR_MAX_NUM; i++) { if (asrc->pair[i] != NULL) continue; index = i; if (i != ASRC_PAIR_B) break; } if (index == ASRC_INVALID_PAIR) { dev_err(dev, "all pairs are busy now\n"); ret = -EBUSY; } else if (asrc->channel_avail < channels) { dev_err(dev, "can't afford required channels: %d\n", channels); ret = -EINVAL; } else { asrc->channel_avail -= channels; asrc->pair[index] = pair; pair->channels = channels; pair->index = index; } spin_unlock_irqrestore(&asrc->lock, lock_flags); return ret; } /** * Release ASRC pair * * It clears the resource from asrc and releases the occupied channels. */ void fsl_asrc_release_pair(struct fsl_asrc_pair *pair) { struct fsl_asrc *asrc = pair->asrc; enum asrc_pair_index index = pair->index; unsigned long lock_flags; /* Make sure the pair is disabled */ regmap_update_bits(asrc->regmap, REG_ASRCTR, ASRCTR_ASRCEi_MASK(index), 0); spin_lock_irqsave(&asrc->lock, lock_flags); asrc->channel_avail += pair->channels; asrc->pair[index] = NULL; pair->error = 0; spin_unlock_irqrestore(&asrc->lock, lock_flags); } /** * Configure input and output thresholds */ static void fsl_asrc_set_watermarks(struct fsl_asrc_pair *pair, u32 in, u32 out) { struct fsl_asrc *asrc = pair->asrc; enum asrc_pair_index index = pair->index; regmap_update_bits(asrc->regmap, REG_ASRMCR(index), ASRMCRi_EXTTHRSHi_MASK | ASRMCRi_INFIFO_THRESHOLD_MASK | ASRMCRi_OUTFIFO_THRESHOLD_MASK, ASRMCRi_EXTTHRSHi | ASRMCRi_INFIFO_THRESHOLD(in) | ASRMCRi_OUTFIFO_THRESHOLD(out)); } /** * Calculate the total divisor between asrck clock rate and sample rate * * It follows the formula clk_rate = samplerate * (2 ^ prescaler) * divider */ static u32 fsl_asrc_cal_asrck_divisor(struct fsl_asrc_pair *pair, u32 div) { u32 ps; /* Calculate the divisors: prescaler [2^0, 2^7], divder [1, 8] */ for (ps = 0; div > 8; ps++) div >>= 1; return ((div - 1) << ASRCDRi_AxCPi_WIDTH) | ps; } /** * Calculate and set the ratio for Ideal Ratio mode only * * The ratio is a 32-bit fixed point value with 26 fractional bits. */ static int fsl_asrc_set_ideal_ratio(struct fsl_asrc_pair *pair, int inrate, int outrate) { struct fsl_asrc *asrc = pair->asrc; enum asrc_pair_index index = pair->index; unsigned long ratio; int i; if (!outrate) { pair_err("output rate should not be zero\n"); return -EINVAL; } /* Calculate the intergal part of the ratio */ ratio = (inrate / outrate) << IDEAL_RATIO_DECIMAL_DEPTH; /* ... and then the 26 depth decimal part */ inrate %= outrate; for (i = 1; i <= IDEAL_RATIO_DECIMAL_DEPTH; i++) { inrate <<= 1; if (inrate < outrate) continue; ratio |= 1 << (IDEAL_RATIO_DECIMAL_DEPTH - i); inrate -= outrate; if (!inrate) break; } regmap_write(asrc->regmap, REG_ASRIDRL(index), ratio); regmap_write(asrc->regmap, REG_ASRIDRH(index), ratio >> 24); return 0; } /** * Configure the assigned ASRC pair * * It configures those ASRC registers according to a configuration instance * of struct asrc_config which includes in/output sample rate, width, channel * and clock settings. * * Note: * The ideal ratio configuration can work with a flexible clock rate setting. * Using IDEAL_RATIO_RATE gives a faster converting speed but overloads ASRC. * For a regular audio playback, the clock rate should not be slower than an * clock rate aligning with the output sample rate; For a use case requiring * faster conversion, set use_ideal_rate to have the faster speed. */ static int fsl_asrc_config_pair(struct fsl_asrc_pair *pair, bool use_ideal_rate) { struct asrc_config *config = pair->config; struct fsl_asrc *asrc = pair->asrc; enum asrc_pair_index index = pair->index; enum asrc_word_width input_word_width; enum asrc_word_width output_word_width; u32 inrate, outrate, indiv, outdiv; u32 clk_index[2], div[2], rem[2]; u64 clk_rate; int in, out, channels; int pre_proc, post_proc; struct clk *clk; bool ideal; if (!config) { pair_err("invalid pair config\n"); return -EINVAL; } /* Validate channels */ if (config->channel_num < 1 || config->channel_num > 10) { pair_err("does not support %d channels\n", config->channel_num); return -EINVAL; } switch (snd_pcm_format_width(config->input_format)) { case 8: input_word_width = ASRC_WIDTH_8_BIT; break; case 16: input_word_width = ASRC_WIDTH_16_BIT; break; case 24: input_word_width = ASRC_WIDTH_24_BIT; break; default: pair_err("does not support this input format, %d\n", config->input_format); return -EINVAL; } switch (snd_pcm_format_width(config->output_format)) { case 16: output_word_width = ASRC_WIDTH_16_BIT; break; case 24: output_word_width = ASRC_WIDTH_24_BIT; break; default: pair_err("does not support this output format, %d\n", config->output_format); return -EINVAL; } inrate = config->input_sample_rate; outrate = config->output_sample_rate; ideal = config->inclk == INCLK_NONE; /* Validate input and output sample rates */ for (in = 0; in < ARRAY_SIZE(supported_asrc_rate); in++) if (inrate == supported_asrc_rate[in]) break; if (in == ARRAY_SIZE(supported_asrc_rate)) { pair_err("unsupported input sample rate: %dHz\n", inrate); return -EINVAL; } for (out = 0; out < ARRAY_SIZE(supported_asrc_rate); out++) if (outrate == supported_asrc_rate[out]) break; if (out == ARRAY_SIZE(supported_asrc_rate)) { pair_err("unsupported output sample rate: %dHz\n", outrate); return -EINVAL; } if ((outrate >= 5512 && outrate <= 30000) && (outrate > 24 * inrate || inrate > 8 * outrate)) { pair_err("exceed supported ratio range [1/24, 8] for \ inrate/outrate: %d/%d\n", inrate, outrate); return -EINVAL; } /* Validate input and output clock sources */ clk_index[IN] = asrc->clk_map[IN][config->inclk]; clk_index[OUT] = asrc->clk_map[OUT][config->outclk]; /* We only have output clock for ideal ratio mode */ clk = asrc->asrck_clk[clk_index[ideal ? OUT : IN]]; clk_rate = clk_get_rate(clk); rem[IN] = do_div(clk_rate, inrate); div[IN] = (u32)clk_rate; /* * The divider range is [1, 1024], defined by the hardware. For non- * ideal ratio configuration, clock rate has to be strictly aligned * with the sample rate. For ideal ratio configuration, clock rates * only result in different converting speeds. So remainder does not * matter, as long as we keep the divider within its valid range. */ if (div[IN] == 0 || (!ideal && (div[IN] > 1024 || rem[IN] != 0))) { pair_err("failed to support input sample rate %dHz by asrck_%x\n", inrate, clk_index[ideal ? OUT : IN]); return -EINVAL; } div[IN] = min_t(u32, 1024, div[IN]); clk = asrc->asrck_clk[clk_index[OUT]]; clk_rate = clk_get_rate(clk); if (ideal && use_ideal_rate) rem[OUT] = do_div(clk_rate, IDEAL_RATIO_RATE); else rem[OUT] = do_div(clk_rate, outrate); div[OUT] = clk_rate; /* Output divider has the same limitation as the input one */ if (div[OUT] == 0 || (!ideal && (div[OUT] > 1024 || rem[OUT] != 0))) { pair_err("failed to support output sample rate %dHz by asrck_%x\n", outrate, clk_index[OUT]); return -EINVAL; } div[OUT] = min_t(u32, 1024, div[OUT]); /* Set the channel number */ channels = config->channel_num; if (asrc->soc->channel_bits < 4) channels /= 2; /* Update channels for current pair */ regmap_update_bits(asrc->regmap, REG_ASRCNCR, ASRCNCR_ANCi_MASK(index, asrc->soc->channel_bits), ASRCNCR_ANCi(index, channels, asrc->soc->channel_bits)); /* Default setting: Automatic selection for processing mode */ regmap_update_bits(asrc->regmap, REG_ASRCTR, ASRCTR_ATSi_MASK(index), ASRCTR_ATS(index)); regmap_update_bits(asrc->regmap, REG_ASRCTR, ASRCTR_USRi_MASK(index), 0); /* Set the input and output clock sources */ regmap_update_bits(asrc->regmap, REG_ASRCSR, ASRCSR_AICSi_MASK(index) | ASRCSR_AOCSi_MASK(index), ASRCSR_AICS(index, clk_index[IN]) | ASRCSR_AOCS(index, clk_index[OUT])); /* Calculate the input clock divisors */ indiv = fsl_asrc_cal_asrck_divisor(pair, div[IN]); outdiv = fsl_asrc_cal_asrck_divisor(pair, div[OUT]); /* Suppose indiv and outdiv includes prescaler, so add its MASK too */ regmap_update_bits(asrc->regmap, REG_ASRCDR(index), ASRCDRi_AOCPi_MASK(index) | ASRCDRi_AICPi_MASK(index) | ASRCDRi_AOCDi_MASK(index) | ASRCDRi_AICDi_MASK(index), ASRCDRi_AOCP(index, outdiv) | ASRCDRi_AICP(index, indiv)); /* Implement word_width configurations */ regmap_update_bits(asrc->regmap, REG_ASRMCR1(index), ASRMCR1i_OW16_MASK | ASRMCR1i_IWD_MASK, ASRMCR1i_OW16(output_word_width) | ASRMCR1i_IWD(input_word_width)); /* Enable BUFFER STALL */ regmap_update_bits(asrc->regmap, REG_ASRMCR(index), ASRMCRi_BUFSTALLi_MASK, ASRMCRi_BUFSTALLi); /* Set default thresholds for input and output FIFO */ fsl_asrc_set_watermarks(pair, ASRC_INPUTFIFO_THRESHOLD, ASRC_INPUTFIFO_THRESHOLD); /* Configure the following only for Ideal Ratio mode */ if (!ideal) return 0; /* Clear ASTSx bit to use Ideal Ratio mode */ regmap_update_bits(asrc->regmap, REG_ASRCTR, ASRCTR_ATSi_MASK(index), 0); /* Enable Ideal Ratio mode */ regmap_update_bits(asrc->regmap, REG_ASRCTR, ASRCTR_IDRi_MASK(index) | ASRCTR_USRi_MASK(index), ASRCTR_IDR(index) | ASRCTR_USR(index)); fsl_asrc_sel_proc(inrate, outrate, &pre_proc, &post_proc); /* Apply configurations for pre- and post-processing */ regmap_update_bits(asrc->regmap, REG_ASRCFG, ASRCFG_PREMODi_MASK(index) | ASRCFG_POSTMODi_MASK(index), ASRCFG_PREMOD(index, pre_proc) | ASRCFG_POSTMOD(index, post_proc)); return fsl_asrc_set_ideal_ratio(pair, inrate, outrate); } /** * Start the assigned ASRC pair * * It enables the assigned pair and makes it stopped at the stall level. */ static void fsl_asrc_start_pair(struct fsl_asrc_pair *pair) { struct fsl_asrc *asrc = pair->asrc; enum asrc_pair_index index = pair->index; int reg, retry = 10, i; /* Enable the current pair */ regmap_update_bits(asrc->regmap, REG_ASRCTR, ASRCTR_ASRCEi_MASK(index), ASRCTR_ASRCE(index)); /* Wait for status of initialization */ do { udelay(5); regmap_read(asrc->regmap, REG_ASRCFG, ®); reg &= ASRCFG_INIRQi_MASK(index); } while (!reg && --retry); /* Make the input fifo to ASRC STALL level */ regmap_read(asrc->regmap, REG_ASRCNCR, ®); for (i = 0; i < pair->channels * 4; i++) regmap_write(asrc->regmap, REG_ASRDI(index), 0); /* Enable overload interrupt */ regmap_write(asrc->regmap, REG_ASRIER, ASRIER_AOLIE); } /** * Stop the assigned ASRC pair */ static void fsl_asrc_stop_pair(struct fsl_asrc_pair *pair) { struct fsl_asrc *asrc = pair->asrc; enum asrc_pair_index index = pair->index; /* Stop the current pair */ regmap_update_bits(asrc->regmap, REG_ASRCTR, ASRCTR_ASRCEi_MASK(index), 0); } /** * Get DMA channel according to the pair and direction. */ struct dma_chan *fsl_asrc_get_dma_channel(struct fsl_asrc_pair *pair, bool dir) { struct fsl_asrc *asrc = pair->asrc; enum asrc_pair_index index = pair->index; char name[4]; sprintf(name, "%cx%c", dir == IN ? 'r' : 't', index + 'a'); return dma_request_slave_channel(&asrc->pdev->dev, name); } EXPORT_SYMBOL_GPL(fsl_asrc_get_dma_channel); static int fsl_asrc_dai_startup(struct snd_pcm_substream *substream, struct snd_soc_dai *dai) { struct fsl_asrc *asrc = snd_soc_dai_get_drvdata(dai); /* Odd channel number is not valid for older ASRC (channel_bits==3) */ if (asrc->soc->channel_bits == 3) snd_pcm_hw_constraint_step(substream->runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, 2); return snd_pcm_hw_constraint_list(substream->runtime, 0, SNDRV_PCM_HW_PARAM_RATE, &fsl_asrc_rate_constraints); } static int fsl_asrc_dai_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params, struct snd_soc_dai *dai) { struct fsl_asrc *asrc = snd_soc_dai_get_drvdata(dai); struct snd_pcm_runtime *runtime = substream->runtime; struct fsl_asrc_pair *pair = runtime->private_data; unsigned int channels = params_channels(params); unsigned int rate = params_rate(params); struct asrc_config config; int ret; ret = fsl_asrc_request_pair(channels, pair); if (ret) { dev_err(dai->dev, "fail to request asrc pair\n"); return ret; } pair->config = &config; config.pair = pair->index; config.channel_num = channels; config.inclk = INCLK_NONE; config.outclk = OUTCLK_ASRCK1_CLK; if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { config.input_format = params_format(params); config.output_format = asrc->asrc_format; config.input_sample_rate = rate; config.output_sample_rate = asrc->asrc_rate; } else { config.input_format = asrc->asrc_format; config.output_format = params_format(params); config.input_sample_rate = asrc->asrc_rate; config.output_sample_rate = rate; } ret = fsl_asrc_config_pair(pair, false); if (ret) { dev_err(dai->dev, "fail to config asrc pair\n"); return ret; } return 0; } static int fsl_asrc_dai_hw_free(struct snd_pcm_substream *substream, struct snd_soc_dai *dai) { struct snd_pcm_runtime *runtime = substream->runtime; struct fsl_asrc_pair *pair = runtime->private_data; if (pair) fsl_asrc_release_pair(pair); return 0; } static int fsl_asrc_dai_trigger(struct snd_pcm_substream *substream, int cmd, struct snd_soc_dai *dai) { struct snd_pcm_runtime *runtime = substream->runtime; struct fsl_asrc_pair *pair = runtime->private_data; switch (cmd) { case SNDRV_PCM_TRIGGER_START: case SNDRV_PCM_TRIGGER_RESUME: case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: fsl_asrc_start_pair(pair); break; case SNDRV_PCM_TRIGGER_STOP: case SNDRV_PCM_TRIGGER_SUSPEND: case SNDRV_PCM_TRIGGER_PAUSE_PUSH: fsl_asrc_stop_pair(pair); break; default: return -EINVAL; } return 0; } static const struct snd_soc_dai_ops fsl_asrc_dai_ops = { .startup = fsl_asrc_dai_startup, .hw_params = fsl_asrc_dai_hw_params, .hw_free = fsl_asrc_dai_hw_free, .trigger = fsl_asrc_dai_trigger, }; static int fsl_asrc_dai_probe(struct snd_soc_dai *dai) { struct fsl_asrc *asrc = snd_soc_dai_get_drvdata(dai); snd_soc_dai_init_dma_data(dai, &asrc->dma_params_tx, &asrc->dma_params_rx); return 0; } #define FSL_ASRC_FORMATS (SNDRV_PCM_FMTBIT_S24_LE | \ SNDRV_PCM_FMTBIT_S16_LE | \ SNDRV_PCM_FMTBIT_S24_3LE) static struct snd_soc_dai_driver fsl_asrc_dai = { .probe = fsl_asrc_dai_probe, .playback = { .stream_name = "ASRC-Playback", .channels_min = 1, .channels_max = 10, .rate_min = 5512, .rate_max = 192000, .rates = SNDRV_PCM_RATE_KNOT, .formats = FSL_ASRC_FORMATS | SNDRV_PCM_FMTBIT_S8, }, .capture = { .stream_name = "ASRC-Capture", .channels_min = 1, .channels_max = 10, .rate_min = 5512, .rate_max = 192000, .rates = SNDRV_PCM_RATE_KNOT, .formats = FSL_ASRC_FORMATS, }, .ops = &fsl_asrc_dai_ops, }; static bool fsl_asrc_readable_reg(struct device *dev, unsigned int reg) { switch (reg) { case REG_ASRCTR: case REG_ASRIER: case REG_ASRCNCR: case REG_ASRCFG: case REG_ASRCSR: case REG_ASRCDR1: case REG_ASRCDR2: case REG_ASRSTR: case REG_ASRPM1: case REG_ASRPM2: case REG_ASRPM3: case REG_ASRPM4: case REG_ASRPM5: case REG_ASRTFR1: case REG_ASRCCR: case REG_ASRDOA: case REG_ASRDOB: case REG_ASRDOC: case REG_ASRIDRHA: case REG_ASRIDRLA: case REG_ASRIDRHB: case REG_ASRIDRLB: case REG_ASRIDRHC: case REG_ASRIDRLC: case REG_ASR76K: case REG_ASR56K: case REG_ASRMCRA: case REG_ASRFSTA: case REG_ASRMCRB: case REG_ASRFSTB: case REG_ASRMCRC: case REG_ASRFSTC: case REG_ASRMCR1A: case REG_ASRMCR1B: case REG_ASRMCR1C: return true; default: return false; } } static bool fsl_asrc_volatile_reg(struct device *dev, unsigned int reg) { switch (reg) { case REG_ASRSTR: case REG_ASRDIA: case REG_ASRDIB: case REG_ASRDIC: case REG_ASRDOA: case REG_ASRDOB: case REG_ASRDOC: case REG_ASRFSTA: case REG_ASRFSTB: case REG_ASRFSTC: case REG_ASRCFG: return true; default: return false; } } static bool fsl_asrc_writeable_reg(struct device *dev, unsigned int reg) { switch (reg) { case REG_ASRCTR: case REG_ASRIER: case REG_ASRCNCR: case REG_ASRCFG: case REG_ASRCSR: case REG_ASRCDR1: case REG_ASRCDR2: case REG_ASRSTR: case REG_ASRPM1: case REG_ASRPM2: case REG_ASRPM3: case REG_ASRPM4: case REG_ASRPM5: case REG_ASRTFR1: case REG_ASRCCR: case REG_ASRDIA: case REG_ASRDIB: case REG_ASRDIC: case REG_ASRIDRHA: case REG_ASRIDRLA: case REG_ASRIDRHB: case REG_ASRIDRLB: case REG_ASRIDRHC: case REG_ASRIDRLC: case REG_ASR76K: case REG_ASR56K: case REG_ASRMCRA: case REG_ASRMCRB: case REG_ASRMCRC: case REG_ASRMCR1A: case REG_ASRMCR1B: case REG_ASRMCR1C: return true; default: return false; } } static struct reg_default fsl_asrc_reg[] = { { REG_ASRCTR, 0x0000 }, { REG_ASRIER, 0x0000 }, { REG_ASRCNCR, 0x0000 }, { REG_ASRCFG, 0x0000 }, { REG_ASRCSR, 0x0000 }, { REG_ASRCDR1, 0x0000 }, { REG_ASRCDR2, 0x0000 }, { REG_ASRSTR, 0x0000 }, { REG_ASRRA, 0x0000 }, { REG_ASRRB, 0x0000 }, { REG_ASRRC, 0x0000 }, { REG_ASRPM1, 0x0000 }, { REG_ASRPM2, 0x0000 }, { REG_ASRPM3, 0x0000 }, { REG_ASRPM4, 0x0000 }, { REG_ASRPM5, 0x0000 }, { REG_ASRTFR1, 0x0000 }, { REG_ASRCCR, 0x0000 }, { REG_ASRDIA, 0x0000 }, { REG_ASRDOA, 0x0000 }, { REG_ASRDIB, 0x0000 }, { REG_ASRDOB, 0x0000 }, { REG_ASRDIC, 0x0000 }, { REG_ASRDOC, 0x0000 }, { REG_ASRIDRHA, 0x0000 }, { REG_ASRIDRLA, 0x0000 }, { REG_ASRIDRHB, 0x0000 }, { REG_ASRIDRLB, 0x0000 }, { REG_ASRIDRHC, 0x0000 }, { REG_ASRIDRLC, 0x0000 }, { REG_ASR76K, 0x0A47 }, { REG_ASR56K, 0x0DF3 }, { REG_ASRMCRA, 0x0000 }, { REG_ASRFSTA, 0x0000 }, { REG_ASRMCRB, 0x0000 }, { REG_ASRFSTB, 0x0000 }, { REG_ASRMCRC, 0x0000 }, { REG_ASRFSTC, 0x0000 }, { REG_ASRMCR1A, 0x0000 }, { REG_ASRMCR1B, 0x0000 }, { REG_ASRMCR1C, 0x0000 }, }; static const struct regmap_config fsl_asrc_regmap_config = { .reg_bits = 32, .reg_stride = 4, .val_bits = 32, .max_register = REG_ASRMCR1C, .reg_defaults = fsl_asrc_reg, .num_reg_defaults = ARRAY_SIZE(fsl_asrc_reg), .readable_reg = fsl_asrc_readable_reg, .volatile_reg = fsl_asrc_volatile_reg, .writeable_reg = fsl_asrc_writeable_reg, .cache_type = REGCACHE_FLAT, }; /** * Initialize ASRC registers with a default configurations */ static int fsl_asrc_init(struct fsl_asrc *asrc) { /* Halt ASRC internal FP when input FIFO needs data for pair A, B, C */ regmap_write(asrc->regmap, REG_ASRCTR, ASRCTR_ASRCEN); /* Disable interrupt by default */ regmap_write(asrc->regmap, REG_ASRIER, 0x0); /* Apply recommended settings for parameters from Reference Manual */ regmap_write(asrc->regmap, REG_ASRPM1, 0x7fffff); regmap_write(asrc->regmap, REG_ASRPM2, 0x255555); regmap_write(asrc->regmap, REG_ASRPM3, 0xff7280); regmap_write(asrc->regmap, REG_ASRPM4, 0xff7280); regmap_write(asrc->regmap, REG_ASRPM5, 0xff7280); /* Base address for task queue FIFO. Set to 0x7C */ regmap_update_bits(asrc->regmap, REG_ASRTFR1, ASRTFR1_TF_BASE_MASK, ASRTFR1_TF_BASE(0xfc)); /* Set the processing clock for 76KHz to 133M */ regmap_write(asrc->regmap, REG_ASR76K, 0x06D6); /* Set the processing clock for 56KHz to 133M */ return regmap_write(asrc->regmap, REG_ASR56K, 0x0947); } /** * Interrupt handler for ASRC */ static irqreturn_t fsl_asrc_isr(int irq, void *dev_id) { struct fsl_asrc *asrc = (struct fsl_asrc *)dev_id; struct device *dev = &asrc->pdev->dev; enum asrc_pair_index index; u32 status; regmap_read(asrc->regmap, REG_ASRSTR, &status); /* Clean overload error */ regmap_write(asrc->regmap, REG_ASRSTR, ASRSTR_AOLE); /* * We here use dev_dbg() for all exceptions because ASRC itself does * not care if FIFO overflowed or underrun while a warning in the * interrupt would result a ridged conversion. */ for (index = ASRC_PAIR_A; index < ASRC_PAIR_MAX_NUM; index++) { if (!asrc->pair[index]) continue; if (status & ASRSTR_ATQOL) { asrc->pair[index]->error |= ASRC_TASK_Q_OVERLOAD; dev_dbg(dev, "ASRC Task Queue FIFO overload\n"); } if (status & ASRSTR_AOOL(index)) { asrc->pair[index]->error |= ASRC_OUTPUT_TASK_OVERLOAD; pair_dbg("Output Task Overload\n"); } if (status & ASRSTR_AIOL(index)) { asrc->pair[index]->error |= ASRC_INPUT_TASK_OVERLOAD; pair_dbg("Input Task Overload\n"); } if (status & ASRSTR_AODO(index)) { asrc->pair[index]->error |= ASRC_OUTPUT_BUFFER_OVERFLOW; pair_dbg("Output Data Buffer has overflowed\n"); } if (status & ASRSTR_AIDU(index)) { asrc->pair[index]->error |= ASRC_INPUT_BUFFER_UNDERRUN; pair_dbg("Input Data Buffer has underflowed\n"); } } return IRQ_HANDLED; } static int fsl_asrc_probe(struct platform_device *pdev) { struct device_node *np = pdev->dev.of_node; struct fsl_asrc *asrc; struct resource *res; void __iomem *regs; int irq, ret, i; u32 map_idx; char tmp[16]; u32 width; asrc = devm_kzalloc(&pdev->dev, sizeof(*asrc), GFP_KERNEL); if (!asrc) return -ENOMEM; asrc->pdev = pdev; /* Get the addresses and IRQ */ res = platform_get_resource(pdev, IORESOURCE_MEM, 0); regs = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(regs)) return PTR_ERR(regs); asrc->paddr = res->start; asrc->regmap = devm_regmap_init_mmio_clk(&pdev->dev, "mem", regs, &fsl_asrc_regmap_config); if (IS_ERR(asrc->regmap)) { dev_err(&pdev->dev, "failed to init regmap\n"); return PTR_ERR(asrc->regmap); } irq = platform_get_irq(pdev, 0); if (irq < 0) return irq; ret = devm_request_irq(&pdev->dev, irq, fsl_asrc_isr, 0, dev_name(&pdev->dev), asrc); if (ret) { dev_err(&pdev->dev, "failed to claim irq %u: %d\n", irq, ret); return ret; } asrc->mem_clk = devm_clk_get(&pdev->dev, "mem"); if (IS_ERR(asrc->mem_clk)) { dev_err(&pdev->dev, "failed to get mem clock\n"); return PTR_ERR(asrc->mem_clk); } asrc->ipg_clk = devm_clk_get(&pdev->dev, "ipg"); if (IS_ERR(asrc->ipg_clk)) { dev_err(&pdev->dev, "failed to get ipg clock\n"); return PTR_ERR(asrc->ipg_clk); } asrc->spba_clk = devm_clk_get(&pdev->dev, "spba"); if (IS_ERR(asrc->spba_clk)) dev_warn(&pdev->dev, "failed to get spba clock\n"); for (i = 0; i < ASRC_CLK_MAX_NUM; i++) { sprintf(tmp, "asrck_%x", i); asrc->asrck_clk[i] = devm_clk_get(&pdev->dev, tmp); if (IS_ERR(asrc->asrck_clk[i])) { dev_err(&pdev->dev, "failed to get %s clock\n", tmp); return PTR_ERR(asrc->asrck_clk[i]); } } asrc->soc = of_device_get_match_data(&pdev->dev); if (!asrc->soc) { dev_err(&pdev->dev, "failed to get soc data\n"); return -ENODEV; } if (of_device_is_compatible(np, "fsl,imx35-asrc")) { asrc->clk_map[IN] = input_clk_map_imx35; asrc->clk_map[OUT] = output_clk_map_imx35; } else if (of_device_is_compatible(np, "fsl,imx53-asrc")) { asrc->clk_map[IN] = input_clk_map_imx53; asrc->clk_map[OUT] = output_clk_map_imx53; } else if (of_device_is_compatible(np, "fsl,imx8qm-asrc") || of_device_is_compatible(np, "fsl,imx8qxp-asrc")) { ret = of_property_read_u32(np, "fsl,asrc-clk-map", &map_idx); if (ret) { dev_err(&pdev->dev, "failed to get clk map index\n"); return ret; } if (map_idx > 1) { dev_err(&pdev->dev, "unsupported clk map index\n"); return -EINVAL; } if (of_device_is_compatible(np, "fsl,imx8qm-asrc")) { asrc->clk_map[IN] = clk_map_imx8qm[map_idx]; asrc->clk_map[OUT] = clk_map_imx8qm[map_idx]; } else { asrc->clk_map[IN] = clk_map_imx8qxp[map_idx]; asrc->clk_map[OUT] = clk_map_imx8qxp[map_idx]; } } ret = fsl_asrc_init(asrc); if (ret) { dev_err(&pdev->dev, "failed to init asrc %d\n", ret); return ret; } asrc->channel_avail = 10; ret = of_property_read_u32(np, "fsl,asrc-rate", &asrc->asrc_rate); if (ret) { dev_err(&pdev->dev, "failed to get output rate\n"); return ret; } ret = of_property_read_u32(np, "fsl,asrc-format", &asrc->asrc_format); if (ret) { ret = of_property_read_u32(np, "fsl,asrc-width", &width); if (ret) { dev_err(&pdev->dev, "failed to decide output format\n"); return ret; } switch (width) { case 16: asrc->asrc_format = SNDRV_PCM_FORMAT_S16_LE; break; case 24: asrc->asrc_format = SNDRV_PCM_FORMAT_S24_LE; break; default: dev_warn(&pdev->dev, "unsupported width, use default S24_LE\n"); asrc->asrc_format = SNDRV_PCM_FORMAT_S24_LE; break; } } if (!(FSL_ASRC_FORMATS & (1ULL << asrc->asrc_format))) { dev_warn(&pdev->dev, "unsupported width, use default S24_LE\n"); asrc->asrc_format = SNDRV_PCM_FORMAT_S24_LE; } platform_set_drvdata(pdev, asrc); pm_runtime_enable(&pdev->dev); spin_lock_init(&asrc->lock); ret = devm_snd_soc_register_component(&pdev->dev, &fsl_asrc_component, &fsl_asrc_dai, 1); if (ret) { dev_err(&pdev->dev, "failed to register ASoC DAI\n"); return ret; } return 0; } #ifdef CONFIG_PM static int fsl_asrc_runtime_resume(struct device *dev) { struct fsl_asrc *asrc = dev_get_drvdata(dev); int i, ret; ret = clk_prepare_enable(asrc->mem_clk); if (ret) return ret; ret = clk_prepare_enable(asrc->ipg_clk); if (ret) goto disable_mem_clk; if (!IS_ERR(asrc->spba_clk)) { ret = clk_prepare_enable(asrc->spba_clk); if (ret) goto disable_ipg_clk; } for (i = 0; i < ASRC_CLK_MAX_NUM; i++) { ret = clk_prepare_enable(asrc->asrck_clk[i]); if (ret) goto disable_asrck_clk; } return 0; disable_asrck_clk: for (i--; i >= 0; i--) clk_disable_unprepare(asrc->asrck_clk[i]); if (!IS_ERR(asrc->spba_clk)) clk_disable_unprepare(asrc->spba_clk); disable_ipg_clk: clk_disable_unprepare(asrc->ipg_clk); disable_mem_clk: clk_disable_unprepare(asrc->mem_clk); return ret; } static int fsl_asrc_runtime_suspend(struct device *dev) { struct fsl_asrc *asrc = dev_get_drvdata(dev); int i; for (i = 0; i < ASRC_CLK_MAX_NUM; i++) clk_disable_unprepare(asrc->asrck_clk[i]); if (!IS_ERR(asrc->spba_clk)) clk_disable_unprepare(asrc->spba_clk); clk_disable_unprepare(asrc->ipg_clk); clk_disable_unprepare(asrc->mem_clk); return 0; } #endif /* CONFIG_PM */ #ifdef CONFIG_PM_SLEEP static int fsl_asrc_suspend(struct device *dev) { struct fsl_asrc *asrc = dev_get_drvdata(dev); regmap_read(asrc->regmap, REG_ASRCFG, &asrc->regcache_cfg); regcache_cache_only(asrc->regmap, true); regcache_mark_dirty(asrc->regmap); return 0; } static int fsl_asrc_resume(struct device *dev) { struct fsl_asrc *asrc = dev_get_drvdata(dev); u32 asrctr; /* Stop all pairs provisionally */ regmap_read(asrc->regmap, REG_ASRCTR, &asrctr); regmap_update_bits(asrc->regmap, REG_ASRCTR, ASRCTR_ASRCEi_ALL_MASK, 0); /* Restore all registers */ regcache_cache_only(asrc->regmap, false); regcache_sync(asrc->regmap); regmap_update_bits(asrc->regmap, REG_ASRCFG, ASRCFG_NDPRi_ALL_MASK | ASRCFG_POSTMODi_ALL_MASK | ASRCFG_PREMODi_ALL_MASK, asrc->regcache_cfg); /* Restart enabled pairs */ regmap_update_bits(asrc->regmap, REG_ASRCTR, ASRCTR_ASRCEi_ALL_MASK, asrctr); return 0; } #endif /* CONFIG_PM_SLEEP */ static const struct dev_pm_ops fsl_asrc_pm = { SET_RUNTIME_PM_OPS(fsl_asrc_runtime_suspend, fsl_asrc_runtime_resume, NULL) SET_SYSTEM_SLEEP_PM_OPS(fsl_asrc_suspend, fsl_asrc_resume) }; static const struct fsl_asrc_soc_data fsl_asrc_imx35_data = { .use_edma = false, .channel_bits = 3, }; static const struct fsl_asrc_soc_data fsl_asrc_imx53_data = { .use_edma = false, .channel_bits = 4, }; static const struct fsl_asrc_soc_data fsl_asrc_imx8qm_data = { .use_edma = true, .channel_bits = 4, }; static const struct fsl_asrc_soc_data fsl_asrc_imx8qxp_data = { .use_edma = true, .channel_bits = 4, }; static const struct of_device_id fsl_asrc_ids[] = { { .compatible = "fsl,imx35-asrc", .data = &fsl_asrc_imx35_data }, { .compatible = "fsl,imx53-asrc", .data = &fsl_asrc_imx53_data }, { .compatible = "fsl,imx8qm-asrc", .data = &fsl_asrc_imx8qm_data }, { .compatible = "fsl,imx8qxp-asrc", .data = &fsl_asrc_imx8qxp_data }, {} }; MODULE_DEVICE_TABLE(of, fsl_asrc_ids); static struct platform_driver fsl_asrc_driver = { .probe = fsl_asrc_probe, .driver = { .name = "fsl-asrc", .of_match_table = fsl_asrc_ids, .pm = &fsl_asrc_pm, }, }; module_platform_driver(fsl_asrc_driver); MODULE_DESCRIPTION("Freescale ASRC ASoC driver"); MODULE_AUTHOR("Nicolin Chen "); MODULE_ALIAS("platform:fsl-asrc"); MODULE_LICENSE("GPL v2");