/* * soc-cache.c -- ASoC register cache helpers * * Copyright 2009 Wolfson Microelectronics PLC. * * Author: Mark Brown <broonie@opensource.wolfsonmicro.com> * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. */ #include <linux/i2c.h> #include <linux/spi/spi.h> #include <sound/soc.h> static unsigned int snd_soc_4_12_read(struct snd_soc_codec *codec, unsigned int reg) { u16 *cache = codec->reg_cache; if (reg >= codec->reg_cache_size) return -1; return cache[reg]; } static int snd_soc_4_12_write(struct snd_soc_codec *codec, unsigned int reg, unsigned int value) { u16 *cache = codec->reg_cache; u8 data[2]; int ret; BUG_ON(codec->volatile_register); data[0] = (reg << 4) | ((value >> 8) & 0x000f); data[1] = value & 0x00ff; if (reg < codec->reg_cache_size) cache[reg] = value; if (codec->cache_only) { codec->cache_sync = 1; return 0; } dev_dbg(codec->dev, "0x%x = 0x%x\n", reg, value); ret = codec->hw_write(codec->control_data, data, 2); if (ret == 2) return 0; if (ret < 0) return ret; else return -EIO; } #if defined(CONFIG_SPI_MASTER) static int snd_soc_4_12_spi_write(void *control_data, const char *data, int len) { struct spi_device *spi = control_data; struct spi_transfer t; struct spi_message m; u8 msg[2]; if (len <= 0) return 0; msg[0] = data[1]; msg[1] = data[0]; spi_message_init(&m); memset(&t, 0, (sizeof t)); t.tx_buf = &msg[0]; t.len = len; spi_message_add_tail(&t, &m); spi_sync(spi, &m); return len; } #else #define snd_soc_4_12_spi_write NULL #endif static unsigned int snd_soc_7_9_read(struct snd_soc_codec *codec, unsigned int reg) { u16 *cache = codec->reg_cache; if (reg >= codec->reg_cache_size) return -1; return cache[reg]; } static int snd_soc_7_9_write(struct snd_soc_codec *codec, unsigned int reg, unsigned int value) { u16 *cache = codec->reg_cache; u8 data[2]; int ret; BUG_ON(codec->volatile_register); data[0] = (reg << 1) | ((value >> 8) & 0x0001); data[1] = value & 0x00ff; if (reg < codec->reg_cache_size) cache[reg] = value; if (codec->cache_only) { codec->cache_sync = 1; return 0; } dev_dbg(codec->dev, "0x%x = 0x%x\n", reg, value); ret = codec->hw_write(codec->control_data, data, 2); if (ret == 2) return 0; if (ret < 0) return ret; else return -EIO; } #if defined(CONFIG_SPI_MASTER) static int snd_soc_7_9_spi_write(void *control_data, const char *data, int len) { struct spi_device *spi = control_data; struct spi_transfer t; struct spi_message m; u8 msg[2]; if (len <= 0) return 0; msg[0] = data[0]; msg[1] = data[1]; spi_message_init(&m); memset(&t, 0, (sizeof t)); t.tx_buf = &msg[0]; t.len = len; spi_message_add_tail(&t, &m); spi_sync(spi, &m); return len; } #else #define snd_soc_7_9_spi_write NULL #endif static int snd_soc_8_8_write(struct snd_soc_codec *codec, unsigned int reg, unsigned int value) { u8 *cache = codec->reg_cache; u8 data[2]; BUG_ON(codec->volatile_register); reg &= 0xff; data[0] = reg; data[1] = value & 0xff; if (reg < codec->reg_cache_size) cache[reg] = value; if (codec->cache_only) { codec->cache_sync = 1; return 0; } dev_dbg(codec->dev, "0x%x = 0x%x\n", reg, value); if (codec->hw_write(codec->control_data, data, 2) == 2) return 0; else return -EIO; } static unsigned int snd_soc_8_8_read(struct snd_soc_codec *codec, unsigned int reg) { u8 *cache = codec->reg_cache; reg &= 0xff; if (reg >= codec->reg_cache_size) return -1; return cache[reg]; } static int snd_soc_8_16_write(struct snd_soc_codec *codec, unsigned int reg, unsigned int value) { u16 *reg_cache = codec->reg_cache; u8 data[3]; data[0] = reg; data[1] = (value >> 8) & 0xff; data[2] = value & 0xff; if (!snd_soc_codec_volatile_register(codec, reg) && reg < codec->reg_cache_size) reg_cache[reg] = value; if (codec->cache_only) { codec->cache_sync = 1; return 0; } dev_dbg(codec->dev, "0x%x = 0x%x\n", reg, value); if (codec->hw_write(codec->control_data, data, 3) == 3) return 0; else return -EIO; } static unsigned int snd_soc_8_16_read(struct snd_soc_codec *codec, unsigned int reg) { u16 *cache = codec->reg_cache; if (reg >= codec->reg_cache_size || snd_soc_codec_volatile_register(codec, reg)) { if (codec->cache_only) return -EINVAL; return codec->hw_read(codec, reg); } else { return cache[reg]; } } #if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE)) static unsigned int snd_soc_8_8_read_i2c(struct snd_soc_codec *codec, unsigned int r) { struct i2c_msg xfer[2]; u8 reg = r; u8 data; int ret; struct i2c_client *client = codec->control_data; /* Write register */ xfer[0].addr = client->addr; xfer[0].flags = 0; xfer[0].len = 1; xfer[0].buf = ® /* Read data */ xfer[1].addr = client->addr; xfer[1].flags = I2C_M_RD; xfer[1].len = 1; xfer[1].buf = &data; ret = i2c_transfer(client->adapter, xfer, 2); if (ret != 2) { dev_err(&client->dev, "i2c_transfer() returned %d\n", ret); return 0; } return data; } #else #define snd_soc_8_8_read_i2c NULL #endif #if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE)) static unsigned int snd_soc_8_16_read_i2c(struct snd_soc_codec *codec, unsigned int r) { struct i2c_msg xfer[2]; u8 reg = r; u16 data; int ret; struct i2c_client *client = codec->control_data; /* Write register */ xfer[0].addr = client->addr; xfer[0].flags = 0; xfer[0].len = 1; xfer[0].buf = ® /* Read data */ xfer[1].addr = client->addr; xfer[1].flags = I2C_M_RD; xfer[1].len = 2; xfer[1].buf = (u8 *)&data; ret = i2c_transfer(client->adapter, xfer, 2); if (ret != 2) { dev_err(&client->dev, "i2c_transfer() returned %d\n", ret); return 0; } return (data >> 8) | ((data & 0xff) << 8); } #else #define snd_soc_8_16_read_i2c NULL #endif #if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE)) static unsigned int snd_soc_16_8_read_i2c(struct snd_soc_codec *codec, unsigned int r) { struct i2c_msg xfer[2]; u16 reg = r; u8 data; int ret; struct i2c_client *client = codec->control_data; /* Write register */ xfer[0].addr = client->addr; xfer[0].flags = 0; xfer[0].len = 2; xfer[0].buf = (u8 *)® /* Read data */ xfer[1].addr = client->addr; xfer[1].flags = I2C_M_RD; xfer[1].len = 1; xfer[1].buf = &data; ret = i2c_transfer(client->adapter, xfer, 2); if (ret != 2) { dev_err(&client->dev, "i2c_transfer() returned %d\n", ret); return 0; } return data; } #else #define snd_soc_16_8_read_i2c NULL #endif static unsigned int snd_soc_16_8_read(struct snd_soc_codec *codec, unsigned int reg) { u8 *cache = codec->reg_cache; reg &= 0xff; if (reg >= codec->reg_cache_size) return -1; return cache[reg]; } static int snd_soc_16_8_write(struct snd_soc_codec *codec, unsigned int reg, unsigned int value) { u8 *cache = codec->reg_cache; u8 data[3]; int ret; BUG_ON(codec->volatile_register); data[0] = (reg >> 8) & 0xff; data[1] = reg & 0xff; data[2] = value; reg &= 0xff; if (reg < codec->reg_cache_size) cache[reg] = value; if (codec->cache_only) { codec->cache_sync = 1; return 0; } dev_dbg(codec->dev, "0x%x = 0x%x\n", reg, value); ret = codec->hw_write(codec->control_data, data, 3); if (ret == 3) return 0; if (ret < 0) return ret; else return -EIO; } #if defined(CONFIG_SPI_MASTER) static int snd_soc_16_8_spi_write(void *control_data, const char *data, int len) { struct spi_device *spi = control_data; struct spi_transfer t; struct spi_message m; u8 msg[3]; if (len <= 0) return 0; msg[0] = data[0]; msg[1] = data[1]; msg[2] = data[2]; spi_message_init(&m); memset(&t, 0, (sizeof t)); t.tx_buf = &msg[0]; t.len = len; spi_message_add_tail(&t, &m); spi_sync(spi, &m); return len; } #else #define snd_soc_16_8_spi_write NULL #endif #if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE)) static unsigned int snd_soc_16_16_read_i2c(struct snd_soc_codec *codec, unsigned int r) { struct i2c_msg xfer[2]; u16 reg = cpu_to_be16(r); u16 data; int ret; struct i2c_client *client = codec->control_data; /* Write register */ xfer[0].addr = client->addr; xfer[0].flags = 0; xfer[0].len = 2; xfer[0].buf = (u8 *)® /* Read data */ xfer[1].addr = client->addr; xfer[1].flags = I2C_M_RD; xfer[1].len = 2; xfer[1].buf = (u8 *)&data; ret = i2c_transfer(client->adapter, xfer, 2); if (ret != 2) { dev_err(&client->dev, "i2c_transfer() returned %d\n", ret); return 0; } return be16_to_cpu(data); } #else #define snd_soc_16_16_read_i2c NULL #endif static unsigned int snd_soc_16_16_read(struct snd_soc_codec *codec, unsigned int reg) { u16 *cache = codec->reg_cache; if (reg >= codec->reg_cache_size || snd_soc_codec_volatile_register(codec, reg)) { if (codec->cache_only) return -EINVAL; return codec->hw_read(codec, reg); } return cache[reg]; } static int snd_soc_16_16_write(struct snd_soc_codec *codec, unsigned int reg, unsigned int value) { u16 *cache = codec->reg_cache; u8 data[4]; int ret; data[0] = (reg >> 8) & 0xff; data[1] = reg & 0xff; data[2] = (value >> 8) & 0xff; data[3] = value & 0xff; if (reg < codec->reg_cache_size) cache[reg] = value; if (codec->cache_only) { codec->cache_sync = 1; return 0; } dev_dbg(codec->dev, "0x%x = 0x%x\n", reg, value); ret = codec->hw_write(codec->control_data, data, 4); if (ret == 4) return 0; if (ret < 0) return ret; else return -EIO; } static struct { int addr_bits; int data_bits; int (*write)(struct snd_soc_codec *codec, unsigned int, unsigned int); int (*spi_write)(void *, const char *, int); unsigned int (*read)(struct snd_soc_codec *, unsigned int); unsigned int (*i2c_read)(struct snd_soc_codec *, unsigned int); } io_types[] = { { .addr_bits = 4, .data_bits = 12, .write = snd_soc_4_12_write, .read = snd_soc_4_12_read, .spi_write = snd_soc_4_12_spi_write, }, { .addr_bits = 7, .data_bits = 9, .write = snd_soc_7_9_write, .read = snd_soc_7_9_read, .spi_write = snd_soc_7_9_spi_write, }, { .addr_bits = 8, .data_bits = 8, .write = snd_soc_8_8_write, .read = snd_soc_8_8_read, .i2c_read = snd_soc_8_8_read_i2c, }, { .addr_bits = 8, .data_bits = 16, .write = snd_soc_8_16_write, .read = snd_soc_8_16_read, .i2c_read = snd_soc_8_16_read_i2c, }, { .addr_bits = 16, .data_bits = 8, .write = snd_soc_16_8_write, .read = snd_soc_16_8_read, .i2c_read = snd_soc_16_8_read_i2c, .spi_write = snd_soc_16_8_spi_write, }, { .addr_bits = 16, .data_bits = 16, .write = snd_soc_16_16_write, .read = snd_soc_16_16_read, .i2c_read = snd_soc_16_16_read_i2c, }, }; /** * snd_soc_codec_set_cache_io: Set up standard I/O functions. * * @codec: CODEC to configure. * @type: Type of cache. * @addr_bits: Number of bits of register address data. * @data_bits: Number of bits of data per register. * @control: Control bus used. * * Register formats are frequently shared between many I2C and SPI * devices. In order to promote code reuse the ASoC core provides * some standard implementations of CODEC read and write operations * which can be set up using this function. * * The caller is responsible for allocating and initialising the * actual cache. * * Note that at present this code cannot be used by CODECs with * volatile registers. */ int snd_soc_codec_set_cache_io(struct snd_soc_codec *codec, int addr_bits, int data_bits, enum snd_soc_control_type control) { int i; for (i = 0; i < ARRAY_SIZE(io_types); i++) if (io_types[i].addr_bits == addr_bits && io_types[i].data_bits == data_bits) break; if (i == ARRAY_SIZE(io_types)) { printk(KERN_ERR "No I/O functions for %d bit address %d bit data\n", addr_bits, data_bits); return -EINVAL; } codec->write = io_types[i].write; codec->read = io_types[i].read; switch (control) { case SND_SOC_CUSTOM: break; case SND_SOC_I2C: #if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE)) codec->hw_write = (hw_write_t)i2c_master_send; #endif if (io_types[i].i2c_read) codec->hw_read = io_types[i].i2c_read; break; case SND_SOC_SPI: if (io_types[i].spi_write) codec->hw_write = io_types[i].spi_write; break; } return 0; } EXPORT_SYMBOL_GPL(snd_soc_codec_set_cache_io);