#include "builtin.h" #include "perf.h" #include "util/util.h" #include "util/evlist.h" #include "util/cache.h" #include "util/evsel.h" #include "util/symbol.h" #include "util/thread.h" #include "util/header.h" #include "util/session.h" #include "util/tool.h" #include "util/cloexec.h" #include "util/parse-options.h" #include "util/trace-event.h" #include "util/debug.h" #include #include #include #include #include #define PR_SET_NAME 15 /* Set process name */ #define MAX_CPUS 4096 #define COMM_LEN 20 #define SYM_LEN 129 #define MAX_PID 65536 struct sched_atom; struct task_desc { unsigned long nr; unsigned long pid; char comm[COMM_LEN]; unsigned long nr_events; unsigned long curr_event; struct sched_atom **atoms; pthread_t thread; sem_t sleep_sem; sem_t ready_for_work; sem_t work_done_sem; u64 cpu_usage; }; enum sched_event_type { SCHED_EVENT_RUN, SCHED_EVENT_SLEEP, SCHED_EVENT_WAKEUP, SCHED_EVENT_MIGRATION, }; struct sched_atom { enum sched_event_type type; int specific_wait; u64 timestamp; u64 duration; unsigned long nr; sem_t *wait_sem; struct task_desc *wakee; }; #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP" enum thread_state { THREAD_SLEEPING = 0, THREAD_WAIT_CPU, THREAD_SCHED_IN, THREAD_IGNORE }; struct work_atom { struct list_head list; enum thread_state state; u64 sched_out_time; u64 wake_up_time; u64 sched_in_time; u64 runtime; }; struct work_atoms { struct list_head work_list; struct thread *thread; struct rb_node node; u64 max_lat; u64 max_lat_at; u64 total_lat; u64 nb_atoms; u64 total_runtime; }; typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *); struct perf_sched; struct trace_sched_handler { int (*switch_event)(struct perf_sched *sched, struct perf_evsel *evsel, struct perf_sample *sample, struct machine *machine); int (*runtime_event)(struct perf_sched *sched, struct perf_evsel *evsel, struct perf_sample *sample, struct machine *machine); int (*wakeup_event)(struct perf_sched *sched, struct perf_evsel *evsel, struct perf_sample *sample, struct machine *machine); /* PERF_RECORD_FORK event, not sched_process_fork tracepoint */ int (*fork_event)(struct perf_sched *sched, union perf_event *event, struct machine *machine); int (*migrate_task_event)(struct perf_sched *sched, struct perf_evsel *evsel, struct perf_sample *sample, struct machine *machine); }; struct perf_sched { struct perf_tool tool; const char *sort_order; unsigned long nr_tasks; struct task_desc *pid_to_task[MAX_PID]; struct task_desc **tasks; const struct trace_sched_handler *tp_handler; pthread_mutex_t start_work_mutex; pthread_mutex_t work_done_wait_mutex; int profile_cpu; /* * Track the current task - that way we can know whether there's any * weird events, such as a task being switched away that is not current. */ int max_cpu; u32 curr_pid[MAX_CPUS]; struct thread *curr_thread[MAX_CPUS]; char next_shortname1; char next_shortname2; unsigned int replay_repeat; unsigned long nr_run_events; unsigned long nr_sleep_events; unsigned long nr_wakeup_events; unsigned long nr_sleep_corrections; unsigned long nr_run_events_optimized; unsigned long targetless_wakeups; unsigned long multitarget_wakeups; unsigned long nr_runs; unsigned long nr_timestamps; unsigned long nr_unordered_timestamps; unsigned long nr_context_switch_bugs; unsigned long nr_events; unsigned long nr_lost_chunks; unsigned long nr_lost_events; u64 run_measurement_overhead; u64 sleep_measurement_overhead; u64 start_time; u64 cpu_usage; u64 runavg_cpu_usage; u64 parent_cpu_usage; u64 runavg_parent_cpu_usage; u64 sum_runtime; u64 sum_fluct; u64 run_avg; u64 all_runtime; u64 all_count; u64 cpu_last_switched[MAX_CPUS]; struct rb_root atom_root, sorted_atom_root; struct list_head sort_list, cmp_pid; }; static u64 get_nsecs(void) { struct timespec ts; clock_gettime(CLOCK_MONOTONIC, &ts); return ts.tv_sec * 1000000000ULL + ts.tv_nsec; } static void burn_nsecs(struct perf_sched *sched, u64 nsecs) { u64 T0 = get_nsecs(), T1; do { T1 = get_nsecs(); } while (T1 + sched->run_measurement_overhead < T0 + nsecs); } static void sleep_nsecs(u64 nsecs) { struct timespec ts; ts.tv_nsec = nsecs % 999999999; ts.tv_sec = nsecs / 999999999; nanosleep(&ts, NULL); } static void calibrate_run_measurement_overhead(struct perf_sched *sched) { u64 T0, T1, delta, min_delta = 1000000000ULL; int i; for (i = 0; i < 10; i++) { T0 = get_nsecs(); burn_nsecs(sched, 0); T1 = get_nsecs(); delta = T1-T0; min_delta = min(min_delta, delta); } sched->run_measurement_overhead = min_delta; printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta); } static void calibrate_sleep_measurement_overhead(struct perf_sched *sched) { u64 T0, T1, delta, min_delta = 1000000000ULL; int i; for (i = 0; i < 10; i++) { T0 = get_nsecs(); sleep_nsecs(10000); T1 = get_nsecs(); delta = T1-T0; min_delta = min(min_delta, delta); } min_delta -= 10000; sched->sleep_measurement_overhead = min_delta; printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta); } static struct sched_atom * get_new_event(struct task_desc *task, u64 timestamp) { struct sched_atom *event = zalloc(sizeof(*event)); unsigned long idx = task->nr_events; size_t size; event->timestamp = timestamp; event->nr = idx; task->nr_events++; size = sizeof(struct sched_atom *) * task->nr_events; task->atoms = realloc(task->atoms, size); BUG_ON(!task->atoms); task->atoms[idx] = event; return event; } static struct sched_atom *last_event(struct task_desc *task) { if (!task->nr_events) return NULL; return task->atoms[task->nr_events - 1]; } static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task, u64 timestamp, u64 duration) { struct sched_atom *event, *curr_event = last_event(task); /* * optimize an existing RUN event by merging this one * to it: */ if (curr_event && curr_event->type == SCHED_EVENT_RUN) { sched->nr_run_events_optimized++; curr_event->duration += duration; return; } event = get_new_event(task, timestamp); event->type = SCHED_EVENT_RUN; event->duration = duration; sched->nr_run_events++; } static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task, u64 timestamp, struct task_desc *wakee) { struct sched_atom *event, *wakee_event; event = get_new_event(task, timestamp); event->type = SCHED_EVENT_WAKEUP; event->wakee = wakee; wakee_event = last_event(wakee); if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) { sched->targetless_wakeups++; return; } if (wakee_event->wait_sem) { sched->multitarget_wakeups++; return; } wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem)); sem_init(wakee_event->wait_sem, 0, 0); wakee_event->specific_wait = 1; event->wait_sem = wakee_event->wait_sem; sched->nr_wakeup_events++; } static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task, u64 timestamp, u64 task_state __maybe_unused) { struct sched_atom *event = get_new_event(task, timestamp); event->type = SCHED_EVENT_SLEEP; sched->nr_sleep_events++; } static struct task_desc *register_pid(struct perf_sched *sched, unsigned long pid, const char *comm) { struct task_desc *task; BUG_ON(pid >= MAX_PID); task = sched->pid_to_task[pid]; if (task) return task; task = zalloc(sizeof(*task)); task->pid = pid; task->nr = sched->nr_tasks; strcpy(task->comm, comm); /* * every task starts in sleeping state - this gets ignored * if there's no wakeup pointing to this sleep state: */ add_sched_event_sleep(sched, task, 0, 0); sched->pid_to_task[pid] = task; sched->nr_tasks++; sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_task *)); BUG_ON(!sched->tasks); sched->tasks[task->nr] = task; if (verbose) printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm); return task; } static void print_task_traces(struct perf_sched *sched) { struct task_desc *task; unsigned long i; for (i = 0; i < sched->nr_tasks; i++) { task = sched->tasks[i]; printf("task %6ld (%20s:%10ld), nr_events: %ld\n", task->nr, task->comm, task->pid, task->nr_events); } } static void add_cross_task_wakeups(struct perf_sched *sched) { struct task_desc *task1, *task2; unsigned long i, j; for (i = 0; i < sched->nr_tasks; i++) { task1 = sched->tasks[i]; j = i + 1; if (j == sched->nr_tasks) j = 0; task2 = sched->tasks[j]; add_sched_event_wakeup(sched, task1, 0, task2); } } static void perf_sched__process_event(struct perf_sched *sched, struct sched_atom *atom) { int ret = 0; switch (atom->type) { case SCHED_EVENT_RUN: burn_nsecs(sched, atom->duration); break; case SCHED_EVENT_SLEEP: if (atom->wait_sem) ret = sem_wait(atom->wait_sem); BUG_ON(ret); break; case SCHED_EVENT_WAKEUP: if (atom->wait_sem) ret = sem_post(atom->wait_sem); BUG_ON(ret); break; case SCHED_EVENT_MIGRATION: break; default: BUG_ON(1); } } static u64 get_cpu_usage_nsec_parent(void) { struct rusage ru; u64 sum; int err; err = getrusage(RUSAGE_SELF, &ru); BUG_ON(err); sum = ru.ru_utime.tv_sec*1e9 + ru.ru_utime.tv_usec*1e3; sum += ru.ru_stime.tv_sec*1e9 + ru.ru_stime.tv_usec*1e3; return sum; } static int self_open_counters(void) { struct perf_event_attr attr; char sbuf[STRERR_BUFSIZE]; int fd; memset(&attr, 0, sizeof(attr)); attr.type = PERF_TYPE_SOFTWARE; attr.config = PERF_COUNT_SW_TASK_CLOCK; fd = sys_perf_event_open(&attr, 0, -1, -1, perf_event_open_cloexec_flag()); if (fd < 0) pr_err("Error: sys_perf_event_open() syscall returned " "with %d (%s)\n", fd, strerror_r(errno, sbuf, sizeof(sbuf))); return fd; } static u64 get_cpu_usage_nsec_self(int fd) { u64 runtime; int ret; ret = read(fd, &runtime, sizeof(runtime)); BUG_ON(ret != sizeof(runtime)); return runtime; } struct sched_thread_parms { struct task_desc *task; struct perf_sched *sched; }; static void *thread_func(void *ctx) { struct sched_thread_parms *parms = ctx; struct task_desc *this_task = parms->task; struct perf_sched *sched = parms->sched; u64 cpu_usage_0, cpu_usage_1; unsigned long i, ret; char comm2[22]; int fd; zfree(&parms); sprintf(comm2, ":%s", this_task->comm); prctl(PR_SET_NAME, comm2); fd = self_open_counters(); if (fd < 0) return NULL; again: ret = sem_post(&this_task->ready_for_work); BUG_ON(ret); ret = pthread_mutex_lock(&sched->start_work_mutex); BUG_ON(ret); ret = pthread_mutex_unlock(&sched->start_work_mutex); BUG_ON(ret); cpu_usage_0 = get_cpu_usage_nsec_self(fd); for (i = 0; i < this_task->nr_events; i++) { this_task->curr_event = i; perf_sched__process_event(sched, this_task->atoms[i]); } cpu_usage_1 = get_cpu_usage_nsec_self(fd); this_task->cpu_usage = cpu_usage_1 - cpu_usage_0; ret = sem_post(&this_task->work_done_sem); BUG_ON(ret); ret = pthread_mutex_lock(&sched->work_done_wait_mutex); BUG_ON(ret); ret = pthread_mutex_unlock(&sched->work_done_wait_mutex); BUG_ON(ret); goto again; } static void create_tasks(struct perf_sched *sched) { struct task_desc *task; pthread_attr_t attr; unsigned long i; int err; err = pthread_attr_init(&attr); BUG_ON(err); err = pthread_attr_setstacksize(&attr, (size_t) max(16 * 1024, PTHREAD_STACK_MIN)); BUG_ON(err); err = pthread_mutex_lock(&sched->start_work_mutex); BUG_ON(err); err = pthread_mutex_lock(&sched->work_done_wait_mutex); BUG_ON(err); for (i = 0; i < sched->nr_tasks; i++) { struct sched_thread_parms *parms = malloc(sizeof(*parms)); BUG_ON(parms == NULL); parms->task = task = sched->tasks[i]; parms->sched = sched; sem_init(&task->sleep_sem, 0, 0); sem_init(&task->ready_for_work, 0, 0); sem_init(&task->work_done_sem, 0, 0); task->curr_event = 0; err = pthread_create(&task->thread, &attr, thread_func, parms); BUG_ON(err); } } static void wait_for_tasks(struct perf_sched *sched) { u64 cpu_usage_0, cpu_usage_1; struct task_desc *task; unsigned long i, ret; sched->start_time = get_nsecs(); sched->cpu_usage = 0; pthread_mutex_unlock(&sched->work_done_wait_mutex); for (i = 0; i < sched->nr_tasks; i++) { task = sched->tasks[i]; ret = sem_wait(&task->ready_for_work); BUG_ON(ret); sem_init(&task->ready_for_work, 0, 0); } ret = pthread_mutex_lock(&sched->work_done_wait_mutex); BUG_ON(ret); cpu_usage_0 = get_cpu_usage_nsec_parent(); pthread_mutex_unlock(&sched->start_work_mutex); for (i = 0; i < sched->nr_tasks; i++) { task = sched->tasks[i]; ret = sem_wait(&task->work_done_sem); BUG_ON(ret); sem_init(&task->work_done_sem, 0, 0); sched->cpu_usage += task->cpu_usage; task->cpu_usage = 0; } cpu_usage_1 = get_cpu_usage_nsec_parent(); if (!sched->runavg_cpu_usage) sched->runavg_cpu_usage = sched->cpu_usage; sched->runavg_cpu_usage = (sched->runavg_cpu_usage * 9 + sched->cpu_usage) / 10; sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0; if (!sched->runavg_parent_cpu_usage) sched->runavg_parent_cpu_usage = sched->parent_cpu_usage; sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * 9 + sched->parent_cpu_usage)/10; ret = pthread_mutex_lock(&sched->start_work_mutex); BUG_ON(ret); for (i = 0; i < sched->nr_tasks; i++) { task = sched->tasks[i]; sem_init(&task->sleep_sem, 0, 0); task->curr_event = 0; } } static void run_one_test(struct perf_sched *sched) { u64 T0, T1, delta, avg_delta, fluct; T0 = get_nsecs(); wait_for_tasks(sched); T1 = get_nsecs(); delta = T1 - T0; sched->sum_runtime += delta; sched->nr_runs++; avg_delta = sched->sum_runtime / sched->nr_runs; if (delta < avg_delta) fluct = avg_delta - delta; else fluct = delta - avg_delta; sched->sum_fluct += fluct; if (!sched->run_avg) sched->run_avg = delta; sched->run_avg = (sched->run_avg * 9 + delta) / 10; printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / 1000000.0); printf("ravg: %0.2f, ", (double)sched->run_avg / 1e6); printf("cpu: %0.2f / %0.2f", (double)sched->cpu_usage / 1e6, (double)sched->runavg_cpu_usage / 1e6); #if 0 /* * rusage statistics done by the parent, these are less * accurate than the sched->sum_exec_runtime based statistics: */ printf(" [%0.2f / %0.2f]", (double)sched->parent_cpu_usage/1e6, (double)sched->runavg_parent_cpu_usage/1e6); #endif printf("\n"); if (sched->nr_sleep_corrections) printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections); sched->nr_sleep_corrections = 0; } static void test_calibrations(struct perf_sched *sched) { u64 T0, T1; T0 = get_nsecs(); burn_nsecs(sched, 1e6); T1 = get_nsecs(); printf("the run test took %" PRIu64 " nsecs\n", T1 - T0); T0 = get_nsecs(); sleep_nsecs(1e6); T1 = get_nsecs(); printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0); } static int replay_wakeup_event(struct perf_sched *sched, struct perf_evsel *evsel, struct perf_sample *sample, struct machine *machine __maybe_unused) { const char *comm = perf_evsel__strval(evsel, sample, "comm"); const u32 pid = perf_evsel__intval(evsel, sample, "pid"); struct task_desc *waker, *wakee; if (verbose) { printf("sched_wakeup event %p\n", evsel); printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid); } waker = register_pid(sched, sample->tid, ""); wakee = register_pid(sched, pid, comm); add_sched_event_wakeup(sched, waker, sample->time, wakee); return 0; } static int replay_switch_event(struct perf_sched *sched, struct perf_evsel *evsel, struct perf_sample *sample, struct machine *machine __maybe_unused) { const char *prev_comm = perf_evsel__strval(evsel, sample, "prev_comm"), *next_comm = perf_evsel__strval(evsel, sample, "next_comm"); const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"), next_pid = perf_evsel__intval(evsel, sample, "next_pid"); const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state"); struct task_desc *prev, __maybe_unused *next; u64 timestamp0, timestamp = sample->time; int cpu = sample->cpu; s64 delta; if (verbose) printf("sched_switch event %p\n", evsel); if (cpu >= MAX_CPUS || cpu < 0) return 0; timestamp0 = sched->cpu_last_switched[cpu]; if (timestamp0) delta = timestamp - timestamp0; else delta = 0; if (delta < 0) { pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta); return -1; } pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n", prev_comm, prev_pid, next_comm, next_pid, delta); prev = register_pid(sched, prev_pid, prev_comm); next = register_pid(sched, next_pid, next_comm); sched->cpu_last_switched[cpu] = timestamp; add_sched_event_run(sched, prev, timestamp, delta); add_sched_event_sleep(sched, prev, timestamp, prev_state); return 0; } static int replay_fork_event(struct perf_sched *sched, union perf_event *event, struct machine *machine) { struct thread *child, *parent; child = machine__findnew_thread(machine, event->fork.pid, event->fork.tid); parent = machine__findnew_thread(machine, event->fork.ppid, event->fork.ptid); if (child == NULL || parent == NULL) { pr_debug("thread does not exist on fork event: child %p, parent %p\n", child, parent); return 0; } if (verbose) { printf("fork event\n"); printf("... parent: %s/%d\n", thread__comm_str(parent), parent->tid); printf("... child: %s/%d\n", thread__comm_str(child), child->tid); } register_pid(sched, parent->tid, thread__comm_str(parent)); register_pid(sched, child->tid, thread__comm_str(child)); return 0; } struct sort_dimension { const char *name; sort_fn_t cmp; struct list_head list; }; static int thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r) { struct sort_dimension *sort; int ret = 0; BUG_ON(list_empty(list)); list_for_each_entry(sort, list, list) { ret = sort->cmp(l, r); if (ret) return ret; } return ret; } static struct work_atoms * thread_atoms_search(struct rb_root *root, struct thread *thread, struct list_head *sort_list) { struct rb_node *node = root->rb_node; struct work_atoms key = { .thread = thread }; while (node) { struct work_atoms *atoms; int cmp; atoms = container_of(node, struct work_atoms, node); cmp = thread_lat_cmp(sort_list, &key, atoms); if (cmp > 0) node = node->rb_left; else if (cmp < 0) node = node->rb_right; else { BUG_ON(thread != atoms->thread); return atoms; } } return NULL; } static void __thread_latency_insert(struct rb_root *root, struct work_atoms *data, struct list_head *sort_list) { struct rb_node **new = &(root->rb_node), *parent = NULL; while (*new) { struct work_atoms *this; int cmp; this = container_of(*new, struct work_atoms, node); parent = *new; cmp = thread_lat_cmp(sort_list, data, this); if (cmp > 0) new = &((*new)->rb_left); else new = &((*new)->rb_right); } rb_link_node(&data->node, parent, new); rb_insert_color(&data->node, root); } static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread) { struct work_atoms *atoms = zalloc(sizeof(*atoms)); if (!atoms) { pr_err("No memory at %s\n", __func__); return -1; } atoms->thread = thread; INIT_LIST_HEAD(&atoms->work_list); __thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid); return 0; } static char sched_out_state(u64 prev_state) { const char *str = TASK_STATE_TO_CHAR_STR; return str[prev_state]; } static int add_sched_out_event(struct work_atoms *atoms, char run_state, u64 timestamp) { struct work_atom *atom = zalloc(sizeof(*atom)); if (!atom) { pr_err("Non memory at %s", __func__); return -1; } atom->sched_out_time = timestamp; if (run_state == 'R') { atom->state = THREAD_WAIT_CPU; atom->wake_up_time = atom->sched_out_time; } list_add_tail(&atom->list, &atoms->work_list); return 0; } static void add_runtime_event(struct work_atoms *atoms, u64 delta, u64 timestamp __maybe_unused) { struct work_atom *atom; BUG_ON(list_empty(&atoms->work_list)); atom = list_entry(atoms->work_list.prev, struct work_atom, list); atom->runtime += delta; atoms->total_runtime += delta; } static void add_sched_in_event(struct work_atoms *atoms, u64 timestamp) { struct work_atom *atom; u64 delta; if (list_empty(&atoms->work_list)) return; atom = list_entry(atoms->work_list.prev, struct work_atom, list); if (atom->state != THREAD_WAIT_CPU) return; if (timestamp < atom->wake_up_time) { atom->state = THREAD_IGNORE; return; } atom->state = THREAD_SCHED_IN; atom->sched_in_time = timestamp; delta = atom->sched_in_time - atom->wake_up_time; atoms->total_lat += delta; if (delta > atoms->max_lat) { atoms->max_lat = delta; atoms->max_lat_at = timestamp; } atoms->nb_atoms++; } static int latency_switch_event(struct perf_sched *sched, struct perf_evsel *evsel, struct perf_sample *sample, struct machine *machine) { const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"), next_pid = perf_evsel__intval(evsel, sample, "next_pid"); const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state"); struct work_atoms *out_events, *in_events; struct thread *sched_out, *sched_in; u64 timestamp0, timestamp = sample->time; int cpu = sample->cpu; s64 delta; BUG_ON(cpu >= MAX_CPUS || cpu < 0); timestamp0 = sched->cpu_last_switched[cpu]; sched->cpu_last_switched[cpu] = timestamp; if (timestamp0) delta = timestamp - timestamp0; else delta = 0; if (delta < 0) { pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta); return -1; } sched_out = machine__findnew_thread(machine, -1, prev_pid); sched_in = machine__findnew_thread(machine, -1, next_pid); out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid); if (!out_events) { if (thread_atoms_insert(sched, sched_out)) return -1; out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid); if (!out_events) { pr_err("out-event: Internal tree error"); return -1; } } if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp)) return -1; in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid); if (!in_events) { if (thread_atoms_insert(sched, sched_in)) return -1; in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid); if (!in_events) { pr_err("in-event: Internal tree error"); return -1; } /* * Take came in we have not heard about yet, * add in an initial atom in runnable state: */ if (add_sched_out_event(in_events, 'R', timestamp)) return -1; } add_sched_in_event(in_events, timestamp); return 0; } static int latency_runtime_event(struct perf_sched *sched, struct perf_evsel *evsel, struct perf_sample *sample, struct machine *machine) { const u32 pid = perf_evsel__intval(evsel, sample, "pid"); const u64 runtime = perf_evsel__intval(evsel, sample, "runtime"); struct thread *thread = machine__findnew_thread(machine, -1, pid); struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid); u64 timestamp = sample->time; int cpu = sample->cpu; BUG_ON(cpu >= MAX_CPUS || cpu < 0); if (!atoms) { if (thread_atoms_insert(sched, thread)) return -1; atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid); if (!atoms) { pr_err("in-event: Internal tree error"); return -1; } if (add_sched_out_event(atoms, 'R', timestamp)) return -1; } add_runtime_event(atoms, runtime, timestamp); return 0; } static int latency_wakeup_event(struct perf_sched *sched, struct perf_evsel *evsel, struct perf_sample *sample, struct machine *machine) { const u32 pid = perf_evsel__intval(evsel, sample, "pid"); struct work_atoms *atoms; struct work_atom *atom; struct thread *wakee; u64 timestamp = sample->time; wakee = machine__findnew_thread(machine, -1, pid); atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid); if (!atoms) { if (thread_atoms_insert(sched, wakee)) return -1; atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid); if (!atoms) { pr_err("wakeup-event: Internal tree error"); return -1; } if (add_sched_out_event(atoms, 'S', timestamp)) return -1; } BUG_ON(list_empty(&atoms->work_list)); atom = list_entry(atoms->work_list.prev, struct work_atom, list); /* * As we do not guarantee the wakeup event happens when * task is out of run queue, also may happen when task is * on run queue and wakeup only change ->state to TASK_RUNNING, * then we should not set the ->wake_up_time when wake up a * task which is on run queue. * * You WILL be missing events if you've recorded only * one CPU, or are only looking at only one, so don't * skip in this case. */ if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING) return 0; sched->nr_timestamps++; if (atom->sched_out_time > timestamp) { sched->nr_unordered_timestamps++; return 0; } atom->state = THREAD_WAIT_CPU; atom->wake_up_time = timestamp; return 0; } static int latency_migrate_task_event(struct perf_sched *sched, struct perf_evsel *evsel, struct perf_sample *sample, struct machine *machine) { const u32 pid = perf_evsel__intval(evsel, sample, "pid"); u64 timestamp = sample->time; struct work_atoms *atoms; struct work_atom *atom; struct thread *migrant; /* * Only need to worry about migration when profiling one CPU. */ if (sched->profile_cpu == -1) return 0; migrant = machine__findnew_thread(machine, -1, pid); atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid); if (!atoms) { if (thread_atoms_insert(sched, migrant)) return -1; register_pid(sched, migrant->tid, thread__comm_str(migrant)); atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid); if (!atoms) { pr_err("migration-event: Internal tree error"); return -1; } if (add_sched_out_event(atoms, 'R', timestamp)) return -1; } BUG_ON(list_empty(&atoms->work_list)); atom = list_entry(atoms->work_list.prev, struct work_atom, list); atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp; sched->nr_timestamps++; if (atom->sched_out_time > timestamp) sched->nr_unordered_timestamps++; return 0; } static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list) { int i; int ret; u64 avg; if (!work_list->nb_atoms) return; /* * Ignore idle threads: */ if (!strcmp(thread__comm_str(work_list->thread), "swapper")) return; sched->all_runtime += work_list->total_runtime; sched->all_count += work_list->nb_atoms; ret = printf(" %s:%d ", thread__comm_str(work_list->thread), work_list->thread->tid); for (i = 0; i < 24 - ret; i++) printf(" "); avg = work_list->total_lat / work_list->nb_atoms; printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %13.6f s\n", (double)work_list->total_runtime / 1e6, work_list->nb_atoms, (double)avg / 1e6, (double)work_list->max_lat / 1e6, (double)work_list->max_lat_at / 1e9); } static int pid_cmp(struct work_atoms *l, struct work_atoms *r) { if (l->thread->tid < r->thread->tid) return -1; if (l->thread->tid > r->thread->tid) return 1; return 0; } static int avg_cmp(struct work_atoms *l, struct work_atoms *r) { u64 avgl, avgr; if (!l->nb_atoms) return -1; if (!r->nb_atoms) return 1; avgl = l->total_lat / l->nb_atoms; avgr = r->total_lat / r->nb_atoms; if (avgl < avgr) return -1; if (avgl > avgr) return 1; return 0; } static int max_cmp(struct work_atoms *l, struct work_atoms *r) { if (l->max_lat < r->max_lat) return -1; if (l->max_lat > r->max_lat) return 1; return 0; } static int switch_cmp(struct work_atoms *l, struct work_atoms *r) { if (l->nb_atoms < r->nb_atoms) return -1; if (l->nb_atoms > r->nb_atoms) return 1; return 0; } static int runtime_cmp(struct work_atoms *l, struct work_atoms *r) { if (l->total_runtime < r->total_runtime) return -1; if (l->total_runtime > r->total_runtime) return 1; return 0; } static int sort_dimension__add(const char *tok, struct list_head *list) { size_t i; static struct sort_dimension avg_sort_dimension = { .name = "avg", .cmp = avg_cmp, }; static struct sort_dimension max_sort_dimension = { .name = "max", .cmp = max_cmp, }; static struct sort_dimension pid_sort_dimension = { .name = "pid", .cmp = pid_cmp, }; static struct sort_dimension runtime_sort_dimension = { .name = "runtime", .cmp = runtime_cmp, }; static struct sort_dimension switch_sort_dimension = { .name = "switch", .cmp = switch_cmp, }; struct sort_dimension *available_sorts[] = { &pid_sort_dimension, &avg_sort_dimension, &max_sort_dimension, &switch_sort_dimension, &runtime_sort_dimension, }; for (i = 0; i < ARRAY_SIZE(available_sorts); i++) { if (!strcmp(available_sorts[i]->name, tok)) { list_add_tail(&available_sorts[i]->list, list); return 0; } } return -1; } static void perf_sched__sort_lat(struct perf_sched *sched) { struct rb_node *node; for (;;) { struct work_atoms *data; node = rb_first(&sched->atom_root); if (!node) break; rb_erase(node, &sched->atom_root); data = rb_entry(node, struct work_atoms, node); __thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list); } } static int process_sched_wakeup_event(struct perf_tool *tool, struct perf_evsel *evsel, struct perf_sample *sample, struct machine *machine) { struct perf_sched *sched = container_of(tool, struct perf_sched, tool); if (sched->tp_handler->wakeup_event) return sched->tp_handler->wakeup_event(sched, evsel, sample, machine); return 0; } static int map_switch_event(struct perf_sched *sched, struct perf_evsel *evsel, struct perf_sample *sample, struct machine *machine) { const u32 next_pid = perf_evsel__intval(evsel, sample, "next_pid"); struct thread *sched_in; int new_shortname; u64 timestamp0, timestamp = sample->time; s64 delta; int cpu, this_cpu = sample->cpu; BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0); if (this_cpu > sched->max_cpu) sched->max_cpu = this_cpu; timestamp0 = sched->cpu_last_switched[this_cpu]; sched->cpu_last_switched[this_cpu] = timestamp; if (timestamp0) delta = timestamp - timestamp0; else delta = 0; if (delta < 0) { pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta); return -1; } sched_in = machine__findnew_thread(machine, -1, next_pid); sched->curr_thread[this_cpu] = sched_in; printf(" "); new_shortname = 0; if (!sched_in->shortname[0]) { if (!strcmp(thread__comm_str(sched_in), "swapper")) { /* * Don't allocate a letter-number for swapper:0 * as a shortname. Instead, we use '.' for it. */ sched_in->shortname[0] = '.'; sched_in->shortname[1] = ' '; } else { sched_in->shortname[0] = sched->next_shortname1; sched_in->shortname[1] = sched->next_shortname2; if (sched->next_shortname1 < 'Z') { sched->next_shortname1++; } else { sched->next_shortname1 = 'A'; if (sched->next_shortname2 < '9') sched->next_shortname2++; else sched->next_shortname2 = '0'; } } new_shortname = 1; } for (cpu = 0; cpu <= sched->max_cpu; cpu++) { if (cpu != this_cpu) printf(" "); else printf("*"); if (sched->curr_thread[cpu]) printf("%2s ", sched->curr_thread[cpu]->shortname); else printf(" "); } printf(" %12.6f secs ", (double)timestamp/1e9); if (new_shortname) { printf("%s => %s:%d\n", sched_in->shortname, thread__comm_str(sched_in), sched_in->tid); } else { printf("\n"); } return 0; } static int process_sched_switch_event(struct perf_tool *tool, struct perf_evsel *evsel, struct perf_sample *sample, struct machine *machine) { struct perf_sched *sched = container_of(tool, struct perf_sched, tool); int this_cpu = sample->cpu, err = 0; u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"), next_pid = perf_evsel__intval(evsel, sample, "next_pid"); if (sched->curr_pid[this_cpu] != (u32)-1) { /* * Are we trying to switch away a PID that is * not current? */ if (sched->curr_pid[this_cpu] != prev_pid) sched->nr_context_switch_bugs++; } if (sched->tp_handler->switch_event) err = sched->tp_handler->switch_event(sched, evsel, sample, machine); sched->curr_pid[this_cpu] = next_pid; return err; } static int process_sched_runtime_event(struct perf_tool *tool, struct perf_evsel *evsel, struct perf_sample *sample, struct machine *machine) { struct perf_sched *sched = container_of(tool, struct perf_sched, tool); if (sched->tp_handler->runtime_event) return sched->tp_handler->runtime_event(sched, evsel, sample, machine); return 0; } static int perf_sched__process_fork_event(struct perf_tool *tool, union perf_event *event, struct perf_sample *sample, struct machine *machine) { struct perf_sched *sched = container_of(tool, struct perf_sched, tool); /* run the fork event through the perf machineruy */ perf_event__process_fork(tool, event, sample, machine); /* and then run additional processing needed for this command */ if (sched->tp_handler->fork_event) return sched->tp_handler->fork_event(sched, event, machine); return 0; } static int process_sched_migrate_task_event(struct perf_tool *tool, struct perf_evsel *evsel, struct perf_sample *sample, struct machine *machine) { struct perf_sched *sched = container_of(tool, struct perf_sched, tool); if (sched->tp_handler->migrate_task_event) return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine); return 0; } typedef int (*tracepoint_handler)(struct perf_tool *tool, struct perf_evsel *evsel, struct perf_sample *sample, struct machine *machine); static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused, union perf_event *event __maybe_unused, struct perf_sample *sample, struct perf_evsel *evsel, struct machine *machine) { int err = 0; if (evsel->handler != NULL) { tracepoint_handler f = evsel->handler; err = f(tool, evsel, sample, machine); } return err; } static int perf_sched__read_events(struct perf_sched *sched, struct perf_session **psession) { const struct perf_evsel_str_handler handlers[] = { { "sched:sched_switch", process_sched_switch_event, }, { "sched:sched_stat_runtime", process_sched_runtime_event, }, { "sched:sched_wakeup", process_sched_wakeup_event, }, { "sched:sched_wakeup_new", process_sched_wakeup_event, }, { "sched:sched_migrate_task", process_sched_migrate_task_event, }, }; struct perf_session *session; struct perf_data_file file = { .path = input_name, .mode = PERF_DATA_MODE_READ, }; session = perf_session__new(&file, false, &sched->tool); if (session == NULL) { pr_debug("No Memory for session\n"); return -1; } symbol__init(&session->header.env); if (perf_session__set_tracepoints_handlers(session, handlers)) goto out_delete; if (perf_session__has_traces(session, "record -R")) { int err = perf_session__process_events(session, &sched->tool); if (err) { pr_err("Failed to process events, error %d", err); goto out_delete; } sched->nr_events = session->evlist->stats.nr_events[0]; sched->nr_lost_events = session->evlist->stats.total_lost; sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST]; } if (psession) *psession = session; else perf_session__delete(session); return 0; out_delete: perf_session__delete(session); return -1; } static void print_bad_events(struct perf_sched *sched) { if (sched->nr_unordered_timestamps && sched->nr_timestamps) { printf(" INFO: %.3f%% unordered timestamps (%ld out of %ld)\n", (double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0, sched->nr_unordered_timestamps, sched->nr_timestamps); } if (sched->nr_lost_events && sched->nr_events) { printf(" INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n", (double)sched->nr_lost_events/(double)sched->nr_events * 100.0, sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks); } if (sched->nr_context_switch_bugs && sched->nr_timestamps) { printf(" INFO: %.3f%% context switch bugs (%ld out of %ld)", (double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0, sched->nr_context_switch_bugs, sched->nr_timestamps); if (sched->nr_lost_events) printf(" (due to lost events?)"); printf("\n"); } } static int perf_sched__lat(struct perf_sched *sched) { struct rb_node *next; struct perf_session *session; setup_pager(); /* save session -- references to threads are held in work_list */ if (perf_sched__read_events(sched, &session)) return -1; perf_sched__sort_lat(sched); printf("\n -----------------------------------------------------------------------------------------------------------------\n"); printf(" Task | Runtime ms | Switches | Average delay ms | Maximum delay ms | Maximum delay at |\n"); printf(" -----------------------------------------------------------------------------------------------------------------\n"); next = rb_first(&sched->sorted_atom_root); while (next) { struct work_atoms *work_list; work_list = rb_entry(next, struct work_atoms, node); output_lat_thread(sched, work_list); next = rb_next(next); } printf(" -----------------------------------------------------------------------------------------------------------------\n"); printf(" TOTAL: |%11.3f ms |%9" PRIu64 " |\n", (double)sched->all_runtime / 1e6, sched->all_count); printf(" ---------------------------------------------------\n"); print_bad_events(sched); printf("\n"); perf_session__delete(session); return 0; } static int perf_sched__map(struct perf_sched *sched) { sched->max_cpu = sysconf(_SC_NPROCESSORS_CONF); setup_pager(); if (perf_sched__read_events(sched, NULL)) return -1; print_bad_events(sched); return 0; } static int perf_sched__replay(struct perf_sched *sched) { unsigned long i; calibrate_run_measurement_overhead(sched); calibrate_sleep_measurement_overhead(sched); test_calibrations(sched); if (perf_sched__read_events(sched, NULL)) return -1; printf("nr_run_events: %ld\n", sched->nr_run_events); printf("nr_sleep_events: %ld\n", sched->nr_sleep_events); printf("nr_wakeup_events: %ld\n", sched->nr_wakeup_events); if (sched->targetless_wakeups) printf("target-less wakeups: %ld\n", sched->targetless_wakeups); if (sched->multitarget_wakeups) printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups); if (sched->nr_run_events_optimized) printf("run atoms optimized: %ld\n", sched->nr_run_events_optimized); print_task_traces(sched); add_cross_task_wakeups(sched); create_tasks(sched); printf("------------------------------------------------------------\n"); for (i = 0; i < sched->replay_repeat; i++) run_one_test(sched); return 0; } static void setup_sorting(struct perf_sched *sched, const struct option *options, const char * const usage_msg[]) { char *tmp, *tok, *str = strdup(sched->sort_order); for (tok = strtok_r(str, ", ", &tmp); tok; tok = strtok_r(NULL, ", ", &tmp)) { if (sort_dimension__add(tok, &sched->sort_list) < 0) { error("Unknown --sort key: `%s'", tok); usage_with_options(usage_msg, options); } } free(str); sort_dimension__add("pid", &sched->cmp_pid); } static int __cmd_record(int argc, const char **argv) { unsigned int rec_argc, i, j; const char **rec_argv; const char * const record_args[] = { "record", "-a", "-R", "-m", "1024", "-c", "1", "-e", "sched:sched_switch", "-e", "sched:sched_stat_wait", "-e", "sched:sched_stat_sleep", "-e", "sched:sched_stat_iowait", "-e", "sched:sched_stat_runtime", "-e", "sched:sched_process_fork", "-e", "sched:sched_wakeup", "-e", "sched:sched_wakeup_new", "-e", "sched:sched_migrate_task", }; rec_argc = ARRAY_SIZE(record_args) + argc - 1; rec_argv = calloc(rec_argc + 1, sizeof(char *)); if (rec_argv == NULL) return -ENOMEM; for (i = 0; i < ARRAY_SIZE(record_args); i++) rec_argv[i] = strdup(record_args[i]); for (j = 1; j < (unsigned int)argc; j++, i++) rec_argv[i] = argv[j]; BUG_ON(i != rec_argc); return cmd_record(i, rec_argv, NULL); } int cmd_sched(int argc, const char **argv, const char *prefix __maybe_unused) { const char default_sort_order[] = "avg, max, switch, runtime"; struct perf_sched sched = { .tool = { .sample = perf_sched__process_tracepoint_sample, .comm = perf_event__process_comm, .lost = perf_event__process_lost, .fork = perf_sched__process_fork_event, .ordered_events = true, }, .cmp_pid = LIST_HEAD_INIT(sched.cmp_pid), .sort_list = LIST_HEAD_INIT(sched.sort_list), .start_work_mutex = PTHREAD_MUTEX_INITIALIZER, .work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER, .sort_order = default_sort_order, .replay_repeat = 10, .profile_cpu = -1, .next_shortname1 = 'A', .next_shortname2 = '0', }; const struct option latency_options[] = { OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]", "sort by key(s): runtime, switch, avg, max"), OPT_INCR('v', "verbose", &verbose, "be more verbose (show symbol address, etc)"), OPT_INTEGER('C', "CPU", &sched.profile_cpu, "CPU to profile on"), OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace, "dump raw trace in ASCII"), OPT_END() }; const struct option replay_options[] = { OPT_UINTEGER('r', "repeat", &sched.replay_repeat, "repeat the workload replay N times (-1: infinite)"), OPT_INCR('v', "verbose", &verbose, "be more verbose (show symbol address, etc)"), OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace, "dump raw trace in ASCII"), OPT_END() }; const struct option sched_options[] = { OPT_STRING('i', "input", &input_name, "file", "input file name"), OPT_INCR('v', "verbose", &verbose, "be more verbose (show symbol address, etc)"), OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace, "dump raw trace in ASCII"), OPT_END() }; const char * const latency_usage[] = { "perf sched latency []", NULL }; const char * const replay_usage[] = { "perf sched replay []", NULL }; const char *const sched_subcommands[] = { "record", "latency", "map", "replay", "script", NULL }; const char *sched_usage[] = { NULL, NULL }; struct trace_sched_handler lat_ops = { .wakeup_event = latency_wakeup_event, .switch_event = latency_switch_event, .runtime_event = latency_runtime_event, .migrate_task_event = latency_migrate_task_event, }; struct trace_sched_handler map_ops = { .switch_event = map_switch_event, }; struct trace_sched_handler replay_ops = { .wakeup_event = replay_wakeup_event, .switch_event = replay_switch_event, .fork_event = replay_fork_event, }; unsigned int i; for (i = 0; i < ARRAY_SIZE(sched.curr_pid); i++) sched.curr_pid[i] = -1; argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands, sched_usage, PARSE_OPT_STOP_AT_NON_OPTION); if (!argc) usage_with_options(sched_usage, sched_options); /* * Aliased to 'perf script' for now: */ if (!strcmp(argv[0], "script")) return cmd_script(argc, argv, prefix); if (!strncmp(argv[0], "rec", 3)) { return __cmd_record(argc, argv); } else if (!strncmp(argv[0], "lat", 3)) { sched.tp_handler = &lat_ops; if (argc > 1) { argc = parse_options(argc, argv, latency_options, latency_usage, 0); if (argc) usage_with_options(latency_usage, latency_options); } setup_sorting(&sched, latency_options, latency_usage); return perf_sched__lat(&sched); } else if (!strcmp(argv[0], "map")) { sched.tp_handler = &map_ops; setup_sorting(&sched, latency_options, latency_usage); return perf_sched__map(&sched); } else if (!strncmp(argv[0], "rep", 3)) { sched.tp_handler = &replay_ops; if (argc) { argc = parse_options(argc, argv, replay_options, replay_usage, 0); if (argc) usage_with_options(replay_usage, replay_options); } return perf_sched__replay(&sched); } else { usage_with_options(sched_usage, sched_options); } return 0; }