// SPDX-License-Identifier: GPL-2.0-only /* * builtin-stat.c * * Builtin stat command: Give a precise performance counters summary * overview about any workload, CPU or specific PID. * * Sample output: $ perf stat ./hackbench 10 Time: 0.118 Performance counter stats for './hackbench 10': 1708.761321 task-clock # 11.037 CPUs utilized 41,190 context-switches # 0.024 M/sec 6,735 CPU-migrations # 0.004 M/sec 17,318 page-faults # 0.010 M/sec 5,205,202,243 cycles # 3.046 GHz 3,856,436,920 stalled-cycles-frontend # 74.09% frontend cycles idle 1,600,790,871 stalled-cycles-backend # 30.75% backend cycles idle 2,603,501,247 instructions # 0.50 insns per cycle # 1.48 stalled cycles per insn 484,357,498 branches # 283.455 M/sec 6,388,934 branch-misses # 1.32% of all branches 0.154822978 seconds time elapsed * * Copyright (C) 2008-2011, Red Hat Inc, Ingo Molnar * * Improvements and fixes by: * * Arjan van de Ven * Yanmin Zhang * Wu Fengguang * Mike Galbraith * Paul Mackerras * Jaswinder Singh Rajput */ #include "builtin.h" #include "util/cgroup.h" #include #include "util/parse-events.h" #include "util/pmus.h" #include "util/pmu.h" #include "util/tool_pmu.h" #include "util/event.h" #include "util/evlist.h" #include "util/evsel.h" #include "util/debug.h" #include "util/color.h" #include "util/stat.h" #include "util/header.h" #include "util/cpumap.h" #include "util/thread_map.h" #include "util/counts.h" #include "util/topdown.h" #include "util/session.h" #include "util/tool.h" #include "util/string2.h" #include "util/metricgroup.h" #include "util/synthetic-events.h" #include "util/target.h" #include "util/time-utils.h" #include "util/top.h" #include "util/affinity.h" #include "util/pfm.h" #include "util/bpf_counter.h" #include "util/iostat.h" #include "util/util.h" #include "util/intel-tpebs.h" #include "asm/bug.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define DEFAULT_SEPARATOR " " #define FREEZE_ON_SMI_PATH "devices/cpu/freeze_on_smi" static void print_counters(struct timespec *ts, int argc, const char **argv); static struct evlist *evsel_list; static struct parse_events_option_args parse_events_option_args = { .evlistp = &evsel_list, }; static bool all_counters_use_bpf = true; static struct target target = { .uid = UINT_MAX, }; #define METRIC_ONLY_LEN 20 static volatile sig_atomic_t child_pid = -1; static int detailed_run = 0; static bool transaction_run; static bool topdown_run = false; static bool smi_cost = false; static bool smi_reset = false; static int big_num_opt = -1; static const char *pre_cmd = NULL; static const char *post_cmd = NULL; static bool sync_run = false; static bool forever = false; static bool force_metric_only = false; static struct timespec ref_time; static bool append_file; static bool interval_count; static const char *output_name; static int output_fd; static char *metrics; struct perf_stat { bool record; struct perf_data data; struct perf_session *session; u64 bytes_written; struct perf_tool tool; bool maps_allocated; struct perf_cpu_map *cpus; struct perf_thread_map *threads; enum aggr_mode aggr_mode; u32 aggr_level; }; static struct perf_stat perf_stat; #define STAT_RECORD perf_stat.record static volatile sig_atomic_t done = 0; static struct perf_stat_config stat_config = { .aggr_mode = AGGR_GLOBAL, .aggr_level = MAX_CACHE_LVL + 1, .scale = true, .unit_width = 4, /* strlen("unit") */ .run_count = 1, .metric_only_len = METRIC_ONLY_LEN, .walltime_nsecs_stats = &walltime_nsecs_stats, .ru_stats = &ru_stats, .big_num = true, .ctl_fd = -1, .ctl_fd_ack = -1, .iostat_run = false, }; /* Options set from the command line. */ struct opt_aggr_mode { bool node, socket, die, cluster, cache, core, thread, no_aggr; }; /* Turn command line option into most generic aggregation mode setting. */ static enum aggr_mode opt_aggr_mode_to_aggr_mode(struct opt_aggr_mode *opt_mode) { enum aggr_mode mode = AGGR_GLOBAL; if (opt_mode->node) mode = AGGR_NODE; if (opt_mode->socket) mode = AGGR_SOCKET; if (opt_mode->die) mode = AGGR_DIE; if (opt_mode->cluster) mode = AGGR_CLUSTER; if (opt_mode->cache) mode = AGGR_CACHE; if (opt_mode->core) mode = AGGR_CORE; if (opt_mode->thread) mode = AGGR_THREAD; if (opt_mode->no_aggr) mode = AGGR_NONE; return mode; } static void evlist__check_cpu_maps(struct evlist *evlist) { struct evsel *evsel, *warned_leader = NULL; evlist__for_each_entry(evlist, evsel) { struct evsel *leader = evsel__leader(evsel); /* Check that leader matches cpus with each member. */ if (leader == evsel) continue; if (perf_cpu_map__equal(leader->core.cpus, evsel->core.cpus)) continue; /* If there's mismatch disable the group and warn user. */ if (warned_leader != leader) { char buf[200]; pr_warning("WARNING: grouped events cpus do not match.\n" "Events with CPUs not matching the leader will " "be removed from the group.\n"); evsel__group_desc(leader, buf, sizeof(buf)); pr_warning(" %s\n", buf); warned_leader = leader; } if (verbose > 0) { char buf[200]; cpu_map__snprint(leader->core.cpus, buf, sizeof(buf)); pr_warning(" %s: %s\n", leader->name, buf); cpu_map__snprint(evsel->core.cpus, buf, sizeof(buf)); pr_warning(" %s: %s\n", evsel->name, buf); } evsel__remove_from_group(evsel, leader); } } static inline void diff_timespec(struct timespec *r, struct timespec *a, struct timespec *b) { r->tv_sec = a->tv_sec - b->tv_sec; if (a->tv_nsec < b->tv_nsec) { r->tv_nsec = a->tv_nsec + NSEC_PER_SEC - b->tv_nsec; r->tv_sec--; } else { r->tv_nsec = a->tv_nsec - b->tv_nsec ; } } static void perf_stat__reset_stats(void) { evlist__reset_stats(evsel_list); perf_stat__reset_shadow_stats(); } static int process_synthesized_event(const struct perf_tool *tool __maybe_unused, union perf_event *event, struct perf_sample *sample __maybe_unused, struct machine *machine __maybe_unused) { if (perf_data__write(&perf_stat.data, event, event->header.size) < 0) { pr_err("failed to write perf data, error: %m\n"); return -1; } perf_stat.bytes_written += event->header.size; return 0; } static int write_stat_round_event(u64 tm, u64 type) { return perf_event__synthesize_stat_round(NULL, tm, type, process_synthesized_event, NULL); } #define WRITE_STAT_ROUND_EVENT(time, interval) \ write_stat_round_event(time, PERF_STAT_ROUND_TYPE__ ## interval) #define SID(e, x, y) xyarray__entry(e->core.sample_id, x, y) static int evsel__write_stat_event(struct evsel *counter, int cpu_map_idx, u32 thread, struct perf_counts_values *count) { struct perf_sample_id *sid = SID(counter, cpu_map_idx, thread); struct perf_cpu cpu = perf_cpu_map__cpu(evsel__cpus(counter), cpu_map_idx); return perf_event__synthesize_stat(NULL, cpu, thread, sid->id, count, process_synthesized_event, NULL); } static int read_single_counter(struct evsel *counter, int cpu_map_idx, int thread) { int err = evsel__read_counter(counter, cpu_map_idx, thread); /* * Reading user and system time will fail when the process * terminates. Use the wait4 values in that case. */ if (err && cpu_map_idx == 0 && (evsel__tool_event(counter) == TOOL_PMU__EVENT_USER_TIME || evsel__tool_event(counter) == TOOL_PMU__EVENT_SYSTEM_TIME)) { u64 val, *start_time; struct perf_counts_values *count = perf_counts(counter->counts, cpu_map_idx, thread); start_time = xyarray__entry(counter->start_times, cpu_map_idx, thread); if (evsel__tool_event(counter) == TOOL_PMU__EVENT_USER_TIME) val = ru_stats.ru_utime_usec_stat.mean; else val = ru_stats.ru_stime_usec_stat.mean; count->ena = count->run = *start_time + val; count->val = val; return 0; } return err; } /* * Read out the results of a single counter: * do not aggregate counts across CPUs in system-wide mode */ static int read_counter_cpu(struct evsel *counter, int cpu_map_idx) { int nthreads = perf_thread_map__nr(evsel_list->core.threads); int thread; if (!counter->supported) return -ENOENT; for (thread = 0; thread < nthreads; thread++) { struct perf_counts_values *count; count = perf_counts(counter->counts, cpu_map_idx, thread); /* * The leader's group read loads data into its group members * (via evsel__read_counter()) and sets their count->loaded. */ if (!perf_counts__is_loaded(counter->counts, cpu_map_idx, thread) && read_single_counter(counter, cpu_map_idx, thread)) { counter->counts->scaled = -1; perf_counts(counter->counts, cpu_map_idx, thread)->ena = 0; perf_counts(counter->counts, cpu_map_idx, thread)->run = 0; return -1; } perf_counts__set_loaded(counter->counts, cpu_map_idx, thread, false); if (STAT_RECORD) { if (evsel__write_stat_event(counter, cpu_map_idx, thread, count)) { pr_err("failed to write stat event\n"); return -1; } } if (verbose > 1) { fprintf(stat_config.output, "%s: %d: %" PRIu64 " %" PRIu64 " %" PRIu64 "\n", evsel__name(counter), perf_cpu_map__cpu(evsel__cpus(counter), cpu_map_idx).cpu, count->val, count->ena, count->run); } } return 0; } static int read_affinity_counters(void) { struct evlist_cpu_iterator evlist_cpu_itr; struct affinity saved_affinity, *affinity; if (all_counters_use_bpf) return 0; if (!target__has_cpu(&target) || target__has_per_thread(&target)) affinity = NULL; else if (affinity__setup(&saved_affinity) < 0) return -1; else affinity = &saved_affinity; evlist__for_each_cpu(evlist_cpu_itr, evsel_list, affinity) { struct evsel *counter = evlist_cpu_itr.evsel; if (evsel__is_bpf(counter)) continue; if (!counter->err) counter->err = read_counter_cpu(counter, evlist_cpu_itr.cpu_map_idx); } if (affinity) affinity__cleanup(&saved_affinity); return 0; } static int read_bpf_map_counters(void) { struct evsel *counter; int err; evlist__for_each_entry(evsel_list, counter) { if (!evsel__is_bpf(counter)) continue; err = bpf_counter__read(counter); if (err) return err; } return 0; } static int read_counters(void) { if (!stat_config.stop_read_counter) { if (read_bpf_map_counters() || read_affinity_counters()) return -1; } return 0; } static void process_counters(void) { struct evsel *counter; evlist__for_each_entry(evsel_list, counter) { if (counter->err) pr_debug("failed to read counter %s\n", counter->name); if (counter->err == 0 && perf_stat_process_counter(&stat_config, counter)) pr_warning("failed to process counter %s\n", counter->name); counter->err = 0; } perf_stat_merge_counters(&stat_config, evsel_list); perf_stat_process_percore(&stat_config, evsel_list); } static void process_interval(void) { struct timespec ts, rs; clock_gettime(CLOCK_MONOTONIC, &ts); diff_timespec(&rs, &ts, &ref_time); evlist__reset_aggr_stats(evsel_list); if (read_counters() == 0) process_counters(); if (STAT_RECORD) { if (WRITE_STAT_ROUND_EVENT(rs.tv_sec * NSEC_PER_SEC + rs.tv_nsec, INTERVAL)) pr_err("failed to write stat round event\n"); } init_stats(&walltime_nsecs_stats); update_stats(&walltime_nsecs_stats, stat_config.interval * 1000000ULL); print_counters(&rs, 0, NULL); } static bool handle_interval(unsigned int interval, int *times) { if (interval) { process_interval(); if (interval_count && !(--(*times))) return true; } return false; } static int enable_counters(void) { struct evsel *evsel; int err; evlist__for_each_entry(evsel_list, evsel) { if (!evsel__is_bpf(evsel)) continue; err = bpf_counter__enable(evsel); if (err) return err; } if (!target__enable_on_exec(&target)) { if (!all_counters_use_bpf) evlist__enable(evsel_list); } return 0; } static void disable_counters(void) { struct evsel *counter; /* * If we don't have tracee (attaching to task or cpu), counters may * still be running. To get accurate group ratios, we must stop groups * from counting before reading their constituent counters. */ if (!target__none(&target)) { evlist__for_each_entry(evsel_list, counter) bpf_counter__disable(counter); if (!all_counters_use_bpf) evlist__disable(evsel_list); } } static volatile sig_atomic_t workload_exec_errno; /* * evlist__prepare_workload will send a SIGUSR1 * if the fork fails, since we asked by setting its * want_signal to true. */ static void workload_exec_failed_signal(int signo __maybe_unused, siginfo_t *info, void *ucontext __maybe_unused) { workload_exec_errno = info->si_value.sival_int; } static bool evsel__should_store_id(struct evsel *counter) { return STAT_RECORD || counter->core.attr.read_format & PERF_FORMAT_ID; } static bool is_target_alive(struct target *_target, struct perf_thread_map *threads) { struct stat st; int i; if (!target__has_task(_target)) return true; for (i = 0; i < threads->nr; i++) { char path[PATH_MAX]; scnprintf(path, PATH_MAX, "%s/%d", procfs__mountpoint(), threads->map[i].pid); if (!stat(path, &st)) return true; } return false; } static void process_evlist(struct evlist *evlist, unsigned int interval) { enum evlist_ctl_cmd cmd = EVLIST_CTL_CMD_UNSUPPORTED; if (evlist__ctlfd_process(evlist, &cmd) > 0) { switch (cmd) { case EVLIST_CTL_CMD_ENABLE: fallthrough; case EVLIST_CTL_CMD_DISABLE: if (interval) process_interval(); break; case EVLIST_CTL_CMD_SNAPSHOT: case EVLIST_CTL_CMD_ACK: case EVLIST_CTL_CMD_UNSUPPORTED: case EVLIST_CTL_CMD_EVLIST: case EVLIST_CTL_CMD_STOP: case EVLIST_CTL_CMD_PING: default: break; } } } static void compute_tts(struct timespec *time_start, struct timespec *time_stop, int *time_to_sleep) { int tts = *time_to_sleep; struct timespec time_diff; diff_timespec(&time_diff, time_stop, time_start); tts -= time_diff.tv_sec * MSEC_PER_SEC + time_diff.tv_nsec / NSEC_PER_MSEC; if (tts < 0) tts = 0; *time_to_sleep = tts; } static int dispatch_events(bool forks, int timeout, int interval, int *times) { int child_exited = 0, status = 0; int time_to_sleep, sleep_time; struct timespec time_start, time_stop; if (interval) sleep_time = interval; else if (timeout) sleep_time = timeout; else sleep_time = 1000; time_to_sleep = sleep_time; while (!done) { if (forks) child_exited = waitpid(child_pid, &status, WNOHANG); else child_exited = !is_target_alive(&target, evsel_list->core.threads) ? 1 : 0; if (child_exited) break; clock_gettime(CLOCK_MONOTONIC, &time_start); if (!(evlist__poll(evsel_list, time_to_sleep) > 0)) { /* poll timeout or EINTR */ if (timeout || handle_interval(interval, times)) break; time_to_sleep = sleep_time; } else { /* fd revent */ process_evlist(evsel_list, interval); clock_gettime(CLOCK_MONOTONIC, &time_stop); compute_tts(&time_start, &time_stop, &time_to_sleep); } } return status; } enum counter_recovery { COUNTER_SKIP, COUNTER_RETRY, COUNTER_FATAL, }; static enum counter_recovery stat_handle_error(struct evsel *counter) { char msg[BUFSIZ]; /* * PPC returns ENXIO for HW counters until 2.6.37 * (behavior changed with commit b0a873e). */ if (errno == EINVAL || errno == ENOSYS || errno == ENOENT || errno == EOPNOTSUPP || errno == ENXIO) { if (verbose > 0) ui__warning("%s event is not supported by the kernel.\n", evsel__name(counter)); counter->supported = false; /* * errored is a sticky flag that means one of the counter's * cpu event had a problem and needs to be reexamined. */ counter->errored = true; if ((evsel__leader(counter) != counter) || !(counter->core.leader->nr_members > 1)) return COUNTER_SKIP; } else if (evsel__fallback(counter, &target, errno, msg, sizeof(msg))) { if (verbose > 0) ui__warning("%s\n", msg); return COUNTER_RETRY; } else if (target__has_per_thread(&target) && evsel_list->core.threads && evsel_list->core.threads->err_thread != -1) { /* * For global --per-thread case, skip current * error thread. */ if (!thread_map__remove(evsel_list->core.threads, evsel_list->core.threads->err_thread)) { evsel_list->core.threads->err_thread = -1; return COUNTER_RETRY; } } else if (counter->skippable) { if (verbose > 0) ui__warning("skipping event %s that kernel failed to open .\n", evsel__name(counter)); counter->supported = false; counter->errored = true; return COUNTER_SKIP; } evsel__open_strerror(counter, &target, errno, msg, sizeof(msg)); ui__error("%s\n", msg); if (child_pid != -1) kill(child_pid, SIGTERM); tpebs_delete(); return COUNTER_FATAL; } static int __run_perf_stat(int argc, const char **argv, int run_idx) { int interval = stat_config.interval; int times = stat_config.times; int timeout = stat_config.timeout; char msg[BUFSIZ]; unsigned long long t0, t1; struct evsel *counter; size_t l; int status = 0; const bool forks = (argc > 0); bool is_pipe = STAT_RECORD ? perf_stat.data.is_pipe : false; struct evlist_cpu_iterator evlist_cpu_itr; struct affinity saved_affinity, *affinity = NULL; int err; bool second_pass = false; if (forks) { if (evlist__prepare_workload(evsel_list, &target, argv, is_pipe, workload_exec_failed_signal) < 0) { perror("failed to prepare workload"); return -1; } child_pid = evsel_list->workload.pid; } if (!cpu_map__is_dummy(evsel_list->core.user_requested_cpus)) { if (affinity__setup(&saved_affinity) < 0) { err = -1; goto err_out; } affinity = &saved_affinity; } evlist__for_each_entry(evsel_list, counter) { counter->reset_group = false; if (bpf_counter__load(counter, &target)) { err = -1; goto err_out; } if (!(evsel__is_bperf(counter))) all_counters_use_bpf = false; } evlist__reset_aggr_stats(evsel_list); evlist__for_each_cpu(evlist_cpu_itr, evsel_list, affinity) { counter = evlist_cpu_itr.evsel; /* * bperf calls evsel__open_per_cpu() in bperf__load(), so * no need to call it again here. */ if (target.use_bpf) break; if (counter->reset_group || counter->errored) continue; if (evsel__is_bperf(counter)) continue; try_again: if (create_perf_stat_counter(counter, &stat_config, &target, evlist_cpu_itr.cpu_map_idx) < 0) { /* * Weak group failed. We cannot just undo this here * because earlier CPUs might be in group mode, and the kernel * doesn't support mixing group and non group reads. Defer * it to later. * Don't close here because we're in the wrong affinity. */ if ((errno == EINVAL || errno == EBADF) && evsel__leader(counter) != counter && counter->weak_group) { evlist__reset_weak_group(evsel_list, counter, false); assert(counter->reset_group); second_pass = true; continue; } switch (stat_handle_error(counter)) { case COUNTER_FATAL: err = -1; goto err_out; case COUNTER_RETRY: goto try_again; case COUNTER_SKIP: continue; default: break; } } counter->supported = true; } if (second_pass) { /* * Now redo all the weak group after closing them, * and also close errored counters. */ /* First close errored or weak retry */ evlist__for_each_cpu(evlist_cpu_itr, evsel_list, affinity) { counter = evlist_cpu_itr.evsel; if (!counter->reset_group && !counter->errored) continue; perf_evsel__close_cpu(&counter->core, evlist_cpu_itr.cpu_map_idx); } /* Now reopen weak */ evlist__for_each_cpu(evlist_cpu_itr, evsel_list, affinity) { counter = evlist_cpu_itr.evsel; if (!counter->reset_group) continue; try_again_reset: pr_debug2("reopening weak %s\n", evsel__name(counter)); if (create_perf_stat_counter(counter, &stat_config, &target, evlist_cpu_itr.cpu_map_idx) < 0) { switch (stat_handle_error(counter)) { case COUNTER_FATAL: err = -1; goto err_out; case COUNTER_RETRY: goto try_again_reset; case COUNTER_SKIP: continue; default: break; } } counter->supported = true; } } affinity__cleanup(affinity); affinity = NULL; evlist__for_each_entry(evsel_list, counter) { if (!counter->supported) { perf_evsel__free_fd(&counter->core); continue; } l = strlen(counter->unit); if (l > stat_config.unit_width) stat_config.unit_width = l; if (evsel__should_store_id(counter) && evsel__store_ids(counter, evsel_list)) { err = -1; goto err_out; } } if (evlist__apply_filters(evsel_list, &counter, &target)) { pr_err("failed to set filter \"%s\" on event %s with %d (%s)\n", counter->filter, evsel__name(counter), errno, str_error_r(errno, msg, sizeof(msg))); return -1; } if (STAT_RECORD) { int fd = perf_data__fd(&perf_stat.data); if (is_pipe) { err = perf_header__write_pipe(perf_data__fd(&perf_stat.data)); } else { err = perf_session__write_header(perf_stat.session, evsel_list, fd, false); } if (err < 0) goto err_out; err = perf_event__synthesize_stat_events(&stat_config, NULL, evsel_list, process_synthesized_event, is_pipe); if (err < 0) goto err_out; } if (target.initial_delay) { pr_info(EVLIST_DISABLED_MSG); } else { err = enable_counters(); if (err) { err = -1; goto err_out; } } /* Exec the command, if any */ if (forks) evlist__start_workload(evsel_list); if (target.initial_delay > 0) { usleep(target.initial_delay * USEC_PER_MSEC); err = enable_counters(); if (err) { err = -1; goto err_out; } pr_info(EVLIST_ENABLED_MSG); } t0 = rdclock(); clock_gettime(CLOCK_MONOTONIC, &ref_time); if (forks) { if (interval || timeout || evlist__ctlfd_initialized(evsel_list)) status = dispatch_events(forks, timeout, interval, ×); if (child_pid != -1) { if (timeout) kill(child_pid, SIGTERM); wait4(child_pid, &status, 0, &stat_config.ru_data); } if (workload_exec_errno) { const char *emsg = str_error_r(workload_exec_errno, msg, sizeof(msg)); pr_err("Workload failed: %s\n", emsg); err = -1; goto err_out; } if (WIFSIGNALED(status)) psignal(WTERMSIG(status), argv[0]); } else { status = dispatch_events(forks, timeout, interval, ×); } disable_counters(); t1 = rdclock(); if (stat_config.walltime_run_table) stat_config.walltime_run[run_idx] = t1 - t0; if (interval && stat_config.summary) { stat_config.interval = 0; stat_config.stop_read_counter = true; init_stats(&walltime_nsecs_stats); update_stats(&walltime_nsecs_stats, t1 - t0); evlist__copy_prev_raw_counts(evsel_list); evlist__reset_prev_raw_counts(evsel_list); evlist__reset_aggr_stats(evsel_list); } else { update_stats(&walltime_nsecs_stats, t1 - t0); update_rusage_stats(&ru_stats, &stat_config.ru_data); } /* * Closing a group leader splits the group, and as we only disable * group leaders, results in remaining events becoming enabled. To * avoid arbitrary skew, we must read all counters before closing any * group leaders. */ if (read_counters() == 0) process_counters(); /* * We need to keep evsel_list alive, because it's processed * later the evsel_list will be closed after. */ if (!STAT_RECORD) evlist__close(evsel_list); return WEXITSTATUS(status); err_out: if (forks) evlist__cancel_workload(evsel_list); affinity__cleanup(affinity); return err; } /* * Returns -1 for fatal errors which signifies to not continue * when in repeat mode. * * Returns < -1 error codes when stat record is used. These * result in the stat information being displayed, but writing * to the file fails and is non fatal. */ static int run_perf_stat(int argc, const char **argv, int run_idx) { int ret; if (pre_cmd) { ret = system(pre_cmd); if (ret) return ret; } if (sync_run) sync(); ret = __run_perf_stat(argc, argv, run_idx); if (ret) return ret; if (post_cmd) { ret = system(post_cmd); if (ret) return ret; } return ret; } static void print_counters(struct timespec *ts, int argc, const char **argv) { /* Do not print anything if we record to the pipe. */ if (STAT_RECORD && perf_stat.data.is_pipe) return; if (quiet) return; evlist__print_counters(evsel_list, &stat_config, &target, ts, argc, argv); } static volatile sig_atomic_t signr = -1; static void skip_signal(int signo) { if ((child_pid == -1) || stat_config.interval) done = 1; signr = signo; /* * render child_pid harmless * won't send SIGTERM to a random * process in case of race condition * and fast PID recycling */ child_pid = -1; } static void sig_atexit(void) { sigset_t set, oset; /* * avoid race condition with SIGCHLD handler * in skip_signal() which is modifying child_pid * goal is to avoid send SIGTERM to a random * process */ sigemptyset(&set); sigaddset(&set, SIGCHLD); sigprocmask(SIG_BLOCK, &set, &oset); if (child_pid != -1) kill(child_pid, SIGTERM); sigprocmask(SIG_SETMASK, &oset, NULL); if (signr == -1) return; signal(signr, SIG_DFL); kill(getpid(), signr); } void perf_stat__set_big_num(int set) { stat_config.big_num = (set != 0); } void perf_stat__set_no_csv_summary(int set) { stat_config.no_csv_summary = (set != 0); } static int stat__set_big_num(const struct option *opt __maybe_unused, const char *s __maybe_unused, int unset) { big_num_opt = unset ? 0 : 1; perf_stat__set_big_num(!unset); return 0; } static int enable_metric_only(const struct option *opt __maybe_unused, const char *s __maybe_unused, int unset) { force_metric_only = true; stat_config.metric_only = !unset; return 0; } static int append_metric_groups(const struct option *opt __maybe_unused, const char *str, int unset __maybe_unused) { if (metrics) { char *tmp; if (asprintf(&tmp, "%s,%s", metrics, str) < 0) return -ENOMEM; free(metrics); metrics = tmp; } else { metrics = strdup(str); if (!metrics) return -ENOMEM; } return 0; } static int parse_control_option(const struct option *opt, const char *str, int unset __maybe_unused) { struct perf_stat_config *config = opt->value; return evlist__parse_control(str, &config->ctl_fd, &config->ctl_fd_ack, &config->ctl_fd_close); } static int parse_stat_cgroups(const struct option *opt, const char *str, int unset) { if (stat_config.cgroup_list) { pr_err("--cgroup and --for-each-cgroup cannot be used together\n"); return -1; } return parse_cgroups(opt, str, unset); } static int parse_cputype(const struct option *opt, const char *str, int unset __maybe_unused) { const struct perf_pmu *pmu; struct evlist *evlist = *(struct evlist **)opt->value; if (!list_empty(&evlist->core.entries)) { fprintf(stderr, "Must define cputype before events/metrics\n"); return -1; } pmu = perf_pmus__pmu_for_pmu_filter(str); if (!pmu) { fprintf(stderr, "--cputype %s is not supported!\n", str); return -1; } parse_events_option_args.pmu_filter = pmu->name; return 0; } static int parse_cache_level(const struct option *opt, const char *str, int unset __maybe_unused) { int level; struct opt_aggr_mode *opt_aggr_mode = (struct opt_aggr_mode *)opt->value; u32 *aggr_level = (u32 *)opt->data; /* * If no string is specified, aggregate based on the topology of * Last Level Cache (LLC). Since the LLC level can change from * architecture to architecture, set level greater than * MAX_CACHE_LVL which will be interpreted as LLC. */ if (str == NULL) { level = MAX_CACHE_LVL + 1; goto out; } /* * The format to specify cache level is LX or lX where X is the * cache level. */ if (strlen(str) != 2 || (str[0] != 'l' && str[0] != 'L')) { pr_err("Cache level must be of form L[1-%d], or l[1-%d]\n", MAX_CACHE_LVL, MAX_CACHE_LVL); return -EINVAL; } level = atoi(&str[1]); if (level < 1) { pr_err("Cache level must be of form L[1-%d], or l[1-%d]\n", MAX_CACHE_LVL, MAX_CACHE_LVL); return -EINVAL; } if (level > MAX_CACHE_LVL) { pr_err("perf only supports max cache level of %d.\n" "Consider increasing MAX_CACHE_LVL\n", MAX_CACHE_LVL); return -EINVAL; } out: opt_aggr_mode->cache = true; *aggr_level = level; return 0; } /** * Calculate the cache instance ID from the map in * /sys/devices/system/cpu/cpuX/cache/indexY/shared_cpu_list * Cache instance ID is the first CPU reported in the shared_cpu_list file. */ static int cpu__get_cache_id_from_map(struct perf_cpu cpu, char *map) { int id; struct perf_cpu_map *cpu_map = perf_cpu_map__new(map); /* * If the map contains no CPU, consider the current CPU to * be the first online CPU in the cache domain else use the * first online CPU of the cache domain as the ID. */ id = perf_cpu_map__min(cpu_map).cpu; if (id == -1) id = cpu.cpu; /* Free the perf_cpu_map used to find the cache ID */ perf_cpu_map__put(cpu_map); return id; } /** * cpu__get_cache_id - Returns 0 if successful in populating the * cache level and cache id. Cache level is read from * /sys/devices/system/cpu/cpuX/cache/indexY/level where as cache instance ID * is the first CPU reported by * /sys/devices/system/cpu/cpuX/cache/indexY/shared_cpu_list */ static int cpu__get_cache_details(struct perf_cpu cpu, struct perf_cache *cache) { int ret = 0; u32 cache_level = stat_config.aggr_level; struct cpu_cache_level caches[MAX_CACHE_LVL]; u32 i = 0, caches_cnt = 0; cache->cache_lvl = (cache_level > MAX_CACHE_LVL) ? 0 : cache_level; cache->cache = -1; ret = build_caches_for_cpu(cpu.cpu, caches, &caches_cnt); if (ret) { /* * If caches_cnt is not 0, cpu_cache_level data * was allocated when building the topology. * Free the allocated data before returning. */ if (caches_cnt) goto free_caches; return ret; } if (!caches_cnt) return -1; /* * Save the data for the highest level if no * level was specified by the user. */ if (cache_level > MAX_CACHE_LVL) { int max_level_index = 0; for (i = 1; i < caches_cnt; ++i) { if (caches[i].level > caches[max_level_index].level) max_level_index = i; } cache->cache_lvl = caches[max_level_index].level; cache->cache = cpu__get_cache_id_from_map(cpu, caches[max_level_index].map); /* Reset i to 0 to free entire caches[] */ i = 0; goto free_caches; } for (i = 0; i < caches_cnt; ++i) { if (caches[i].level == cache_level) { cache->cache_lvl = cache_level; cache->cache = cpu__get_cache_id_from_map(cpu, caches[i].map); } cpu_cache_level__free(&caches[i]); } free_caches: /* * Free all the allocated cpu_cache_level data. */ while (i < caches_cnt) cpu_cache_level__free(&caches[i++]); return ret; } /** * aggr_cpu_id__cache - Create an aggr_cpu_id with cache instache ID, cache * level, die and socket populated with the cache instache ID, cache level, * die and socket for cpu. The function signature is compatible with * aggr_cpu_id_get_t. */ static struct aggr_cpu_id aggr_cpu_id__cache(struct perf_cpu cpu, void *data) { int ret; struct aggr_cpu_id id; struct perf_cache cache; id = aggr_cpu_id__die(cpu, data); if (aggr_cpu_id__is_empty(&id)) return id; ret = cpu__get_cache_details(cpu, &cache); if (ret) return id; id.cache_lvl = cache.cache_lvl; id.cache = cache.cache; return id; } static const char *const aggr_mode__string[] = { [AGGR_CORE] = "core", [AGGR_CACHE] = "cache", [AGGR_CLUSTER] = "cluster", [AGGR_DIE] = "die", [AGGR_GLOBAL] = "global", [AGGR_NODE] = "node", [AGGR_NONE] = "none", [AGGR_SOCKET] = "socket", [AGGR_THREAD] = "thread", [AGGR_UNSET] = "unset", }; static struct aggr_cpu_id perf_stat__get_socket(struct perf_stat_config *config __maybe_unused, struct perf_cpu cpu) { return aggr_cpu_id__socket(cpu, /*data=*/NULL); } static struct aggr_cpu_id perf_stat__get_die(struct perf_stat_config *config __maybe_unused, struct perf_cpu cpu) { return aggr_cpu_id__die(cpu, /*data=*/NULL); } static struct aggr_cpu_id perf_stat__get_cache_id(struct perf_stat_config *config __maybe_unused, struct perf_cpu cpu) { return aggr_cpu_id__cache(cpu, /*data=*/NULL); } static struct aggr_cpu_id perf_stat__get_cluster(struct perf_stat_config *config __maybe_unused, struct perf_cpu cpu) { return aggr_cpu_id__cluster(cpu, /*data=*/NULL); } static struct aggr_cpu_id perf_stat__get_core(struct perf_stat_config *config __maybe_unused, struct perf_cpu cpu) { return aggr_cpu_id__core(cpu, /*data=*/NULL); } static struct aggr_cpu_id perf_stat__get_node(struct perf_stat_config *config __maybe_unused, struct perf_cpu cpu) { return aggr_cpu_id__node(cpu, /*data=*/NULL); } static struct aggr_cpu_id perf_stat__get_global(struct perf_stat_config *config __maybe_unused, struct perf_cpu cpu) { return aggr_cpu_id__global(cpu, /*data=*/NULL); } static struct aggr_cpu_id perf_stat__get_cpu(struct perf_stat_config *config __maybe_unused, struct perf_cpu cpu) { return aggr_cpu_id__cpu(cpu, /*data=*/NULL); } static struct aggr_cpu_id perf_stat__get_aggr(struct perf_stat_config *config, aggr_get_id_t get_id, struct perf_cpu cpu) { struct aggr_cpu_id id; /* per-process mode - should use global aggr mode */ if (cpu.cpu == -1) return get_id(config, cpu); if (aggr_cpu_id__is_empty(&config->cpus_aggr_map->map[cpu.cpu])) config->cpus_aggr_map->map[cpu.cpu] = get_id(config, cpu); id = config->cpus_aggr_map->map[cpu.cpu]; return id; } static struct aggr_cpu_id perf_stat__get_socket_cached(struct perf_stat_config *config, struct perf_cpu cpu) { return perf_stat__get_aggr(config, perf_stat__get_socket, cpu); } static struct aggr_cpu_id perf_stat__get_die_cached(struct perf_stat_config *config, struct perf_cpu cpu) { return perf_stat__get_aggr(config, perf_stat__get_die, cpu); } static struct aggr_cpu_id perf_stat__get_cluster_cached(struct perf_stat_config *config, struct perf_cpu cpu) { return perf_stat__get_aggr(config, perf_stat__get_cluster, cpu); } static struct aggr_cpu_id perf_stat__get_cache_id_cached(struct perf_stat_config *config, struct perf_cpu cpu) { return perf_stat__get_aggr(config, perf_stat__get_cache_id, cpu); } static struct aggr_cpu_id perf_stat__get_core_cached(struct perf_stat_config *config, struct perf_cpu cpu) { return perf_stat__get_aggr(config, perf_stat__get_core, cpu); } static struct aggr_cpu_id perf_stat__get_node_cached(struct perf_stat_config *config, struct perf_cpu cpu) { return perf_stat__get_aggr(config, perf_stat__get_node, cpu); } static struct aggr_cpu_id perf_stat__get_global_cached(struct perf_stat_config *config, struct perf_cpu cpu) { return perf_stat__get_aggr(config, perf_stat__get_global, cpu); } static struct aggr_cpu_id perf_stat__get_cpu_cached(struct perf_stat_config *config, struct perf_cpu cpu) { return perf_stat__get_aggr(config, perf_stat__get_cpu, cpu); } static aggr_cpu_id_get_t aggr_mode__get_aggr(enum aggr_mode aggr_mode) { switch (aggr_mode) { case AGGR_SOCKET: return aggr_cpu_id__socket; case AGGR_DIE: return aggr_cpu_id__die; case AGGR_CLUSTER: return aggr_cpu_id__cluster; case AGGR_CACHE: return aggr_cpu_id__cache; case AGGR_CORE: return aggr_cpu_id__core; case AGGR_NODE: return aggr_cpu_id__node; case AGGR_NONE: return aggr_cpu_id__cpu; case AGGR_GLOBAL: return aggr_cpu_id__global; case AGGR_THREAD: case AGGR_UNSET: case AGGR_MAX: default: return NULL; } } static aggr_get_id_t aggr_mode__get_id(enum aggr_mode aggr_mode) { switch (aggr_mode) { case AGGR_SOCKET: return perf_stat__get_socket_cached; case AGGR_DIE: return perf_stat__get_die_cached; case AGGR_CLUSTER: return perf_stat__get_cluster_cached; case AGGR_CACHE: return perf_stat__get_cache_id_cached; case AGGR_CORE: return perf_stat__get_core_cached; case AGGR_NODE: return perf_stat__get_node_cached; case AGGR_NONE: return perf_stat__get_cpu_cached; case AGGR_GLOBAL: return perf_stat__get_global_cached; case AGGR_THREAD: case AGGR_UNSET: case AGGR_MAX: default: return NULL; } } static int perf_stat_init_aggr_mode(void) { int nr; aggr_cpu_id_get_t get_id = aggr_mode__get_aggr(stat_config.aggr_mode); if (get_id) { bool needs_sort = stat_config.aggr_mode != AGGR_NONE; stat_config.aggr_map = cpu_aggr_map__new(evsel_list->core.user_requested_cpus, get_id, /*data=*/NULL, needs_sort); if (!stat_config.aggr_map) { pr_err("cannot build %s map\n", aggr_mode__string[stat_config.aggr_mode]); return -1; } stat_config.aggr_get_id = aggr_mode__get_id(stat_config.aggr_mode); } if (stat_config.aggr_mode == AGGR_THREAD) { nr = perf_thread_map__nr(evsel_list->core.threads); stat_config.aggr_map = cpu_aggr_map__empty_new(nr); if (stat_config.aggr_map == NULL) return -ENOMEM; for (int s = 0; s < nr; s++) { struct aggr_cpu_id id = aggr_cpu_id__empty(); id.thread_idx = s; stat_config.aggr_map->map[s] = id; } return 0; } /* * The evsel_list->cpus is the base we operate on, * taking the highest cpu number to be the size of * the aggregation translate cpumap. */ if (!perf_cpu_map__is_any_cpu_or_is_empty(evsel_list->core.user_requested_cpus)) nr = perf_cpu_map__max(evsel_list->core.user_requested_cpus).cpu; else nr = 0; stat_config.cpus_aggr_map = cpu_aggr_map__empty_new(nr + 1); return stat_config.cpus_aggr_map ? 0 : -ENOMEM; } static void cpu_aggr_map__delete(struct cpu_aggr_map *map) { free(map); } static void perf_stat__exit_aggr_mode(void) { cpu_aggr_map__delete(stat_config.aggr_map); cpu_aggr_map__delete(stat_config.cpus_aggr_map); stat_config.aggr_map = NULL; stat_config.cpus_aggr_map = NULL; } static struct aggr_cpu_id perf_env__get_socket_aggr_by_cpu(struct perf_cpu cpu, void *data) { struct perf_env *env = data; struct aggr_cpu_id id = aggr_cpu_id__empty(); if (cpu.cpu != -1) id.socket = env->cpu[cpu.cpu].socket_id; return id; } static struct aggr_cpu_id perf_env__get_die_aggr_by_cpu(struct perf_cpu cpu, void *data) { struct perf_env *env = data; struct aggr_cpu_id id = aggr_cpu_id__empty(); if (cpu.cpu != -1) { /* * die_id is relative to socket, so start * with the socket ID and then add die to * make a unique ID. */ id.socket = env->cpu[cpu.cpu].socket_id; id.die = env->cpu[cpu.cpu].die_id; } return id; } static void perf_env__get_cache_id_for_cpu(struct perf_cpu cpu, struct perf_env *env, u32 cache_level, struct aggr_cpu_id *id) { int i; int caches_cnt = env->caches_cnt; struct cpu_cache_level *caches = env->caches; id->cache_lvl = (cache_level > MAX_CACHE_LVL) ? 0 : cache_level; id->cache = -1; if (!caches_cnt) return; for (i = caches_cnt - 1; i > -1; --i) { struct perf_cpu_map *cpu_map; int map_contains_cpu; /* * If user has not specified a level, find the fist level with * the cpu in the map. Since building the map is expensive, do * this only if levels match. */ if (cache_level <= MAX_CACHE_LVL && caches[i].level != cache_level) continue; cpu_map = perf_cpu_map__new(caches[i].map); map_contains_cpu = perf_cpu_map__idx(cpu_map, cpu); perf_cpu_map__put(cpu_map); if (map_contains_cpu != -1) { id->cache_lvl = caches[i].level; id->cache = cpu__get_cache_id_from_map(cpu, caches[i].map); return; } } } static struct aggr_cpu_id perf_env__get_cache_aggr_by_cpu(struct perf_cpu cpu, void *data) { struct perf_env *env = data; struct aggr_cpu_id id = aggr_cpu_id__empty(); if (cpu.cpu != -1) { u32 cache_level = (perf_stat.aggr_level) ?: stat_config.aggr_level; id.socket = env->cpu[cpu.cpu].socket_id; id.die = env->cpu[cpu.cpu].die_id; perf_env__get_cache_id_for_cpu(cpu, env, cache_level, &id); } return id; } static struct aggr_cpu_id perf_env__get_cluster_aggr_by_cpu(struct perf_cpu cpu, void *data) { struct perf_env *env = data; struct aggr_cpu_id id = aggr_cpu_id__empty(); if (cpu.cpu != -1) { id.socket = env->cpu[cpu.cpu].socket_id; id.die = env->cpu[cpu.cpu].die_id; id.cluster = env->cpu[cpu.cpu].cluster_id; } return id; } static struct aggr_cpu_id perf_env__get_core_aggr_by_cpu(struct perf_cpu cpu, void *data) { struct perf_env *env = data; struct aggr_cpu_id id = aggr_cpu_id__empty(); if (cpu.cpu != -1) { /* * core_id is relative to socket, die and cluster, we need a * global id. So we set socket, die id, cluster id and core id. */ id.socket = env->cpu[cpu.cpu].socket_id; id.die = env->cpu[cpu.cpu].die_id; id.cluster = env->cpu[cpu.cpu].cluster_id; id.core = env->cpu[cpu.cpu].core_id; } return id; } static struct aggr_cpu_id perf_env__get_cpu_aggr_by_cpu(struct perf_cpu cpu, void *data) { struct perf_env *env = data; struct aggr_cpu_id id = aggr_cpu_id__empty(); if (cpu.cpu != -1) { /* * core_id is relative to socket and die, * we need a global id. So we set * socket, die id and core id */ id.socket = env->cpu[cpu.cpu].socket_id; id.die = env->cpu[cpu.cpu].die_id; id.core = env->cpu[cpu.cpu].core_id; id.cpu = cpu; } return id; } static struct aggr_cpu_id perf_env__get_node_aggr_by_cpu(struct perf_cpu cpu, void *data) { struct aggr_cpu_id id = aggr_cpu_id__empty(); id.node = perf_env__numa_node(data, cpu); return id; } static struct aggr_cpu_id perf_env__get_global_aggr_by_cpu(struct perf_cpu cpu __maybe_unused, void *data __maybe_unused) { struct aggr_cpu_id id = aggr_cpu_id__empty(); /* it always aggregates to the cpu 0 */ id.cpu = (struct perf_cpu){ .cpu = 0 }; return id; } static struct aggr_cpu_id perf_stat__get_socket_file(struct perf_stat_config *config __maybe_unused, struct perf_cpu cpu) { return perf_env__get_socket_aggr_by_cpu(cpu, &perf_stat.session->header.env); } static struct aggr_cpu_id perf_stat__get_die_file(struct perf_stat_config *config __maybe_unused, struct perf_cpu cpu) { return perf_env__get_die_aggr_by_cpu(cpu, &perf_stat.session->header.env); } static struct aggr_cpu_id perf_stat__get_cluster_file(struct perf_stat_config *config __maybe_unused, struct perf_cpu cpu) { return perf_env__get_cluster_aggr_by_cpu(cpu, &perf_stat.session->header.env); } static struct aggr_cpu_id perf_stat__get_cache_file(struct perf_stat_config *config __maybe_unused, struct perf_cpu cpu) { return perf_env__get_cache_aggr_by_cpu(cpu, &perf_stat.session->header.env); } static struct aggr_cpu_id perf_stat__get_core_file(struct perf_stat_config *config __maybe_unused, struct perf_cpu cpu) { return perf_env__get_core_aggr_by_cpu(cpu, &perf_stat.session->header.env); } static struct aggr_cpu_id perf_stat__get_cpu_file(struct perf_stat_config *config __maybe_unused, struct perf_cpu cpu) { return perf_env__get_cpu_aggr_by_cpu(cpu, &perf_stat.session->header.env); } static struct aggr_cpu_id perf_stat__get_node_file(struct perf_stat_config *config __maybe_unused, struct perf_cpu cpu) { return perf_env__get_node_aggr_by_cpu(cpu, &perf_stat.session->header.env); } static struct aggr_cpu_id perf_stat__get_global_file(struct perf_stat_config *config __maybe_unused, struct perf_cpu cpu) { return perf_env__get_global_aggr_by_cpu(cpu, &perf_stat.session->header.env); } static aggr_cpu_id_get_t aggr_mode__get_aggr_file(enum aggr_mode aggr_mode) { switch (aggr_mode) { case AGGR_SOCKET: return perf_env__get_socket_aggr_by_cpu; case AGGR_DIE: return perf_env__get_die_aggr_by_cpu; case AGGR_CLUSTER: return perf_env__get_cluster_aggr_by_cpu; case AGGR_CACHE: return perf_env__get_cache_aggr_by_cpu; case AGGR_CORE: return perf_env__get_core_aggr_by_cpu; case AGGR_NODE: return perf_env__get_node_aggr_by_cpu; case AGGR_GLOBAL: return perf_env__get_global_aggr_by_cpu; case AGGR_NONE: return perf_env__get_cpu_aggr_by_cpu; case AGGR_THREAD: case AGGR_UNSET: case AGGR_MAX: default: return NULL; } } static aggr_get_id_t aggr_mode__get_id_file(enum aggr_mode aggr_mode) { switch (aggr_mode) { case AGGR_SOCKET: return perf_stat__get_socket_file; case AGGR_DIE: return perf_stat__get_die_file; case AGGR_CLUSTER: return perf_stat__get_cluster_file; case AGGR_CACHE: return perf_stat__get_cache_file; case AGGR_CORE: return perf_stat__get_core_file; case AGGR_NODE: return perf_stat__get_node_file; case AGGR_GLOBAL: return perf_stat__get_global_file; case AGGR_NONE: return perf_stat__get_cpu_file; case AGGR_THREAD: case AGGR_UNSET: case AGGR_MAX: default: return NULL; } } static int perf_stat_init_aggr_mode_file(struct perf_stat *st) { struct perf_env *env = &st->session->header.env; aggr_cpu_id_get_t get_id = aggr_mode__get_aggr_file(stat_config.aggr_mode); bool needs_sort = stat_config.aggr_mode != AGGR_NONE; if (stat_config.aggr_mode == AGGR_THREAD) { int nr = perf_thread_map__nr(evsel_list->core.threads); stat_config.aggr_map = cpu_aggr_map__empty_new(nr); if (stat_config.aggr_map == NULL) return -ENOMEM; for (int s = 0; s < nr; s++) { struct aggr_cpu_id id = aggr_cpu_id__empty(); id.thread_idx = s; stat_config.aggr_map->map[s] = id; } return 0; } if (!get_id) return 0; stat_config.aggr_map = cpu_aggr_map__new(evsel_list->core.user_requested_cpus, get_id, env, needs_sort); if (!stat_config.aggr_map) { pr_err("cannot build %s map\n", aggr_mode__string[stat_config.aggr_mode]); return -1; } stat_config.aggr_get_id = aggr_mode__get_id_file(stat_config.aggr_mode); return 0; } /* * Add default events, if there were no attributes specified or * if -d/--detailed, -d -d or -d -d -d is used: */ static int add_default_events(void) { const char *pmu = parse_events_option_args.pmu_filter ?: "all"; struct parse_events_error err; struct evlist *evlist = evlist__new(); struct evsel *evsel; int ret = 0; if (!evlist) return -ENOMEM; parse_events_error__init(&err); /* Set attrs if no event is selected and !null_run: */ if (stat_config.null_run) goto out; if (transaction_run) { /* Handle -T as -M transaction. Once platform specific metrics * support has been added to the json files, all architectures * will use this approach. To determine transaction support * on an architecture test for such a metric name. */ if (!metricgroup__has_metric(pmu, "transaction")) { pr_err("Missing transaction metrics\n"); ret = -1; goto out; } ret = metricgroup__parse_groups(evlist, pmu, "transaction", stat_config.metric_no_group, stat_config.metric_no_merge, stat_config.metric_no_threshold, stat_config.user_requested_cpu_list, stat_config.system_wide, stat_config.hardware_aware_grouping, &stat_config.metric_events); goto out; } if (smi_cost) { int smi; if (sysfs__read_int(FREEZE_ON_SMI_PATH, &smi) < 0) { pr_err("freeze_on_smi is not supported.\n"); ret = -1; goto out; } if (!smi) { if (sysfs__write_int(FREEZE_ON_SMI_PATH, 1) < 0) { pr_err("Failed to set freeze_on_smi.\n"); ret = -1; goto out; } smi_reset = true; } if (!metricgroup__has_metric(pmu, "smi")) { pr_err("Missing smi metrics\n"); ret = -1; goto out; } if (!force_metric_only) stat_config.metric_only = true; ret = metricgroup__parse_groups(evlist, pmu, "smi", stat_config.metric_no_group, stat_config.metric_no_merge, stat_config.metric_no_threshold, stat_config.user_requested_cpu_list, stat_config.system_wide, stat_config.hardware_aware_grouping, &stat_config.metric_events); goto out; } if (topdown_run) { unsigned int max_level = metricgroups__topdown_max_level(); char str[] = "TopdownL1"; if (!force_metric_only) stat_config.metric_only = true; if (!max_level) { pr_err("Topdown requested but the topdown metric groups aren't present.\n" "(See perf list the metric groups have names like TopdownL1)\n"); ret = -1; goto out; } if (stat_config.topdown_level > max_level) { pr_err("Invalid top-down metrics level. The max level is %u.\n", max_level); ret = -1; goto out; } else if (!stat_config.topdown_level) { stat_config.topdown_level = 1; } if (!stat_config.interval && !stat_config.metric_only) { fprintf(stat_config.output, "Topdown accuracy may decrease when measuring long periods.\n" "Please print the result regularly, e.g. -I1000\n"); } str[8] = stat_config.topdown_level + '0'; if (metricgroup__parse_groups(evlist, pmu, str, /*metric_no_group=*/false, /*metric_no_merge=*/false, /*metric_no_threshold=*/true, stat_config.user_requested_cpu_list, stat_config.system_wide, stat_config.hardware_aware_grouping, &stat_config.metric_events) < 0) { ret = -1; goto out; } } if (!stat_config.topdown_level) stat_config.topdown_level = 1; if (!evlist->core.nr_entries && !evsel_list->core.nr_entries) { /* No events so add defaults. */ if (target__has_cpu(&target)) ret = parse_events(evlist, "cpu-clock", &err); else ret = parse_events(evlist, "task-clock", &err); if (ret) goto out; ret = parse_events(evlist, "context-switches," "cpu-migrations," "page-faults," "instructions," "cycles," "stalled-cycles-frontend," "stalled-cycles-backend," "branches," "branch-misses", &err); if (ret) goto out; /* * Add TopdownL1 metrics if they exist. To minimize * multiplexing, don't request threshold computation. */ if (metricgroup__has_metric(pmu, "Default")) { struct evlist *metric_evlist = evlist__new(); if (!metric_evlist) { ret = -ENOMEM; goto out; } if (metricgroup__parse_groups(metric_evlist, pmu, "Default", /*metric_no_group=*/false, /*metric_no_merge=*/false, /*metric_no_threshold=*/true, stat_config.user_requested_cpu_list, stat_config.system_wide, stat_config.hardware_aware_grouping, &stat_config.metric_events) < 0) { ret = -1; goto out; } evlist__for_each_entry(metric_evlist, evsel) evsel->default_metricgroup = true; evlist__splice_list_tail(evlist, &metric_evlist->core.entries); evlist__delete(metric_evlist); } } /* Detailed events get appended to the event list: */ if (!ret && detailed_run >= 1) { /* * Detailed stats (-d), covering the L1 and last level data * caches: */ ret = parse_events(evlist, "L1-dcache-loads," "L1-dcache-load-misses," "LLC-loads," "LLC-load-misses", &err); } if (!ret && detailed_run >= 2) { /* * Very detailed stats (-d -d), covering the instruction cache * and the TLB caches: */ ret = parse_events(evlist, "L1-icache-loads," "L1-icache-load-misses," "dTLB-loads," "dTLB-load-misses," "iTLB-loads," "iTLB-load-misses", &err); } if (!ret && detailed_run >= 3) { /* * Very, very detailed stats (-d -d -d), adding prefetch events: */ ret = parse_events(evlist, "L1-dcache-prefetches," "L1-dcache-prefetch-misses", &err); } out: if (!ret) { evlist__for_each_entry(evlist, evsel) { /* * Make at least one event non-skippable so fatal errors are visible. * 'cycles' always used to be default and non-skippable, so use that. */ if (strcmp("cycles", evsel__name(evsel))) evsel->skippable = true; } } parse_events_error__exit(&err); evlist__splice_list_tail(evsel_list, &evlist->core.entries); evlist__delete(evlist); return ret; } static const char * const stat_record_usage[] = { "perf stat record []", NULL, }; static void init_features(struct perf_session *session) { int feat; for (feat = HEADER_FIRST_FEATURE; feat < HEADER_LAST_FEATURE; feat++) perf_header__set_feat(&session->header, feat); perf_header__clear_feat(&session->header, HEADER_DIR_FORMAT); perf_header__clear_feat(&session->header, HEADER_BUILD_ID); perf_header__clear_feat(&session->header, HEADER_TRACING_DATA); perf_header__clear_feat(&session->header, HEADER_BRANCH_STACK); perf_header__clear_feat(&session->header, HEADER_AUXTRACE); } static int __cmd_record(const struct option stat_options[], struct opt_aggr_mode *opt_mode, int argc, const char **argv) { struct perf_session *session; struct perf_data *data = &perf_stat.data; argc = parse_options(argc, argv, stat_options, stat_record_usage, PARSE_OPT_STOP_AT_NON_OPTION); stat_config.aggr_mode = opt_aggr_mode_to_aggr_mode(opt_mode); if (output_name) data->path = output_name; if (stat_config.run_count != 1 || forever) { pr_err("Cannot use -r option with perf stat record.\n"); return -1; } session = perf_session__new(data, NULL); if (IS_ERR(session)) { pr_err("Perf session creation failed\n"); return PTR_ERR(session); } init_features(session); session->evlist = evsel_list; perf_stat.session = session; perf_stat.record = true; return argc; } static int process_stat_round_event(struct perf_session *session, union perf_event *event) { struct perf_record_stat_round *stat_round = &event->stat_round; struct timespec tsh, *ts = NULL; const char **argv = session->header.env.cmdline_argv; int argc = session->header.env.nr_cmdline; process_counters(); if (stat_round->type == PERF_STAT_ROUND_TYPE__FINAL) update_stats(&walltime_nsecs_stats, stat_round->time); if (stat_config.interval && stat_round->time) { tsh.tv_sec = stat_round->time / NSEC_PER_SEC; tsh.tv_nsec = stat_round->time % NSEC_PER_SEC; ts = &tsh; } print_counters(ts, argc, argv); return 0; } static int process_stat_config_event(struct perf_session *session, union perf_event *event) { const struct perf_tool *tool = session->tool; struct perf_stat *st = container_of(tool, struct perf_stat, tool); perf_event__read_stat_config(&stat_config, &event->stat_config); if (perf_cpu_map__is_empty(st->cpus)) { if (st->aggr_mode != AGGR_UNSET) pr_warning("warning: processing task data, aggregation mode not set\n"); } else if (st->aggr_mode != AGGR_UNSET) { stat_config.aggr_mode = st->aggr_mode; } if (perf_stat.data.is_pipe) perf_stat_init_aggr_mode(); else perf_stat_init_aggr_mode_file(st); if (stat_config.aggr_map) { int nr_aggr = stat_config.aggr_map->nr; if (evlist__alloc_aggr_stats(session->evlist, nr_aggr) < 0) { pr_err("cannot allocate aggr counts\n"); return -1; } } return 0; } static int set_maps(struct perf_stat *st) { if (!st->cpus || !st->threads) return 0; if (WARN_ONCE(st->maps_allocated, "stats double allocation\n")) return -EINVAL; perf_evlist__set_maps(&evsel_list->core, st->cpus, st->threads); if (evlist__alloc_stats(&stat_config, evsel_list, /*alloc_raw=*/true)) return -ENOMEM; st->maps_allocated = true; return 0; } static int process_thread_map_event(struct perf_session *session, union perf_event *event) { const struct perf_tool *tool = session->tool; struct perf_stat *st = container_of(tool, struct perf_stat, tool); if (st->threads) { pr_warning("Extra thread map event, ignoring.\n"); return 0; } st->threads = thread_map__new_event(&event->thread_map); if (!st->threads) return -ENOMEM; return set_maps(st); } static int process_cpu_map_event(struct perf_session *session, union perf_event *event) { const struct perf_tool *tool = session->tool; struct perf_stat *st = container_of(tool, struct perf_stat, tool); struct perf_cpu_map *cpus; if (st->cpus) { pr_warning("Extra cpu map event, ignoring.\n"); return 0; } cpus = cpu_map__new_data(&event->cpu_map.data); if (!cpus) return -ENOMEM; st->cpus = cpus; return set_maps(st); } static const char * const stat_report_usage[] = { "perf stat report []", NULL, }; static struct perf_stat perf_stat = { .aggr_mode = AGGR_UNSET, .aggr_level = 0, }; static int __cmd_report(int argc, const char **argv) { struct perf_session *session; const struct option options[] = { OPT_STRING('i', "input", &input_name, "file", "input file name"), OPT_SET_UINT(0, "per-socket", &perf_stat.aggr_mode, "aggregate counts per processor socket", AGGR_SOCKET), OPT_SET_UINT(0, "per-die", &perf_stat.aggr_mode, "aggregate counts per processor die", AGGR_DIE), OPT_SET_UINT(0, "per-cluster", &perf_stat.aggr_mode, "aggregate counts perf processor cluster", AGGR_CLUSTER), OPT_CALLBACK_OPTARG(0, "per-cache", &perf_stat.aggr_mode, &perf_stat.aggr_level, "cache level", "aggregate count at this cache level (Default: LLC)", parse_cache_level), OPT_SET_UINT(0, "per-core", &perf_stat.aggr_mode, "aggregate counts per physical processor core", AGGR_CORE), OPT_SET_UINT(0, "per-node", &perf_stat.aggr_mode, "aggregate counts per numa node", AGGR_NODE), OPT_SET_UINT('A', "no-aggr", &perf_stat.aggr_mode, "disable CPU count aggregation", AGGR_NONE), OPT_END() }; struct stat st; int ret; argc = parse_options(argc, argv, options, stat_report_usage, 0); if (!input_name || !strlen(input_name)) { if (!fstat(STDIN_FILENO, &st) && S_ISFIFO(st.st_mode)) input_name = "-"; else input_name = "perf.data"; } perf_stat.data.path = input_name; perf_stat.data.mode = PERF_DATA_MODE_READ; perf_tool__init(&perf_stat.tool, /*ordered_events=*/false); perf_stat.tool.attr = perf_event__process_attr; perf_stat.tool.event_update = perf_event__process_event_update; perf_stat.tool.thread_map = process_thread_map_event; perf_stat.tool.cpu_map = process_cpu_map_event; perf_stat.tool.stat_config = process_stat_config_event; perf_stat.tool.stat = perf_event__process_stat_event; perf_stat.tool.stat_round = process_stat_round_event; session = perf_session__new(&perf_stat.data, &perf_stat.tool); if (IS_ERR(session)) return PTR_ERR(session); perf_stat.session = session; stat_config.output = stderr; evlist__delete(evsel_list); evsel_list = session->evlist; ret = perf_session__process_events(session); if (ret) return ret; perf_session__delete(session); return 0; } static void setup_system_wide(int forks) { /* * Make system wide (-a) the default target if * no target was specified and one of following * conditions is met: * * - there's no workload specified * - there is workload specified but all requested * events are system wide events */ if (!target__none(&target)) return; if (!forks) target.system_wide = true; else { struct evsel *counter; evlist__for_each_entry(evsel_list, counter) { if (!counter->core.requires_cpu && !evsel__name_is(counter, "duration_time")) { return; } } if (evsel_list->core.nr_entries) target.system_wide = true; } } int cmd_stat(int argc, const char **argv) { struct opt_aggr_mode opt_mode = {}; struct option stat_options[] = { OPT_BOOLEAN('T', "transaction", &transaction_run, "hardware transaction statistics"), OPT_CALLBACK('e', "event", &parse_events_option_args, "event", "event selector. use 'perf list' to list available events", parse_events_option), OPT_CALLBACK(0, "filter", &evsel_list, "filter", "event filter", parse_filter), OPT_BOOLEAN('i', "no-inherit", &stat_config.no_inherit, "child tasks do not inherit counters"), OPT_STRING('p', "pid", &target.pid, "pid", "stat events on existing process id"), OPT_STRING('t', "tid", &target.tid, "tid", "stat events on existing thread id"), #ifdef HAVE_BPF_SKEL OPT_STRING('b', "bpf-prog", &target.bpf_str, "bpf-prog-id", "stat events on existing bpf program id"), OPT_BOOLEAN(0, "bpf-counters", &target.use_bpf, "use bpf program to count events"), OPT_STRING(0, "bpf-attr-map", &target.attr_map, "attr-map-path", "path to perf_event_attr map"), #endif OPT_BOOLEAN('a', "all-cpus", &target.system_wide, "system-wide collection from all CPUs"), OPT_BOOLEAN(0, "scale", &stat_config.scale, "Use --no-scale to disable counter scaling for multiplexing"), OPT_INCR('v', "verbose", &verbose, "be more verbose (show counter open errors, etc)"), OPT_INTEGER('r', "repeat", &stat_config.run_count, "repeat command and print average + stddev (max: 100, forever: 0)"), OPT_BOOLEAN(0, "table", &stat_config.walltime_run_table, "display details about each run (only with -r option)"), OPT_BOOLEAN('n', "null", &stat_config.null_run, "null run - dont start any counters"), OPT_INCR('d', "detailed", &detailed_run, "detailed run - start a lot of events"), OPT_BOOLEAN('S', "sync", &sync_run, "call sync() before starting a run"), OPT_CALLBACK_NOOPT('B', "big-num", NULL, NULL, "print large numbers with thousands\' separators", stat__set_big_num), OPT_STRING('C', "cpu", &target.cpu_list, "cpu", "list of cpus to monitor in system-wide"), OPT_BOOLEAN('A', "no-aggr", &opt_mode.no_aggr, "disable aggregation across CPUs or PMUs"), OPT_BOOLEAN(0, "no-merge", &opt_mode.no_aggr, "disable aggregation the same as -A or -no-aggr"), OPT_BOOLEAN(0, "hybrid-merge", &stat_config.hybrid_merge, "Merge identical named hybrid events"), OPT_STRING('x', "field-separator", &stat_config.csv_sep, "separator", "print counts with custom separator"), OPT_BOOLEAN('j', "json-output", &stat_config.json_output, "print counts in JSON format"), OPT_CALLBACK('G', "cgroup", &evsel_list, "name", "monitor event in cgroup name only", parse_stat_cgroups), OPT_STRING(0, "for-each-cgroup", &stat_config.cgroup_list, "name", "expand events for each cgroup"), OPT_STRING('o', "output", &output_name, "file", "output file name"), OPT_BOOLEAN(0, "append", &append_file, "append to the output file"), OPT_INTEGER(0, "log-fd", &output_fd, "log output to fd, instead of stderr"), OPT_STRING(0, "pre", &pre_cmd, "command", "command to run prior to the measured command"), OPT_STRING(0, "post", &post_cmd, "command", "command to run after to the measured command"), OPT_UINTEGER('I', "interval-print", &stat_config.interval, "print counts at regular interval in ms " "(overhead is possible for values <= 100ms)"), OPT_INTEGER(0, "interval-count", &stat_config.times, "print counts for fixed number of times"), OPT_BOOLEAN(0, "interval-clear", &stat_config.interval_clear, "clear screen in between new interval"), OPT_UINTEGER(0, "timeout", &stat_config.timeout, "stop workload and print counts after a timeout period in ms (>= 10ms)"), OPT_BOOLEAN(0, "per-socket", &opt_mode.socket, "aggregate counts per processor socket"), OPT_BOOLEAN(0, "per-die", &opt_mode.die, "aggregate counts per processor die"), OPT_BOOLEAN(0, "per-cluster", &opt_mode.cluster, "aggregate counts per processor cluster"), OPT_CALLBACK_OPTARG(0, "per-cache", &opt_mode, &stat_config.aggr_level, "cache level", "aggregate count at this cache level (Default: LLC)", parse_cache_level), OPT_BOOLEAN(0, "per-core", &opt_mode.core, "aggregate counts per physical processor core"), OPT_BOOLEAN(0, "per-thread", &opt_mode.thread, "aggregate counts per thread"), OPT_BOOLEAN(0, "per-node", &opt_mode.node, "aggregate counts per numa node"), OPT_INTEGER('D', "delay", &target.initial_delay, "ms to wait before starting measurement after program start (-1: start with events disabled)"), OPT_CALLBACK_NOOPT(0, "metric-only", &stat_config.metric_only, NULL, "Only print computed metrics. No raw values", enable_metric_only), OPT_BOOLEAN(0, "metric-no-group", &stat_config.metric_no_group, "don't group metric events, impacts multiplexing"), OPT_BOOLEAN(0, "metric-no-merge", &stat_config.metric_no_merge, "don't try to share events between metrics in a group"), OPT_BOOLEAN(0, "metric-no-threshold", &stat_config.metric_no_threshold, "disable adding events for the metric threshold calculation"), OPT_BOOLEAN(0, "topdown", &topdown_run, "measure top-down statistics"), #ifdef HAVE_ARCH_X86_64_SUPPORT OPT_BOOLEAN(0, "record-tpebs", &tpebs_recording, "enable recording for tpebs when retire_latency required"), #endif OPT_UINTEGER(0, "td-level", &stat_config.topdown_level, "Set the metrics level for the top-down statistics (0: max level)"), OPT_BOOLEAN(0, "smi-cost", &smi_cost, "measure SMI cost"), OPT_CALLBACK('M', "metrics", &evsel_list, "metric/metric group list", "monitor specified metrics or metric groups (separated by ,)", append_metric_groups), OPT_BOOLEAN_FLAG(0, "all-kernel", &stat_config.all_kernel, "Configure all used events to run in kernel space.", PARSE_OPT_EXCLUSIVE), OPT_BOOLEAN_FLAG(0, "all-user", &stat_config.all_user, "Configure all used events to run in user space.", PARSE_OPT_EXCLUSIVE), OPT_BOOLEAN(0, "percore-show-thread", &stat_config.percore_show_thread, "Use with 'percore' event qualifier to show the event " "counts of one hardware thread by sum up total hardware " "threads of same physical core"), OPT_BOOLEAN(0, "summary", &stat_config.summary, "print summary for interval mode"), OPT_BOOLEAN(0, "no-csv-summary", &stat_config.no_csv_summary, "don't print 'summary' for CSV summary output"), OPT_BOOLEAN(0, "quiet", &quiet, "don't print any output, messages or warnings (useful with record)"), OPT_CALLBACK(0, "cputype", &evsel_list, "hybrid cpu type", "Only enable events on applying cpu with this type " "for hybrid platform (e.g. core or atom)", parse_cputype), #ifdef HAVE_LIBPFM OPT_CALLBACK(0, "pfm-events", &evsel_list, "event", "libpfm4 event selector. use 'perf list' to list available events", parse_libpfm_events_option), #endif OPT_CALLBACK(0, "control", &stat_config, "fd:ctl-fd[,ack-fd] or fifo:ctl-fifo[,ack-fifo]", "Listen on ctl-fd descriptor for command to control measurement ('enable': enable events, 'disable': disable events).\n" "\t\t\t Optionally send control command completion ('ack\\n') to ack-fd descriptor.\n" "\t\t\t Alternatively, ctl-fifo / ack-fifo will be opened and used as ctl-fd / ack-fd.", parse_control_option), OPT_CALLBACK_OPTARG(0, "iostat", &evsel_list, &stat_config, "default", "measure I/O performance metrics provided by arch/platform", iostat_parse), OPT_END() }; const char * const stat_usage[] = { "perf stat [] []", NULL }; int status = -EINVAL, run_idx, err; const char *mode; FILE *output = stderr; unsigned int interval, timeout; const char * const stat_subcommands[] = { "record", "report" }; char errbuf[BUFSIZ]; setlocale(LC_ALL, ""); evsel_list = evlist__new(); if (evsel_list == NULL) return -ENOMEM; parse_events__shrink_config_terms(); /* String-parsing callback-based options would segfault when negated */ set_option_flag(stat_options, 'e', "event", PARSE_OPT_NONEG); set_option_flag(stat_options, 'M', "metrics", PARSE_OPT_NONEG); set_option_flag(stat_options, 'G', "cgroup", PARSE_OPT_NONEG); argc = parse_options_subcommand(argc, argv, stat_options, stat_subcommands, (const char **) stat_usage, PARSE_OPT_STOP_AT_NON_OPTION); stat_config.aggr_mode = opt_aggr_mode_to_aggr_mode(&opt_mode); if (stat_config.csv_sep) { stat_config.csv_output = true; if (!strcmp(stat_config.csv_sep, "\\t")) stat_config.csv_sep = "\t"; } else stat_config.csv_sep = DEFAULT_SEPARATOR; if (argc && strlen(argv[0]) > 2 && strstarts("record", argv[0])) { argc = __cmd_record(stat_options, &opt_mode, argc, argv); if (argc < 0) return -1; } else if (argc && strlen(argv[0]) > 2 && strstarts("report", argv[0])) return __cmd_report(argc, argv); interval = stat_config.interval; timeout = stat_config.timeout; /* * For record command the -o is already taken care of. */ if (!STAT_RECORD && output_name && strcmp(output_name, "-")) output = NULL; if (output_name && output_fd) { fprintf(stderr, "cannot use both --output and --log-fd\n"); parse_options_usage(stat_usage, stat_options, "o", 1); parse_options_usage(NULL, stat_options, "log-fd", 0); goto out; } if (stat_config.metric_only && stat_config.aggr_mode == AGGR_THREAD) { fprintf(stderr, "--metric-only is not supported with --per-thread\n"); goto out; } if (stat_config.metric_only && stat_config.run_count > 1) { fprintf(stderr, "--metric-only is not supported with -r\n"); goto out; } if (stat_config.csv_output || (stat_config.metric_only && stat_config.json_output)) { /* * Current CSV and metric-only JSON output doesn't display the * metric threshold so don't compute it. */ stat_config.metric_no_threshold = true; } if (stat_config.walltime_run_table && stat_config.run_count <= 1) { fprintf(stderr, "--table is only supported with -r\n"); parse_options_usage(stat_usage, stat_options, "r", 1); parse_options_usage(NULL, stat_options, "table", 0); goto out; } if (output_fd < 0) { fprintf(stderr, "argument to --log-fd must be a > 0\n"); parse_options_usage(stat_usage, stat_options, "log-fd", 0); goto out; } if (!output && !quiet) { struct timespec tm; mode = append_file ? "a" : "w"; output = fopen(output_name, mode); if (!output) { perror("failed to create output file"); return -1; } if (!stat_config.json_output) { clock_gettime(CLOCK_REALTIME, &tm); fprintf(output, "# started on %s\n", ctime(&tm.tv_sec)); } } else if (output_fd > 0) { mode = append_file ? "a" : "w"; output = fdopen(output_fd, mode); if (!output) { perror("Failed opening logfd"); return -errno; } } if (stat_config.interval_clear && !isatty(fileno(output))) { fprintf(stderr, "--interval-clear does not work with output\n"); parse_options_usage(stat_usage, stat_options, "o", 1); parse_options_usage(NULL, stat_options, "log-fd", 0); parse_options_usage(NULL, stat_options, "interval-clear", 0); return -1; } stat_config.output = output; /* * let the spreadsheet do the pretty-printing */ if (stat_config.csv_output) { /* User explicitly passed -B? */ if (big_num_opt == 1) { fprintf(stderr, "-B option not supported with -x\n"); parse_options_usage(stat_usage, stat_options, "B", 1); parse_options_usage(NULL, stat_options, "x", 1); goto out; } else /* Nope, so disable big number formatting */ stat_config.big_num = false; } else if (big_num_opt == 0) /* User passed --no-big-num */ stat_config.big_num = false; err = target__validate(&target); if (err) { target__strerror(&target, err, errbuf, BUFSIZ); pr_warning("%s\n", errbuf); } setup_system_wide(argc); /* * Display user/system times only for single * run and when there's specified tracee. */ if ((stat_config.run_count == 1) && target__none(&target)) stat_config.ru_display = true; if (stat_config.run_count < 0) { pr_err("Run count must be a positive number\n"); parse_options_usage(stat_usage, stat_options, "r", 1); goto out; } else if (stat_config.run_count == 0) { forever = true; stat_config.run_count = 1; } if (stat_config.walltime_run_table) { stat_config.walltime_run = zalloc(stat_config.run_count * sizeof(stat_config.walltime_run[0])); if (!stat_config.walltime_run) { pr_err("failed to setup -r option"); goto out; } } if ((stat_config.aggr_mode == AGGR_THREAD) && !target__has_task(&target)) { if (!target.system_wide || target.cpu_list) { fprintf(stderr, "The --per-thread option is only " "available when monitoring via -p -t -a " "options or only --per-thread.\n"); parse_options_usage(NULL, stat_options, "p", 1); parse_options_usage(NULL, stat_options, "t", 1); goto out; } } /* * no_aggr, cgroup are for system-wide only * --per-thread is aggregated per thread, we dont mix it with cpu mode */ if (((stat_config.aggr_mode != AGGR_GLOBAL && stat_config.aggr_mode != AGGR_THREAD) || (nr_cgroups || stat_config.cgroup_list)) && !target__has_cpu(&target)) { fprintf(stderr, "both cgroup and no-aggregation " "modes only available in system-wide mode\n"); parse_options_usage(stat_usage, stat_options, "G", 1); parse_options_usage(NULL, stat_options, "A", 1); parse_options_usage(NULL, stat_options, "a", 1); parse_options_usage(NULL, stat_options, "for-each-cgroup", 0); goto out; } if (stat_config.iostat_run) { status = iostat_prepare(evsel_list, &stat_config); if (status) goto out; if (iostat_mode == IOSTAT_LIST) { iostat_list(evsel_list, &stat_config); goto out; } else if (verbose > 0) iostat_list(evsel_list, &stat_config); if (iostat_mode == IOSTAT_RUN && !target__has_cpu(&target)) target.system_wide = true; } if ((stat_config.aggr_mode == AGGR_THREAD) && (target.system_wide)) target.per_thread = true; stat_config.system_wide = target.system_wide; if (target.cpu_list) { stat_config.user_requested_cpu_list = strdup(target.cpu_list); if (!stat_config.user_requested_cpu_list) { status = -ENOMEM; goto out; } } /* * Metric parsing needs to be delayed as metrics may optimize events * knowing the target is system-wide. */ if (metrics) { const char *pmu = parse_events_option_args.pmu_filter ?: "all"; int ret = metricgroup__parse_groups(evsel_list, pmu, metrics, stat_config.metric_no_group, stat_config.metric_no_merge, stat_config.metric_no_threshold, stat_config.user_requested_cpu_list, stat_config.system_wide, stat_config.hardware_aware_grouping, &stat_config.metric_events); zfree(&metrics); if (ret) { status = ret; goto out; } } if (add_default_events()) goto out; if (stat_config.cgroup_list) { if (nr_cgroups > 0) { pr_err("--cgroup and --for-each-cgroup cannot be used together\n"); parse_options_usage(stat_usage, stat_options, "G", 1); parse_options_usage(NULL, stat_options, "for-each-cgroup", 0); goto out; } if (evlist__expand_cgroup(evsel_list, stat_config.cgroup_list, &stat_config.metric_events, true) < 0) { parse_options_usage(stat_usage, stat_options, "for-each-cgroup", 0); goto out; } } evlist__warn_user_requested_cpus(evsel_list, target.cpu_list); if (evlist__create_maps(evsel_list, &target) < 0) { if (target__has_task(&target)) { pr_err("Problems finding threads of monitor\n"); parse_options_usage(stat_usage, stat_options, "p", 1); parse_options_usage(NULL, stat_options, "t", 1); } else if (target__has_cpu(&target)) { perror("failed to parse CPUs map"); parse_options_usage(stat_usage, stat_options, "C", 1); parse_options_usage(NULL, stat_options, "a", 1); } goto out; } evlist__check_cpu_maps(evsel_list); /* * Initialize thread_map with comm names, * so we could print it out on output. */ if (stat_config.aggr_mode == AGGR_THREAD) { thread_map__read_comms(evsel_list->core.threads); } if (stat_config.aggr_mode == AGGR_NODE) cpu__setup_cpunode_map(); if (stat_config.times && interval) interval_count = true; else if (stat_config.times && !interval) { pr_err("interval-count option should be used together with " "interval-print.\n"); parse_options_usage(stat_usage, stat_options, "interval-count", 0); parse_options_usage(stat_usage, stat_options, "I", 1); goto out; } if (timeout && timeout < 100) { if (timeout < 10) { pr_err("timeout must be >= 10ms.\n"); parse_options_usage(stat_usage, stat_options, "timeout", 0); goto out; } else pr_warning("timeout < 100ms. " "The overhead percentage could be high in some cases. " "Please proceed with caution.\n"); } if (timeout && interval) { pr_err("timeout option is not supported with interval-print.\n"); parse_options_usage(stat_usage, stat_options, "timeout", 0); parse_options_usage(stat_usage, stat_options, "I", 1); goto out; } if (perf_stat_init_aggr_mode()) goto out; if (evlist__alloc_stats(&stat_config, evsel_list, interval)) goto out; /* * Set sample_type to PERF_SAMPLE_IDENTIFIER, which should be harmless * while avoiding that older tools show confusing messages. * * However for pipe sessions we need to keep it zero, * because script's perf_evsel__check_attr is triggered * by attr->sample_type != 0, and we can't run it on * stat sessions. */ stat_config.identifier = !(STAT_RECORD && perf_stat.data.is_pipe); /* * We dont want to block the signals - that would cause * child tasks to inherit that and Ctrl-C would not work. * What we want is for Ctrl-C to work in the exec()-ed * task, but being ignored by perf stat itself: */ atexit(sig_atexit); if (!forever) signal(SIGINT, skip_signal); signal(SIGCHLD, skip_signal); signal(SIGALRM, skip_signal); signal(SIGABRT, skip_signal); if (evlist__initialize_ctlfd(evsel_list, stat_config.ctl_fd, stat_config.ctl_fd_ack)) goto out; /* Enable ignoring missing threads when -p option is defined. */ evlist__first(evsel_list)->ignore_missing_thread = target.pid; status = 0; for (run_idx = 0; forever || run_idx < stat_config.run_count; run_idx++) { if (stat_config.run_count != 1 && verbose > 0) fprintf(output, "[ perf stat: executing run #%d ... ]\n", run_idx + 1); if (run_idx != 0) evlist__reset_prev_raw_counts(evsel_list); status = run_perf_stat(argc, argv, run_idx); if (status == -1) break; if (forever && !interval) { print_counters(NULL, argc, argv); perf_stat__reset_stats(); } } if (!forever && status != -1 && (!interval || stat_config.summary)) { if (stat_config.run_count > 1) evlist__copy_res_stats(&stat_config, evsel_list); print_counters(NULL, argc, argv); } evlist__finalize_ctlfd(evsel_list); if (STAT_RECORD) { /* * We synthesize the kernel mmap record just so that older tools * don't emit warnings about not being able to resolve symbols * due to /proc/sys/kernel/kptr_restrict settings and instead provide * a saner message about no samples being in the perf.data file. * * This also serves to suppress a warning about f_header.data.size == 0 * in header.c at the moment 'perf stat record' gets introduced, which * is not really needed once we start adding the stat specific PERF_RECORD_ * records, but the need to suppress the kptr_restrict messages in older * tools remain -acme */ int fd = perf_data__fd(&perf_stat.data); err = perf_event__synthesize_kernel_mmap((void *)&perf_stat, process_synthesized_event, &perf_stat.session->machines.host); if (err) { pr_warning("Couldn't synthesize the kernel mmap record, harmless, " "older tools may produce warnings about this file\n."); } if (!interval) { if (WRITE_STAT_ROUND_EVENT(walltime_nsecs_stats.max, FINAL)) pr_err("failed to write stat round event\n"); } if (!perf_stat.data.is_pipe) { perf_stat.session->header.data_size += perf_stat.bytes_written; perf_session__write_header(perf_stat.session, evsel_list, fd, true); } evlist__close(evsel_list); perf_session__delete(perf_stat.session); } perf_stat__exit_aggr_mode(); evlist__free_stats(evsel_list); out: if (stat_config.iostat_run) iostat_release(evsel_list); zfree(&stat_config.walltime_run); zfree(&stat_config.user_requested_cpu_list); if (smi_cost && smi_reset) sysfs__write_int(FREEZE_ON_SMI_PATH, 0); evlist__delete(evsel_list); metricgroup__rblist_exit(&stat_config.metric_events); evlist__close_control(stat_config.ctl_fd, stat_config.ctl_fd_ack, &stat_config.ctl_fd_close); return status; }