// SPDX-License-Identifier: GPL-2.0 /* * Arm Statistical Profiling Extensions (SPE) support * Copyright (c) 2017-2018, Arm Ltd. */ #include #include #include #include #include #include #include #include #include #include #include #include "auxtrace.h" #include "color.h" #include "debug.h" #include "evlist.h" #include "evsel.h" #include "machine.h" #include "session.h" #include "symbol.h" #include "thread.h" #include "thread-stack.h" #include "tsc.h" #include "tool.h" #include "util/synthetic-events.h" #include "arm-spe.h" #include "arm-spe-decoder/arm-spe-decoder.h" #include "arm-spe-decoder/arm-spe-pkt-decoder.h" #include "../../arch/arm64/include/asm/cputype.h" #define MAX_TIMESTAMP (~0ULL) struct arm_spe { struct auxtrace auxtrace; struct auxtrace_queues queues; struct auxtrace_heap heap; struct itrace_synth_opts synth_opts; u32 auxtrace_type; struct perf_session *session; struct machine *machine; u32 pmu_type; struct perf_tsc_conversion tc; u8 timeless_decoding; u8 data_queued; u64 sample_type; u8 sample_flc; u8 sample_llc; u8 sample_tlb; u8 sample_branch; u8 sample_remote_access; u8 sample_memory; u8 sample_instructions; u64 instructions_sample_period; u64 l1d_miss_id; u64 l1d_access_id; u64 llc_miss_id; u64 llc_access_id; u64 tlb_miss_id; u64 tlb_access_id; u64 branch_miss_id; u64 remote_access_id; u64 memory_id; u64 instructions_id; u64 kernel_start; unsigned long num_events; u8 use_ctx_pkt_for_pid; u64 **metadata; u64 metadata_ver; u64 metadata_nr_cpu; bool is_homogeneous; }; struct arm_spe_queue { struct arm_spe *spe; unsigned int queue_nr; struct auxtrace_buffer *buffer; struct auxtrace_buffer *old_buffer; union perf_event *event_buf; bool on_heap; bool done; pid_t pid; pid_t tid; int cpu; struct arm_spe_decoder *decoder; u64 time; u64 timestamp; struct thread *thread; u64 period_instructions; }; static void arm_spe_dump(struct arm_spe *spe __maybe_unused, unsigned char *buf, size_t len) { struct arm_spe_pkt packet; size_t pos = 0; int ret, pkt_len, i; char desc[ARM_SPE_PKT_DESC_MAX]; const char *color = PERF_COLOR_BLUE; color_fprintf(stdout, color, ". ... ARM SPE data: size %#zx bytes\n", len); while (len) { ret = arm_spe_get_packet(buf, len, &packet); if (ret > 0) pkt_len = ret; else pkt_len = 1; printf("."); color_fprintf(stdout, color, " %08zx: ", pos); for (i = 0; i < pkt_len; i++) color_fprintf(stdout, color, " %02x", buf[i]); for (; i < 16; i++) color_fprintf(stdout, color, " "); if (ret > 0) { ret = arm_spe_pkt_desc(&packet, desc, ARM_SPE_PKT_DESC_MAX); if (!ret) color_fprintf(stdout, color, " %s\n", desc); } else { color_fprintf(stdout, color, " Bad packet!\n"); } pos += pkt_len; buf += pkt_len; len -= pkt_len; } } static void arm_spe_dump_event(struct arm_spe *spe, unsigned char *buf, size_t len) { printf(".\n"); arm_spe_dump(spe, buf, len); } static int arm_spe_get_trace(struct arm_spe_buffer *b, void *data) { struct arm_spe_queue *speq = data; struct auxtrace_buffer *buffer = speq->buffer; struct auxtrace_buffer *old_buffer = speq->old_buffer; struct auxtrace_queue *queue; queue = &speq->spe->queues.queue_array[speq->queue_nr]; buffer = auxtrace_buffer__next(queue, buffer); /* If no more data, drop the previous auxtrace_buffer and return */ if (!buffer) { if (old_buffer) auxtrace_buffer__drop_data(old_buffer); b->len = 0; return 0; } speq->buffer = buffer; /* If the aux_buffer doesn't have data associated, try to load it */ if (!buffer->data) { /* get the file desc associated with the perf data file */ int fd = perf_data__fd(speq->spe->session->data); buffer->data = auxtrace_buffer__get_data(buffer, fd); if (!buffer->data) return -ENOMEM; } b->len = buffer->size; b->buf = buffer->data; if (b->len) { if (old_buffer) auxtrace_buffer__drop_data(old_buffer); speq->old_buffer = buffer; } else { auxtrace_buffer__drop_data(buffer); return arm_spe_get_trace(b, data); } return 0; } static struct arm_spe_queue *arm_spe__alloc_queue(struct arm_spe *spe, unsigned int queue_nr) { struct arm_spe_params params = { .get_trace = 0, }; struct arm_spe_queue *speq; speq = zalloc(sizeof(*speq)); if (!speq) return NULL; speq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE); if (!speq->event_buf) goto out_free; speq->spe = spe; speq->queue_nr = queue_nr; speq->pid = -1; speq->tid = -1; speq->cpu = -1; speq->period_instructions = 0; /* params set */ params.get_trace = arm_spe_get_trace; params.data = speq; /* create new decoder */ speq->decoder = arm_spe_decoder_new(¶ms); if (!speq->decoder) goto out_free; return speq; out_free: zfree(&speq->event_buf); free(speq); return NULL; } static inline u8 arm_spe_cpumode(struct arm_spe *spe, u64 ip) { return ip >= spe->kernel_start ? PERF_RECORD_MISC_KERNEL : PERF_RECORD_MISC_USER; } static void arm_spe_set_pid_tid_cpu(struct arm_spe *spe, struct auxtrace_queue *queue) { struct arm_spe_queue *speq = queue->priv; pid_t tid; tid = machine__get_current_tid(spe->machine, speq->cpu); if (tid != -1) { speq->tid = tid; thread__zput(speq->thread); } else speq->tid = queue->tid; if ((!speq->thread) && (speq->tid != -1)) { speq->thread = machine__find_thread(spe->machine, -1, speq->tid); } if (speq->thread) { speq->pid = thread__pid(speq->thread); if (queue->cpu == -1) speq->cpu = thread__cpu(speq->thread); } } static int arm_spe_set_tid(struct arm_spe_queue *speq, pid_t tid) { struct arm_spe *spe = speq->spe; int err = machine__set_current_tid(spe->machine, speq->cpu, -1, tid); if (err) return err; arm_spe_set_pid_tid_cpu(spe, &spe->queues.queue_array[speq->queue_nr]); return 0; } static u64 *arm_spe__get_metadata_by_cpu(struct arm_spe *spe, u64 cpu) { u64 i; if (!spe->metadata) return NULL; for (i = 0; i < spe->metadata_nr_cpu; i++) if (spe->metadata[i][ARM_SPE_CPU] == cpu) return spe->metadata[i]; return NULL; } static struct simd_flags arm_spe__synth_simd_flags(const struct arm_spe_record *record) { struct simd_flags simd_flags = {}; if ((record->op & ARM_SPE_OP_LDST) && (record->op & ARM_SPE_OP_SVE_LDST)) simd_flags.arch |= SIMD_OP_FLAGS_ARCH_SVE; if ((record->op & ARM_SPE_OP_OTHER) && (record->op & ARM_SPE_OP_SVE_OTHER)) simd_flags.arch |= SIMD_OP_FLAGS_ARCH_SVE; if (record->type & ARM_SPE_SVE_PARTIAL_PRED) simd_flags.pred |= SIMD_OP_FLAGS_PRED_PARTIAL; if (record->type & ARM_SPE_SVE_EMPTY_PRED) simd_flags.pred |= SIMD_OP_FLAGS_PRED_EMPTY; return simd_flags; } static void arm_spe_prep_sample(struct arm_spe *spe, struct arm_spe_queue *speq, union perf_event *event, struct perf_sample *sample) { struct arm_spe_record *record = &speq->decoder->record; if (!spe->timeless_decoding) sample->time = tsc_to_perf_time(record->timestamp, &spe->tc); sample->ip = record->from_ip; sample->cpumode = arm_spe_cpumode(spe, sample->ip); sample->pid = speq->pid; sample->tid = speq->tid; sample->period = 1; sample->cpu = speq->cpu; sample->simd_flags = arm_spe__synth_simd_flags(record); event->sample.header.type = PERF_RECORD_SAMPLE; event->sample.header.misc = sample->cpumode; event->sample.header.size = sizeof(struct perf_event_header); } static int arm_spe__inject_event(union perf_event *event, struct perf_sample *sample, u64 type) { event->header.size = perf_event__sample_event_size(sample, type, 0); return perf_event__synthesize_sample(event, type, 0, sample); } static inline int arm_spe_deliver_synth_event(struct arm_spe *spe, struct arm_spe_queue *speq __maybe_unused, union perf_event *event, struct perf_sample *sample) { int ret; if (spe->synth_opts.inject) { ret = arm_spe__inject_event(event, sample, spe->sample_type); if (ret) return ret; } ret = perf_session__deliver_synth_event(spe->session, event, sample); if (ret) pr_err("ARM SPE: failed to deliver event, error %d\n", ret); return ret; } static int arm_spe__synth_mem_sample(struct arm_spe_queue *speq, u64 spe_events_id, u64 data_src) { struct arm_spe *spe = speq->spe; struct arm_spe_record *record = &speq->decoder->record; union perf_event *event = speq->event_buf; struct perf_sample sample = { .ip = 0, }; arm_spe_prep_sample(spe, speq, event, &sample); sample.id = spe_events_id; sample.stream_id = spe_events_id; sample.addr = record->virt_addr; sample.phys_addr = record->phys_addr; sample.data_src = data_src; sample.weight = record->latency; return arm_spe_deliver_synth_event(spe, speq, event, &sample); } static int arm_spe__synth_branch_sample(struct arm_spe_queue *speq, u64 spe_events_id) { struct arm_spe *spe = speq->spe; struct arm_spe_record *record = &speq->decoder->record; union perf_event *event = speq->event_buf; struct perf_sample sample = { .ip = 0, }; arm_spe_prep_sample(spe, speq, event, &sample); sample.id = spe_events_id; sample.stream_id = spe_events_id; sample.addr = record->to_ip; sample.weight = record->latency; return arm_spe_deliver_synth_event(spe, speq, event, &sample); } static int arm_spe__synth_instruction_sample(struct arm_spe_queue *speq, u64 spe_events_id, u64 data_src) { struct arm_spe *spe = speq->spe; struct arm_spe_record *record = &speq->decoder->record; union perf_event *event = speq->event_buf; struct perf_sample sample = { .ip = 0, }; /* * Handles perf instruction sampling period. */ speq->period_instructions++; if (speq->period_instructions < spe->instructions_sample_period) return 0; speq->period_instructions = 0; arm_spe_prep_sample(spe, speq, event, &sample); sample.id = spe_events_id; sample.stream_id = spe_events_id; sample.addr = record->virt_addr; sample.phys_addr = record->phys_addr; sample.data_src = data_src; sample.period = spe->instructions_sample_period; sample.weight = record->latency; return arm_spe_deliver_synth_event(spe, speq, event, &sample); } static const struct midr_range common_ds_encoding_cpus[] = { MIDR_ALL_VERSIONS(MIDR_CORTEX_A720), MIDR_ALL_VERSIONS(MIDR_CORTEX_A725), MIDR_ALL_VERSIONS(MIDR_CORTEX_X1C), MIDR_ALL_VERSIONS(MIDR_CORTEX_X3), MIDR_ALL_VERSIONS(MIDR_CORTEX_X925), MIDR_ALL_VERSIONS(MIDR_NEOVERSE_N1), MIDR_ALL_VERSIONS(MIDR_NEOVERSE_N2), MIDR_ALL_VERSIONS(MIDR_NEOVERSE_V1), MIDR_ALL_VERSIONS(MIDR_NEOVERSE_V2), {}, }; static void arm_spe__synth_data_source_common(const struct arm_spe_record *record, union perf_mem_data_src *data_src) { /* * Even though four levels of cache hierarchy are possible, no known * production Neoverse systems currently include more than three levels * so for the time being we assume three exist. If a production system * is built with four the this function would have to be changed to * detect the number of levels for reporting. */ /* * We have no data on the hit level or data source for stores in the * Neoverse SPE records. */ if (record->op & ARM_SPE_OP_ST) { data_src->mem_lvl = PERF_MEM_LVL_NA; data_src->mem_lvl_num = PERF_MEM_LVLNUM_NA; data_src->mem_snoop = PERF_MEM_SNOOP_NA; return; } switch (record->source) { case ARM_SPE_COMMON_DS_L1D: data_src->mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_HIT; data_src->mem_lvl_num = PERF_MEM_LVLNUM_L1; data_src->mem_snoop = PERF_MEM_SNOOP_NONE; break; case ARM_SPE_COMMON_DS_L2: data_src->mem_lvl = PERF_MEM_LVL_L2 | PERF_MEM_LVL_HIT; data_src->mem_lvl_num = PERF_MEM_LVLNUM_L2; data_src->mem_snoop = PERF_MEM_SNOOP_NONE; break; case ARM_SPE_COMMON_DS_PEER_CORE: data_src->mem_lvl = PERF_MEM_LVL_L2 | PERF_MEM_LVL_HIT; data_src->mem_lvl_num = PERF_MEM_LVLNUM_L2; data_src->mem_snoopx = PERF_MEM_SNOOPX_PEER; break; /* * We don't know if this is L1, L2 but we do know it was a cache-2-cache * transfer, so set SNOOPX_PEER */ case ARM_SPE_COMMON_DS_LOCAL_CLUSTER: case ARM_SPE_COMMON_DS_PEER_CLUSTER: data_src->mem_lvl = PERF_MEM_LVL_L3 | PERF_MEM_LVL_HIT; data_src->mem_lvl_num = PERF_MEM_LVLNUM_L3; data_src->mem_snoopx = PERF_MEM_SNOOPX_PEER; break; /* * System cache is assumed to be L3 */ case ARM_SPE_COMMON_DS_SYS_CACHE: data_src->mem_lvl = PERF_MEM_LVL_L3 | PERF_MEM_LVL_HIT; data_src->mem_lvl_num = PERF_MEM_LVLNUM_L3; data_src->mem_snoop = PERF_MEM_SNOOP_HIT; break; /* * We don't know what level it hit in, except it came from the other * socket */ case ARM_SPE_COMMON_DS_REMOTE: data_src->mem_lvl = PERF_MEM_LVL_REM_CCE1; data_src->mem_lvl_num = PERF_MEM_LVLNUM_ANY_CACHE; data_src->mem_remote = PERF_MEM_REMOTE_REMOTE; data_src->mem_snoopx = PERF_MEM_SNOOPX_PEER; break; case ARM_SPE_COMMON_DS_DRAM: data_src->mem_lvl = PERF_MEM_LVL_LOC_RAM | PERF_MEM_LVL_HIT; data_src->mem_lvl_num = PERF_MEM_LVLNUM_RAM; data_src->mem_snoop = PERF_MEM_SNOOP_NONE; break; default: break; } } static void arm_spe__synth_memory_level(const struct arm_spe_record *record, union perf_mem_data_src *data_src) { if (record->type & (ARM_SPE_LLC_ACCESS | ARM_SPE_LLC_MISS)) { data_src->mem_lvl = PERF_MEM_LVL_L3; if (record->type & ARM_SPE_LLC_MISS) data_src->mem_lvl |= PERF_MEM_LVL_MISS; else data_src->mem_lvl |= PERF_MEM_LVL_HIT; } else if (record->type & (ARM_SPE_L1D_ACCESS | ARM_SPE_L1D_MISS)) { data_src->mem_lvl = PERF_MEM_LVL_L1; if (record->type & ARM_SPE_L1D_MISS) data_src->mem_lvl |= PERF_MEM_LVL_MISS; else data_src->mem_lvl |= PERF_MEM_LVL_HIT; } if (record->type & ARM_SPE_REMOTE_ACCESS) data_src->mem_lvl |= PERF_MEM_LVL_REM_CCE1; } static bool arm_spe__is_common_ds_encoding(struct arm_spe_queue *speq) { struct arm_spe *spe = speq->spe; bool is_in_cpu_list; u64 *metadata = NULL; u64 midr = 0; /* * Metadata version 1 doesn't contain any info for MIDR. * Simply return false in this case. */ if (spe->metadata_ver == 1) { pr_warning_once("The data file contains metadata version 1, " "which is absent the info for data source. " "Please upgrade the tool to record data.\n"); return false; } /* CPU ID is -1 for per-thread mode */ if (speq->cpu < 0) { /* * On the heterogeneous system, due to CPU ID is -1, * cannot confirm the data source packet is supported. */ if (!spe->is_homogeneous) return false; /* In homogeneous system, simply use CPU0's metadata */ if (spe->metadata) metadata = spe->metadata[0]; } else { metadata = arm_spe__get_metadata_by_cpu(spe, speq->cpu); } if (!metadata) return false; midr = metadata[ARM_SPE_CPU_MIDR]; is_in_cpu_list = is_midr_in_range_list(midr, common_ds_encoding_cpus); if (is_in_cpu_list) return true; else return false; } static u64 arm_spe__synth_data_source(struct arm_spe_queue *speq, const struct arm_spe_record *record) { union perf_mem_data_src data_src = { .mem_op = PERF_MEM_OP_NA }; bool is_common = arm_spe__is_common_ds_encoding(speq); if (record->op & ARM_SPE_OP_LD) data_src.mem_op = PERF_MEM_OP_LOAD; else if (record->op & ARM_SPE_OP_ST) data_src.mem_op = PERF_MEM_OP_STORE; else return 0; if (is_common) arm_spe__synth_data_source_common(record, &data_src); else arm_spe__synth_memory_level(record, &data_src); if (record->type & (ARM_SPE_TLB_ACCESS | ARM_SPE_TLB_MISS)) { data_src.mem_dtlb = PERF_MEM_TLB_WK; if (record->type & ARM_SPE_TLB_MISS) data_src.mem_dtlb |= PERF_MEM_TLB_MISS; else data_src.mem_dtlb |= PERF_MEM_TLB_HIT; } return data_src.val; } static int arm_spe_sample(struct arm_spe_queue *speq) { const struct arm_spe_record *record = &speq->decoder->record; struct arm_spe *spe = speq->spe; u64 data_src; int err; data_src = arm_spe__synth_data_source(speq, record); if (spe->sample_flc) { if (record->type & ARM_SPE_L1D_MISS) { err = arm_spe__synth_mem_sample(speq, spe->l1d_miss_id, data_src); if (err) return err; } if (record->type & ARM_SPE_L1D_ACCESS) { err = arm_spe__synth_mem_sample(speq, spe->l1d_access_id, data_src); if (err) return err; } } if (spe->sample_llc) { if (record->type & ARM_SPE_LLC_MISS) { err = arm_spe__synth_mem_sample(speq, spe->llc_miss_id, data_src); if (err) return err; } if (record->type & ARM_SPE_LLC_ACCESS) { err = arm_spe__synth_mem_sample(speq, spe->llc_access_id, data_src); if (err) return err; } } if (spe->sample_tlb) { if (record->type & ARM_SPE_TLB_MISS) { err = arm_spe__synth_mem_sample(speq, spe->tlb_miss_id, data_src); if (err) return err; } if (record->type & ARM_SPE_TLB_ACCESS) { err = arm_spe__synth_mem_sample(speq, spe->tlb_access_id, data_src); if (err) return err; } } if (spe->sample_branch && (record->type & ARM_SPE_BRANCH_MISS)) { err = arm_spe__synth_branch_sample(speq, spe->branch_miss_id); if (err) return err; } if (spe->sample_remote_access && (record->type & ARM_SPE_REMOTE_ACCESS)) { err = arm_spe__synth_mem_sample(speq, spe->remote_access_id, data_src); if (err) return err; } /* * When data_src is zero it means the record is not a memory operation, * skip to synthesize memory sample for this case. */ if (spe->sample_memory && data_src) { err = arm_spe__synth_mem_sample(speq, spe->memory_id, data_src); if (err) return err; } if (spe->sample_instructions) { err = arm_spe__synth_instruction_sample(speq, spe->instructions_id, data_src); if (err) return err; } return 0; } static int arm_spe_run_decoder(struct arm_spe_queue *speq, u64 *timestamp) { struct arm_spe *spe = speq->spe; struct arm_spe_record *record; int ret; if (!spe->kernel_start) spe->kernel_start = machine__kernel_start(spe->machine); while (1) { /* * The usual logic is firstly to decode the packets, and then * based the record to synthesize sample; but here the flow is * reversed: it calls arm_spe_sample() for synthesizing samples * prior to arm_spe_decode(). * * Two reasons for this code logic: * 1. Firstly, when setup queue in arm_spe__setup_queue(), it * has decoded trace data and generated a record, but the record * is left to generate sample until run to here, so it's correct * to synthesize sample for the left record. * 2. After decoding trace data, it needs to compare the record * timestamp with the coming perf event, if the record timestamp * is later than the perf event, it needs bail out and pushs the * record into auxtrace heap, thus the record can be deferred to * synthesize sample until run to here at the next time; so this * can correlate samples between Arm SPE trace data and other * perf events with correct time ordering. */ /* * Update pid/tid info. */ record = &speq->decoder->record; if (!spe->timeless_decoding && record->context_id != (u64)-1) { ret = arm_spe_set_tid(speq, record->context_id); if (ret) return ret; spe->use_ctx_pkt_for_pid = true; } ret = arm_spe_sample(speq); if (ret) return ret; ret = arm_spe_decode(speq->decoder); if (!ret) { pr_debug("No data or all data has been processed.\n"); return 1; } /* * Error is detected when decode SPE trace data, continue to * the next trace data and find out more records. */ if (ret < 0) continue; record = &speq->decoder->record; /* Update timestamp for the last record */ if (record->timestamp > speq->timestamp) speq->timestamp = record->timestamp; /* * If the timestamp of the queue is later than timestamp of the * coming perf event, bail out so can allow the perf event to * be processed ahead. */ if (!spe->timeless_decoding && speq->timestamp >= *timestamp) { *timestamp = speq->timestamp; return 0; } } return 0; } static int arm_spe__setup_queue(struct arm_spe *spe, struct auxtrace_queue *queue, unsigned int queue_nr) { struct arm_spe_queue *speq = queue->priv; struct arm_spe_record *record; if (list_empty(&queue->head) || speq) return 0; speq = arm_spe__alloc_queue(spe, queue_nr); if (!speq) return -ENOMEM; queue->priv = speq; if (queue->cpu != -1) speq->cpu = queue->cpu; if (!speq->on_heap) { int ret; if (spe->timeless_decoding) return 0; retry: ret = arm_spe_decode(speq->decoder); if (!ret) return 0; if (ret < 0) goto retry; record = &speq->decoder->record; speq->timestamp = record->timestamp; ret = auxtrace_heap__add(&spe->heap, queue_nr, speq->timestamp); if (ret) return ret; speq->on_heap = true; } return 0; } static int arm_spe__setup_queues(struct arm_spe *spe) { unsigned int i; int ret; for (i = 0; i < spe->queues.nr_queues; i++) { ret = arm_spe__setup_queue(spe, &spe->queues.queue_array[i], i); if (ret) return ret; } return 0; } static int arm_spe__update_queues(struct arm_spe *spe) { if (spe->queues.new_data) { spe->queues.new_data = false; return arm_spe__setup_queues(spe); } return 0; } static bool arm_spe__is_timeless_decoding(struct arm_spe *spe) { struct evsel *evsel; struct evlist *evlist = spe->session->evlist; bool timeless_decoding = true; /* * Circle through the list of event and complain if we find one * with the time bit set. */ evlist__for_each_entry(evlist, evsel) { if ((evsel->core.attr.sample_type & PERF_SAMPLE_TIME)) timeless_decoding = false; } return timeless_decoding; } static int arm_spe_process_queues(struct arm_spe *spe, u64 timestamp) { unsigned int queue_nr; u64 ts; int ret; while (1) { struct auxtrace_queue *queue; struct arm_spe_queue *speq; if (!spe->heap.heap_cnt) return 0; if (spe->heap.heap_array[0].ordinal >= timestamp) return 0; queue_nr = spe->heap.heap_array[0].queue_nr; queue = &spe->queues.queue_array[queue_nr]; speq = queue->priv; auxtrace_heap__pop(&spe->heap); if (spe->heap.heap_cnt) { ts = spe->heap.heap_array[0].ordinal + 1; if (ts > timestamp) ts = timestamp; } else { ts = timestamp; } /* * A previous context-switch event has set pid/tid in the machine's context, so * here we need to update the pid/tid in the thread and SPE queue. */ if (!spe->use_ctx_pkt_for_pid) arm_spe_set_pid_tid_cpu(spe, queue); ret = arm_spe_run_decoder(speq, &ts); if (ret < 0) { auxtrace_heap__add(&spe->heap, queue_nr, ts); return ret; } if (!ret) { ret = auxtrace_heap__add(&spe->heap, queue_nr, ts); if (ret < 0) return ret; } else { speq->on_heap = false; } } return 0; } static int arm_spe_process_timeless_queues(struct arm_spe *spe, pid_t tid, u64 time_) { struct auxtrace_queues *queues = &spe->queues; unsigned int i; u64 ts = 0; for (i = 0; i < queues->nr_queues; i++) { struct auxtrace_queue *queue = &spe->queues.queue_array[i]; struct arm_spe_queue *speq = queue->priv; if (speq && (tid == -1 || speq->tid == tid)) { speq->time = time_; arm_spe_set_pid_tid_cpu(spe, queue); arm_spe_run_decoder(speq, &ts); } } return 0; } static int arm_spe_context_switch(struct arm_spe *spe, union perf_event *event, struct perf_sample *sample) { pid_t pid, tid; int cpu; if (!(event->header.misc & PERF_RECORD_MISC_SWITCH_OUT)) return 0; pid = event->context_switch.next_prev_pid; tid = event->context_switch.next_prev_tid; cpu = sample->cpu; if (tid == -1) pr_warning("context_switch event has no tid\n"); return machine__set_current_tid(spe->machine, cpu, pid, tid); } static int arm_spe_process_event(struct perf_session *session, union perf_event *event, struct perf_sample *sample, const struct perf_tool *tool) { int err = 0; u64 timestamp; struct arm_spe *spe = container_of(session->auxtrace, struct arm_spe, auxtrace); if (dump_trace) return 0; if (!tool->ordered_events) { pr_err("SPE trace requires ordered events\n"); return -EINVAL; } if (sample->time && (sample->time != (u64) -1)) timestamp = perf_time_to_tsc(sample->time, &spe->tc); else timestamp = 0; if (timestamp || spe->timeless_decoding) { err = arm_spe__update_queues(spe); if (err) return err; } if (spe->timeless_decoding) { if (event->header.type == PERF_RECORD_EXIT) { err = arm_spe_process_timeless_queues(spe, event->fork.tid, sample->time); } } else if (timestamp) { err = arm_spe_process_queues(spe, timestamp); if (err) return err; if (!spe->use_ctx_pkt_for_pid && (event->header.type == PERF_RECORD_SWITCH_CPU_WIDE || event->header.type == PERF_RECORD_SWITCH)) err = arm_spe_context_switch(spe, event, sample); } return err; } static int arm_spe_process_auxtrace_event(struct perf_session *session, union perf_event *event, const struct perf_tool *tool __maybe_unused) { struct arm_spe *spe = container_of(session->auxtrace, struct arm_spe, auxtrace); if (!spe->data_queued) { struct auxtrace_buffer *buffer; off_t data_offset; int fd = perf_data__fd(session->data); int err; if (perf_data__is_pipe(session->data)) { data_offset = 0; } else { data_offset = lseek(fd, 0, SEEK_CUR); if (data_offset == -1) return -errno; } err = auxtrace_queues__add_event(&spe->queues, session, event, data_offset, &buffer); if (err) return err; /* Dump here now we have copied a piped trace out of the pipe */ if (dump_trace) { if (auxtrace_buffer__get_data(buffer, fd)) { arm_spe_dump_event(spe, buffer->data, buffer->size); auxtrace_buffer__put_data(buffer); } } } return 0; } static int arm_spe_flush(struct perf_session *session __maybe_unused, const struct perf_tool *tool __maybe_unused) { struct arm_spe *spe = container_of(session->auxtrace, struct arm_spe, auxtrace); int ret; if (dump_trace) return 0; if (!tool->ordered_events) return -EINVAL; ret = arm_spe__update_queues(spe); if (ret < 0) return ret; if (spe->timeless_decoding) return arm_spe_process_timeless_queues(spe, -1, MAX_TIMESTAMP - 1); ret = arm_spe_process_queues(spe, MAX_TIMESTAMP); if (ret) return ret; if (!spe->use_ctx_pkt_for_pid) ui__warning("Arm SPE CONTEXT packets not found in the traces.\n" "Matching of TIDs to SPE events could be inaccurate.\n"); return 0; } static u64 *arm_spe__alloc_per_cpu_metadata(u64 *buf, int per_cpu_size) { u64 *metadata; metadata = zalloc(per_cpu_size); if (!metadata) return NULL; memcpy(metadata, buf, per_cpu_size); return metadata; } static void arm_spe__free_metadata(u64 **metadata, int nr_cpu) { int i; for (i = 0; i < nr_cpu; i++) zfree(&metadata[i]); free(metadata); } static u64 **arm_spe__alloc_metadata(struct perf_record_auxtrace_info *info, u64 *ver, int *nr_cpu) { u64 *ptr = (u64 *)info->priv; u64 metadata_size; u64 **metadata = NULL; int hdr_sz, per_cpu_sz, i; metadata_size = info->header.size - sizeof(struct perf_record_auxtrace_info); /* Metadata version 1 */ if (metadata_size == ARM_SPE_AUXTRACE_V1_PRIV_SIZE) { *ver = 1; *nr_cpu = 0; /* No per CPU metadata */ return NULL; } *ver = ptr[ARM_SPE_HEADER_VERSION]; hdr_sz = ptr[ARM_SPE_HEADER_SIZE]; *nr_cpu = ptr[ARM_SPE_CPUS_NUM]; metadata = calloc(*nr_cpu, sizeof(*metadata)); if (!metadata) return NULL; /* Locate the start address of per CPU metadata */ ptr += hdr_sz; per_cpu_sz = (metadata_size - (hdr_sz * sizeof(u64))) / (*nr_cpu); for (i = 0; i < *nr_cpu; i++) { metadata[i] = arm_spe__alloc_per_cpu_metadata(ptr, per_cpu_sz); if (!metadata[i]) goto err_per_cpu_metadata; ptr += per_cpu_sz / sizeof(u64); } return metadata; err_per_cpu_metadata: arm_spe__free_metadata(metadata, *nr_cpu); return NULL; } static void arm_spe_free_queue(void *priv) { struct arm_spe_queue *speq = priv; if (!speq) return; thread__zput(speq->thread); arm_spe_decoder_free(speq->decoder); zfree(&speq->event_buf); free(speq); } static void arm_spe_free_events(struct perf_session *session) { struct arm_spe *spe = container_of(session->auxtrace, struct arm_spe, auxtrace); struct auxtrace_queues *queues = &spe->queues; unsigned int i; for (i = 0; i < queues->nr_queues; i++) { arm_spe_free_queue(queues->queue_array[i].priv); queues->queue_array[i].priv = NULL; } auxtrace_queues__free(queues); } static void arm_spe_free(struct perf_session *session) { struct arm_spe *spe = container_of(session->auxtrace, struct arm_spe, auxtrace); auxtrace_heap__free(&spe->heap); arm_spe_free_events(session); session->auxtrace = NULL; arm_spe__free_metadata(spe->metadata, spe->metadata_nr_cpu); free(spe); } static bool arm_spe_evsel_is_auxtrace(struct perf_session *session, struct evsel *evsel) { struct arm_spe *spe = container_of(session->auxtrace, struct arm_spe, auxtrace); return evsel->core.attr.type == spe->pmu_type; } static const char * const metadata_hdr_v1_fmts[] = { [ARM_SPE_PMU_TYPE] = " PMU Type :%"PRId64"\n", [ARM_SPE_PER_CPU_MMAPS] = " Per CPU mmaps :%"PRId64"\n", }; static const char * const metadata_hdr_fmts[] = { [ARM_SPE_HEADER_VERSION] = " Header version :%"PRId64"\n", [ARM_SPE_HEADER_SIZE] = " Header size :%"PRId64"\n", [ARM_SPE_PMU_TYPE_V2] = " PMU type v2 :%"PRId64"\n", [ARM_SPE_CPUS_NUM] = " CPU number :%"PRId64"\n", }; static const char * const metadata_per_cpu_fmts[] = { [ARM_SPE_MAGIC] = " Magic :0x%"PRIx64"\n", [ARM_SPE_CPU] = " CPU # :%"PRId64"\n", [ARM_SPE_CPU_NR_PARAMS] = " Num of params :%"PRId64"\n", [ARM_SPE_CPU_MIDR] = " MIDR :0x%"PRIx64"\n", [ARM_SPE_CPU_PMU_TYPE] = " PMU Type :%"PRId64"\n", [ARM_SPE_CAP_MIN_IVAL] = " Min Interval :%"PRId64"\n", }; static void arm_spe_print_info(struct arm_spe *spe, __u64 *arr) { unsigned int i, cpu, hdr_size, cpu_num, cpu_size; const char * const *hdr_fmts; if (!dump_trace) return; if (spe->metadata_ver == 1) { cpu_num = 0; hdr_size = ARM_SPE_AUXTRACE_V1_PRIV_MAX; hdr_fmts = metadata_hdr_v1_fmts; } else { cpu_num = arr[ARM_SPE_CPUS_NUM]; hdr_size = arr[ARM_SPE_HEADER_SIZE]; hdr_fmts = metadata_hdr_fmts; } for (i = 0; i < hdr_size; i++) fprintf(stdout, hdr_fmts[i], arr[i]); arr += hdr_size; for (cpu = 0; cpu < cpu_num; cpu++) { /* * The parameters from ARM_SPE_MAGIC to ARM_SPE_CPU_NR_PARAMS * are fixed. The sequential parameter size is decided by the * field 'ARM_SPE_CPU_NR_PARAMS'. */ cpu_size = (ARM_SPE_CPU_NR_PARAMS + 1) + arr[ARM_SPE_CPU_NR_PARAMS]; for (i = 0; i < cpu_size; i++) fprintf(stdout, metadata_per_cpu_fmts[i], arr[i]); arr += cpu_size; } } static void arm_spe_set_event_name(struct evlist *evlist, u64 id, const char *name) { struct evsel *evsel; evlist__for_each_entry(evlist, evsel) { if (evsel->core.id && evsel->core.id[0] == id) { if (evsel->name) zfree(&evsel->name); evsel->name = strdup(name); break; } } } static int arm_spe_synth_events(struct arm_spe *spe, struct perf_session *session) { struct evlist *evlist = session->evlist; struct evsel *evsel; struct perf_event_attr attr; bool found = false; u64 id; int err; evlist__for_each_entry(evlist, evsel) { if (evsel->core.attr.type == spe->pmu_type) { found = true; break; } } if (!found) { pr_debug("No selected events with SPE trace data\n"); return 0; } memset(&attr, 0, sizeof(struct perf_event_attr)); attr.size = sizeof(struct perf_event_attr); attr.type = PERF_TYPE_HARDWARE; attr.sample_type = evsel->core.attr.sample_type & (PERF_SAMPLE_MASK | PERF_SAMPLE_PHYS_ADDR); attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID | PERF_SAMPLE_PERIOD | PERF_SAMPLE_DATA_SRC | PERF_SAMPLE_WEIGHT | PERF_SAMPLE_ADDR; if (spe->timeless_decoding) attr.sample_type &= ~(u64)PERF_SAMPLE_TIME; else attr.sample_type |= PERF_SAMPLE_TIME; spe->sample_type = attr.sample_type; attr.exclude_user = evsel->core.attr.exclude_user; attr.exclude_kernel = evsel->core.attr.exclude_kernel; attr.exclude_hv = evsel->core.attr.exclude_hv; attr.exclude_host = evsel->core.attr.exclude_host; attr.exclude_guest = evsel->core.attr.exclude_guest; attr.sample_id_all = evsel->core.attr.sample_id_all; attr.read_format = evsel->core.attr.read_format; /* create new id val to be a fixed offset from evsel id */ id = evsel->core.id[0] + 1000000000; if (!id) id = 1; if (spe->synth_opts.flc) { spe->sample_flc = true; /* Level 1 data cache miss */ err = perf_session__deliver_synth_attr_event(session, &attr, id); if (err) return err; spe->l1d_miss_id = id; arm_spe_set_event_name(evlist, id, "l1d-miss"); id += 1; /* Level 1 data cache access */ err = perf_session__deliver_synth_attr_event(session, &attr, id); if (err) return err; spe->l1d_access_id = id; arm_spe_set_event_name(evlist, id, "l1d-access"); id += 1; } if (spe->synth_opts.llc) { spe->sample_llc = true; /* Last level cache miss */ err = perf_session__deliver_synth_attr_event(session, &attr, id); if (err) return err; spe->llc_miss_id = id; arm_spe_set_event_name(evlist, id, "llc-miss"); id += 1; /* Last level cache access */ err = perf_session__deliver_synth_attr_event(session, &attr, id); if (err) return err; spe->llc_access_id = id; arm_spe_set_event_name(evlist, id, "llc-access"); id += 1; } if (spe->synth_opts.tlb) { spe->sample_tlb = true; /* TLB miss */ err = perf_session__deliver_synth_attr_event(session, &attr, id); if (err) return err; spe->tlb_miss_id = id; arm_spe_set_event_name(evlist, id, "tlb-miss"); id += 1; /* TLB access */ err = perf_session__deliver_synth_attr_event(session, &attr, id); if (err) return err; spe->tlb_access_id = id; arm_spe_set_event_name(evlist, id, "tlb-access"); id += 1; } if (spe->synth_opts.branches) { spe->sample_branch = true; /* Branch miss */ err = perf_session__deliver_synth_attr_event(session, &attr, id); if (err) return err; spe->branch_miss_id = id; arm_spe_set_event_name(evlist, id, "branch-miss"); id += 1; } if (spe->synth_opts.remote_access) { spe->sample_remote_access = true; /* Remote access */ err = perf_session__deliver_synth_attr_event(session, &attr, id); if (err) return err; spe->remote_access_id = id; arm_spe_set_event_name(evlist, id, "remote-access"); id += 1; } if (spe->synth_opts.mem) { spe->sample_memory = true; err = perf_session__deliver_synth_attr_event(session, &attr, id); if (err) return err; spe->memory_id = id; arm_spe_set_event_name(evlist, id, "memory"); id += 1; } if (spe->synth_opts.instructions) { if (spe->synth_opts.period_type != PERF_ITRACE_PERIOD_INSTRUCTIONS) { pr_warning("Only instruction-based sampling period is currently supported by Arm SPE.\n"); goto synth_instructions_out; } if (spe->synth_opts.period > 1) pr_warning("Arm SPE has a hardware-based sample period.\n" "Additional instruction events will be discarded by --itrace\n"); spe->sample_instructions = true; attr.config = PERF_COUNT_HW_INSTRUCTIONS; attr.sample_period = spe->synth_opts.period; spe->instructions_sample_period = attr.sample_period; err = perf_session__deliver_synth_attr_event(session, &attr, id); if (err) return err; spe->instructions_id = id; arm_spe_set_event_name(evlist, id, "instructions"); } synth_instructions_out: return 0; } static bool arm_spe__is_homogeneous(u64 **metadata, int nr_cpu) { u64 midr; int i; if (!nr_cpu) return false; for (i = 0; i < nr_cpu; i++) { if (!metadata[i]) return false; if (i == 0) { midr = metadata[i][ARM_SPE_CPU_MIDR]; continue; } if (midr != metadata[i][ARM_SPE_CPU_MIDR]) return false; } return true; } int arm_spe_process_auxtrace_info(union perf_event *event, struct perf_session *session) { struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info; size_t min_sz = ARM_SPE_AUXTRACE_V1_PRIV_SIZE; struct perf_record_time_conv *tc = &session->time_conv; struct arm_spe *spe; u64 **metadata = NULL; u64 metadata_ver; int nr_cpu, err; if (auxtrace_info->header.size < sizeof(struct perf_record_auxtrace_info) + min_sz) return -EINVAL; metadata = arm_spe__alloc_metadata(auxtrace_info, &metadata_ver, &nr_cpu); if (!metadata && metadata_ver != 1) { pr_err("Failed to parse Arm SPE metadata.\n"); return -EINVAL; } spe = zalloc(sizeof(struct arm_spe)); if (!spe) { err = -ENOMEM; goto err_free_metadata; } err = auxtrace_queues__init(&spe->queues); if (err) goto err_free; spe->session = session; spe->machine = &session->machines.host; /* No kvm support */ spe->auxtrace_type = auxtrace_info->type; if (metadata_ver == 1) spe->pmu_type = auxtrace_info->priv[ARM_SPE_PMU_TYPE]; else spe->pmu_type = auxtrace_info->priv[ARM_SPE_PMU_TYPE_V2]; spe->metadata = metadata; spe->metadata_ver = metadata_ver; spe->metadata_nr_cpu = nr_cpu; spe->is_homogeneous = arm_spe__is_homogeneous(metadata, nr_cpu); spe->timeless_decoding = arm_spe__is_timeless_decoding(spe); /* * The synthesized event PERF_RECORD_TIME_CONV has been handled ahead * and the parameters for hardware clock are stored in the session * context. Passes these parameters to the struct perf_tsc_conversion * in "spe->tc", which is used for later conversion between clock * counter and timestamp. * * For backward compatibility, copies the fields starting from * "time_cycles" only if they are contained in the event. */ spe->tc.time_shift = tc->time_shift; spe->tc.time_mult = tc->time_mult; spe->tc.time_zero = tc->time_zero; if (event_contains(*tc, time_cycles)) { spe->tc.time_cycles = tc->time_cycles; spe->tc.time_mask = tc->time_mask; spe->tc.cap_user_time_zero = tc->cap_user_time_zero; spe->tc.cap_user_time_short = tc->cap_user_time_short; } spe->auxtrace.process_event = arm_spe_process_event; spe->auxtrace.process_auxtrace_event = arm_spe_process_auxtrace_event; spe->auxtrace.flush_events = arm_spe_flush; spe->auxtrace.free_events = arm_spe_free_events; spe->auxtrace.free = arm_spe_free; spe->auxtrace.evsel_is_auxtrace = arm_spe_evsel_is_auxtrace; session->auxtrace = &spe->auxtrace; arm_spe_print_info(spe, &auxtrace_info->priv[0]); if (dump_trace) return 0; if (session->itrace_synth_opts && session->itrace_synth_opts->set) spe->synth_opts = *session->itrace_synth_opts; else itrace_synth_opts__set_default(&spe->synth_opts, false); err = arm_spe_synth_events(spe, session); if (err) goto err_free_queues; err = auxtrace_queues__process_index(&spe->queues, session); if (err) goto err_free_queues; if (spe->queues.populated) spe->data_queued = true; return 0; err_free_queues: auxtrace_queues__free(&spe->queues); session->auxtrace = NULL; err_free: free(spe); err_free_metadata: arm_spe__free_metadata(metadata, nr_cpu); return err; }