// SPDX-License-Identifier: GPL-2.0 /* Copyright (c) 2019 Facebook */ #include <assert.h> #include <limits.h> #include <unistd.h> #include <sys/file.h> #include <sys/time.h> #include <linux/err.h> #include <linux/zalloc.h> #include <api/fs/fs.h> #include <perf/bpf_perf.h> #include "bpf_counter.h" #include "counts.h" #include "debug.h" #include "evsel.h" #include "evlist.h" #include "target.h" #include "cgroup.h" #include "cpumap.h" #include "thread_map.h" #include "bpf_skel/bpf_prog_profiler.skel.h" #include "bpf_skel/bperf_u.h" #include "bpf_skel/bperf_leader.skel.h" #include "bpf_skel/bperf_follower.skel.h" #define ATTR_MAP_SIZE 16 static inline void *u64_to_ptr(__u64 ptr) { return (void *)(unsigned long)ptr; } static struct bpf_counter *bpf_counter_alloc(void) { struct bpf_counter *counter; counter = zalloc(sizeof(*counter)); if (counter) INIT_LIST_HEAD(&counter->list); return counter; } static int bpf_program_profiler__destroy(struct evsel *evsel) { struct bpf_counter *counter, *tmp; list_for_each_entry_safe(counter, tmp, &evsel->bpf_counter_list, list) { list_del_init(&counter->list); bpf_prog_profiler_bpf__destroy(counter->skel); free(counter); } assert(list_empty(&evsel->bpf_counter_list)); return 0; } static char *bpf_target_prog_name(int tgt_fd) { struct bpf_prog_info_linear *info_linear; struct bpf_func_info *func_info; const struct btf_type *t; struct btf *btf = NULL; char *name = NULL; info_linear = bpf_program__get_prog_info_linear( tgt_fd, 1UL << BPF_PROG_INFO_FUNC_INFO); if (IS_ERR_OR_NULL(info_linear)) { pr_debug("failed to get info_linear for prog FD %d\n", tgt_fd); return NULL; } if (info_linear->info.btf_id == 0) { pr_debug("prog FD %d doesn't have valid btf\n", tgt_fd); goto out; } btf = btf__load_from_kernel_by_id(info_linear->info.btf_id); if (libbpf_get_error(btf)) { pr_debug("failed to load btf for prog FD %d\n", tgt_fd); goto out; } func_info = u64_to_ptr(info_linear->info.func_info); t = btf__type_by_id(btf, func_info[0].type_id); if (!t) { pr_debug("btf %d doesn't have type %d\n", info_linear->info.btf_id, func_info[0].type_id); goto out; } name = strdup(btf__name_by_offset(btf, t->name_off)); out: btf__free(btf); free(info_linear); return name; } static int bpf_program_profiler_load_one(struct evsel *evsel, u32 prog_id) { struct bpf_prog_profiler_bpf *skel; struct bpf_counter *counter; struct bpf_program *prog; char *prog_name; int prog_fd; int err; prog_fd = bpf_prog_get_fd_by_id(prog_id); if (prog_fd < 0) { pr_err("Failed to open fd for bpf prog %u\n", prog_id); return -1; } counter = bpf_counter_alloc(); if (!counter) { close(prog_fd); return -1; } skel = bpf_prog_profiler_bpf__open(); if (!skel) { pr_err("Failed to open bpf skeleton\n"); goto err_out; } skel->rodata->num_cpu = evsel__nr_cpus(evsel); bpf_map__resize(skel->maps.events, evsel__nr_cpus(evsel)); bpf_map__resize(skel->maps.fentry_readings, 1); bpf_map__resize(skel->maps.accum_readings, 1); prog_name = bpf_target_prog_name(prog_fd); if (!prog_name) { pr_err("Failed to get program name for bpf prog %u. Does it have BTF?\n", prog_id); goto err_out; } bpf_object__for_each_program(prog, skel->obj) { err = bpf_program__set_attach_target(prog, prog_fd, prog_name); if (err) { pr_err("bpf_program__set_attach_target failed.\n" "Does bpf prog %u have BTF?\n", prog_id); goto err_out; } } set_max_rlimit(); err = bpf_prog_profiler_bpf__load(skel); if (err) { pr_err("bpf_prog_profiler_bpf__load failed\n"); goto err_out; } assert(skel != NULL); counter->skel = skel; list_add(&counter->list, &evsel->bpf_counter_list); close(prog_fd); return 0; err_out: bpf_prog_profiler_bpf__destroy(skel); free(counter); close(prog_fd); return -1; } static int bpf_program_profiler__load(struct evsel *evsel, struct target *target) { char *bpf_str, *bpf_str_, *tok, *saveptr = NULL, *p; u32 prog_id; int ret; bpf_str_ = bpf_str = strdup(target->bpf_str); if (!bpf_str) return -1; while ((tok = strtok_r(bpf_str, ",", &saveptr)) != NULL) { prog_id = strtoul(tok, &p, 10); if (prog_id == 0 || prog_id == UINT_MAX || (*p != '\0' && *p != ',')) { pr_err("Failed to parse bpf prog ids %s\n", target->bpf_str); return -1; } ret = bpf_program_profiler_load_one(evsel, prog_id); if (ret) { bpf_program_profiler__destroy(evsel); free(bpf_str_); return -1; } bpf_str = NULL; } free(bpf_str_); return 0; } static int bpf_program_profiler__enable(struct evsel *evsel) { struct bpf_counter *counter; int ret; list_for_each_entry(counter, &evsel->bpf_counter_list, list) { assert(counter->skel != NULL); ret = bpf_prog_profiler_bpf__attach(counter->skel); if (ret) { bpf_program_profiler__destroy(evsel); return ret; } } return 0; } static int bpf_program_profiler__disable(struct evsel *evsel) { struct bpf_counter *counter; list_for_each_entry(counter, &evsel->bpf_counter_list, list) { assert(counter->skel != NULL); bpf_prog_profiler_bpf__detach(counter->skel); } return 0; } static int bpf_program_profiler__read(struct evsel *evsel) { // perf_cpu_map uses /sys/devices/system/cpu/online int num_cpu = evsel__nr_cpus(evsel); // BPF_MAP_TYPE_PERCPU_ARRAY uses /sys/devices/system/cpu/possible // Sometimes possible > online, like on a Ryzen 3900X that has 24 // threads but its possible showed 0-31 -acme int num_cpu_bpf = libbpf_num_possible_cpus(); struct bpf_perf_event_value values[num_cpu_bpf]; struct bpf_counter *counter; int reading_map_fd; __u32 key = 0; int err, cpu; if (list_empty(&evsel->bpf_counter_list)) return -EAGAIN; for (cpu = 0; cpu < num_cpu; cpu++) { perf_counts(evsel->counts, cpu, 0)->val = 0; perf_counts(evsel->counts, cpu, 0)->ena = 0; perf_counts(evsel->counts, cpu, 0)->run = 0; } list_for_each_entry(counter, &evsel->bpf_counter_list, list) { struct bpf_prog_profiler_bpf *skel = counter->skel; assert(skel != NULL); reading_map_fd = bpf_map__fd(skel->maps.accum_readings); err = bpf_map_lookup_elem(reading_map_fd, &key, values); if (err) { pr_err("failed to read value\n"); return err; } for (cpu = 0; cpu < num_cpu; cpu++) { perf_counts(evsel->counts, cpu, 0)->val += values[cpu].counter; perf_counts(evsel->counts, cpu, 0)->ena += values[cpu].enabled; perf_counts(evsel->counts, cpu, 0)->run += values[cpu].running; } } return 0; } static int bpf_program_profiler__install_pe(struct evsel *evsel, int cpu, int fd) { struct bpf_prog_profiler_bpf *skel; struct bpf_counter *counter; int ret; list_for_each_entry(counter, &evsel->bpf_counter_list, list) { skel = counter->skel; assert(skel != NULL); ret = bpf_map_update_elem(bpf_map__fd(skel->maps.events), &cpu, &fd, BPF_ANY); if (ret) return ret; } return 0; } struct bpf_counter_ops bpf_program_profiler_ops = { .load = bpf_program_profiler__load, .enable = bpf_program_profiler__enable, .disable = bpf_program_profiler__disable, .read = bpf_program_profiler__read, .destroy = bpf_program_profiler__destroy, .install_pe = bpf_program_profiler__install_pe, }; static bool bperf_attr_map_compatible(int attr_map_fd) { struct bpf_map_info map_info = {0}; __u32 map_info_len = sizeof(map_info); int err; err = bpf_obj_get_info_by_fd(attr_map_fd, &map_info, &map_info_len); if (err) return false; return (map_info.key_size == sizeof(struct perf_event_attr)) && (map_info.value_size == sizeof(struct perf_event_attr_map_entry)); } static int bperf_lock_attr_map(struct target *target) { char path[PATH_MAX]; int map_fd, err; if (target->attr_map) { scnprintf(path, PATH_MAX, "%s", target->attr_map); } else { scnprintf(path, PATH_MAX, "%s/fs/bpf/%s", sysfs__mountpoint(), BPF_PERF_DEFAULT_ATTR_MAP_PATH); } if (access(path, F_OK)) { map_fd = bpf_create_map(BPF_MAP_TYPE_HASH, sizeof(struct perf_event_attr), sizeof(struct perf_event_attr_map_entry), ATTR_MAP_SIZE, 0); if (map_fd < 0) return -1; err = bpf_obj_pin(map_fd, path); if (err) { /* someone pinned the map in parallel? */ close(map_fd); map_fd = bpf_obj_get(path); if (map_fd < 0) return -1; } } else { map_fd = bpf_obj_get(path); if (map_fd < 0) return -1; } if (!bperf_attr_map_compatible(map_fd)) { close(map_fd); return -1; } err = flock(map_fd, LOCK_EX); if (err) { close(map_fd); return -1; } return map_fd; } static int bperf_check_target(struct evsel *evsel, struct target *target, enum bperf_filter_type *filter_type, __u32 *filter_entry_cnt) { if (evsel->core.leader->nr_members > 1) { pr_err("bpf managed perf events do not yet support groups.\n"); return -1; } /* determine filter type based on target */ if (target->system_wide) { *filter_type = BPERF_FILTER_GLOBAL; *filter_entry_cnt = 1; } else if (target->cpu_list) { *filter_type = BPERF_FILTER_CPU; *filter_entry_cnt = perf_cpu_map__nr(evsel__cpus(evsel)); } else if (target->tid) { *filter_type = BPERF_FILTER_PID; *filter_entry_cnt = perf_thread_map__nr(evsel->core.threads); } else if (target->pid || evsel->evlist->workload.pid != -1) { *filter_type = BPERF_FILTER_TGID; *filter_entry_cnt = perf_thread_map__nr(evsel->core.threads); } else { pr_err("bpf managed perf events do not yet support these targets.\n"); return -1; } return 0; } static struct perf_cpu_map *all_cpu_map; static int bperf_reload_leader_program(struct evsel *evsel, int attr_map_fd, struct perf_event_attr_map_entry *entry) { struct bperf_leader_bpf *skel = bperf_leader_bpf__open(); int link_fd, diff_map_fd, err; struct bpf_link *link = NULL; if (!skel) { pr_err("Failed to open leader skeleton\n"); return -1; } bpf_map__resize(skel->maps.events, libbpf_num_possible_cpus()); err = bperf_leader_bpf__load(skel); if (err) { pr_err("Failed to load leader skeleton\n"); goto out; } link = bpf_program__attach(skel->progs.on_switch); if (IS_ERR(link)) { pr_err("Failed to attach leader program\n"); err = PTR_ERR(link); goto out; } link_fd = bpf_link__fd(link); diff_map_fd = bpf_map__fd(skel->maps.diff_readings); entry->link_id = bpf_link_get_id(link_fd); entry->diff_map_id = bpf_map_get_id(diff_map_fd); err = bpf_map_update_elem(attr_map_fd, &evsel->core.attr, entry, BPF_ANY); assert(err == 0); evsel->bperf_leader_link_fd = bpf_link_get_fd_by_id(entry->link_id); assert(evsel->bperf_leader_link_fd >= 0); /* * save leader_skel for install_pe, which is called within * following evsel__open_per_cpu call */ evsel->leader_skel = skel; evsel__open_per_cpu(evsel, all_cpu_map, -1); out: bperf_leader_bpf__destroy(skel); bpf_link__destroy(link); return err; } static int bperf__load(struct evsel *evsel, struct target *target) { struct perf_event_attr_map_entry entry = {0xffffffff, 0xffffffff}; int attr_map_fd, diff_map_fd = -1, err; enum bperf_filter_type filter_type; __u32 filter_entry_cnt, i; if (bperf_check_target(evsel, target, &filter_type, &filter_entry_cnt)) return -1; if (!all_cpu_map) { all_cpu_map = perf_cpu_map__new(NULL); if (!all_cpu_map) return -1; } evsel->bperf_leader_prog_fd = -1; evsel->bperf_leader_link_fd = -1; /* * Step 1: hold a fd on the leader program and the bpf_link, if * the program is not already gone, reload the program. * Use flock() to ensure exclusive access to the perf_event_attr * map. */ attr_map_fd = bperf_lock_attr_map(target); if (attr_map_fd < 0) { pr_err("Failed to lock perf_event_attr map\n"); return -1; } err = bpf_map_lookup_elem(attr_map_fd, &evsel->core.attr, &entry); if (err) { err = bpf_map_update_elem(attr_map_fd, &evsel->core.attr, &entry, BPF_ANY); if (err) goto out; } evsel->bperf_leader_link_fd = bpf_link_get_fd_by_id(entry.link_id); if (evsel->bperf_leader_link_fd < 0 && bperf_reload_leader_program(evsel, attr_map_fd, &entry)) { err = -1; goto out; } /* * The bpf_link holds reference to the leader program, and the * leader program holds reference to the maps. Therefore, if * link_id is valid, diff_map_id should also be valid. */ evsel->bperf_leader_prog_fd = bpf_prog_get_fd_by_id( bpf_link_get_prog_id(evsel->bperf_leader_link_fd)); assert(evsel->bperf_leader_prog_fd >= 0); diff_map_fd = bpf_map_get_fd_by_id(entry.diff_map_id); assert(diff_map_fd >= 0); /* * bperf uses BPF_PROG_TEST_RUN to get accurate reading. Check * whether the kernel support it */ err = bperf_trigger_reading(evsel->bperf_leader_prog_fd, 0); if (err) { pr_err("The kernel does not support test_run for raw_tp BPF programs.\n" "Therefore, --use-bpf might show inaccurate readings\n"); goto out; } /* Step 2: load the follower skeleton */ evsel->follower_skel = bperf_follower_bpf__open(); if (!evsel->follower_skel) { err = -1; pr_err("Failed to open follower skeleton\n"); goto out; } /* attach fexit program to the leader program */ bpf_program__set_attach_target(evsel->follower_skel->progs.fexit_XXX, evsel->bperf_leader_prog_fd, "on_switch"); /* connect to leader diff_reading map */ bpf_map__reuse_fd(evsel->follower_skel->maps.diff_readings, diff_map_fd); /* set up reading map */ bpf_map__set_max_entries(evsel->follower_skel->maps.accum_readings, filter_entry_cnt); /* set up follower filter based on target */ bpf_map__set_max_entries(evsel->follower_skel->maps.filter, filter_entry_cnt); err = bperf_follower_bpf__load(evsel->follower_skel); if (err) { pr_err("Failed to load follower skeleton\n"); bperf_follower_bpf__destroy(evsel->follower_skel); evsel->follower_skel = NULL; goto out; } for (i = 0; i < filter_entry_cnt; i++) { int filter_map_fd; __u32 key; if (filter_type == BPERF_FILTER_PID || filter_type == BPERF_FILTER_TGID) key = evsel->core.threads->map[i].pid; else if (filter_type == BPERF_FILTER_CPU) key = evsel->core.cpus->map[i]; else break; filter_map_fd = bpf_map__fd(evsel->follower_skel->maps.filter); bpf_map_update_elem(filter_map_fd, &key, &i, BPF_ANY); } evsel->follower_skel->bss->type = filter_type; err = bperf_follower_bpf__attach(evsel->follower_skel); out: if (err && evsel->bperf_leader_link_fd >= 0) close(evsel->bperf_leader_link_fd); if (err && evsel->bperf_leader_prog_fd >= 0) close(evsel->bperf_leader_prog_fd); if (diff_map_fd >= 0) close(diff_map_fd); flock(attr_map_fd, LOCK_UN); close(attr_map_fd); return err; } static int bperf__install_pe(struct evsel *evsel, int cpu, int fd) { struct bperf_leader_bpf *skel = evsel->leader_skel; return bpf_map_update_elem(bpf_map__fd(skel->maps.events), &cpu, &fd, BPF_ANY); } /* * trigger the leader prog on each cpu, so the accum_reading map could get * the latest readings. */ static int bperf_sync_counters(struct evsel *evsel) { int num_cpu, i, cpu; num_cpu = all_cpu_map->nr; for (i = 0; i < num_cpu; i++) { cpu = all_cpu_map->map[i]; bperf_trigger_reading(evsel->bperf_leader_prog_fd, cpu); } return 0; } static int bperf__enable(struct evsel *evsel) { evsel->follower_skel->bss->enabled = 1; return 0; } static int bperf__disable(struct evsel *evsel) { evsel->follower_skel->bss->enabled = 0; return 0; } static int bperf__read(struct evsel *evsel) { struct bperf_follower_bpf *skel = evsel->follower_skel; __u32 num_cpu_bpf = cpu__max_cpu(); struct bpf_perf_event_value values[num_cpu_bpf]; int reading_map_fd, err = 0; __u32 i, j, num_cpu; bperf_sync_counters(evsel); reading_map_fd = bpf_map__fd(skel->maps.accum_readings); for (i = 0; i < bpf_map__max_entries(skel->maps.accum_readings); i++) { __u32 cpu; err = bpf_map_lookup_elem(reading_map_fd, &i, values); if (err) goto out; switch (evsel->follower_skel->bss->type) { case BPERF_FILTER_GLOBAL: assert(i == 0); num_cpu = all_cpu_map->nr; for (j = 0; j < num_cpu; j++) { cpu = all_cpu_map->map[j]; perf_counts(evsel->counts, cpu, 0)->val = values[cpu].counter; perf_counts(evsel->counts, cpu, 0)->ena = values[cpu].enabled; perf_counts(evsel->counts, cpu, 0)->run = values[cpu].running; } break; case BPERF_FILTER_CPU: cpu = evsel->core.cpus->map[i]; perf_counts(evsel->counts, i, 0)->val = values[cpu].counter; perf_counts(evsel->counts, i, 0)->ena = values[cpu].enabled; perf_counts(evsel->counts, i, 0)->run = values[cpu].running; break; case BPERF_FILTER_PID: case BPERF_FILTER_TGID: perf_counts(evsel->counts, 0, i)->val = 0; perf_counts(evsel->counts, 0, i)->ena = 0; perf_counts(evsel->counts, 0, i)->run = 0; for (cpu = 0; cpu < num_cpu_bpf; cpu++) { perf_counts(evsel->counts, 0, i)->val += values[cpu].counter; perf_counts(evsel->counts, 0, i)->ena += values[cpu].enabled; perf_counts(evsel->counts, 0, i)->run += values[cpu].running; } break; default: break; } } out: return err; } static int bperf__destroy(struct evsel *evsel) { bperf_follower_bpf__destroy(evsel->follower_skel); close(evsel->bperf_leader_prog_fd); close(evsel->bperf_leader_link_fd); return 0; } /* * bperf: share hardware PMCs with BPF * * perf uses performance monitoring counters (PMC) to monitor system * performance. The PMCs are limited hardware resources. For example, * Intel CPUs have 3x fixed PMCs and 4x programmable PMCs per cpu. * * Modern data center systems use these PMCs in many different ways: * system level monitoring, (maybe nested) container level monitoring, per * process monitoring, profiling (in sample mode), etc. In some cases, * there are more active perf_events than available hardware PMCs. To allow * all perf_events to have a chance to run, it is necessary to do expensive * time multiplexing of events. * * On the other hand, many monitoring tools count the common metrics * (cycles, instructions). It is a waste to have multiple tools create * multiple perf_events of "cycles" and occupy multiple PMCs. * * bperf tries to reduce such wastes by allowing multiple perf_events of * "cycles" or "instructions" (at different scopes) to share PMUs. Instead * of having each perf-stat session to read its own perf_events, bperf uses * BPF programs to read the perf_events and aggregate readings to BPF maps. * Then, the perf-stat session(s) reads the values from these BPF maps. * * || * shared progs and maps <- || -> per session progs and maps * || * --------------- || * | perf_events | || * --------------- fexit || ----------------- * | --------||----> | follower prog | * --------------- / || --- ----------------- * cs -> | leader prog |/ ||/ | | * --> --------------- /|| -------------- ------------------ * / | | / || | filter map | | accum_readings | * / ------------ ------------ || -------------- ------------------ * | | prev map | | diff map | || | * | ------------ ------------ || | * \ || | * = \ ==================================================== | ============ * \ / user space * \ / * \ / * BPF_PROG_TEST_RUN BPF_MAP_LOOKUP_ELEM * \ / * \ / * \------ perf-stat ----------------------/ * * The figure above shows the architecture of bperf. Note that the figure * is divided into 3 regions: shared progs and maps (top left), per session * progs and maps (top right), and user space (bottom). * * The leader prog is triggered on each context switch (cs). The leader * prog reads perf_events and stores the difference (current_reading - * previous_reading) to the diff map. For the same metric, e.g. "cycles", * multiple perf-stat sessions share the same leader prog. * * Each perf-stat session creates a follower prog as fexit program to the * leader prog. It is possible to attach up to BPF_MAX_TRAMP_PROGS (38) * follower progs to the same leader prog. The follower prog checks current * task and processor ID to decide whether to add the value from the diff * map to its accumulated reading map (accum_readings). * * Finally, perf-stat user space reads the value from accum_reading map. * * Besides context switch, it is also necessary to trigger the leader prog * before perf-stat reads the value. Otherwise, the accum_reading map may * not have the latest reading from the perf_events. This is achieved by * triggering the event via sys_bpf(BPF_PROG_TEST_RUN) to each CPU. * * Comment before the definition of struct perf_event_attr_map_entry * describes how different sessions of perf-stat share information about * the leader prog. */ struct bpf_counter_ops bperf_ops = { .load = bperf__load, .enable = bperf__enable, .disable = bperf__disable, .read = bperf__read, .install_pe = bperf__install_pe, .destroy = bperf__destroy, }; extern struct bpf_counter_ops bperf_cgrp_ops; static inline bool bpf_counter_skip(struct evsel *evsel) { return list_empty(&evsel->bpf_counter_list) && evsel->follower_skel == NULL; } int bpf_counter__install_pe(struct evsel *evsel, int cpu, int fd) { if (bpf_counter_skip(evsel)) return 0; return evsel->bpf_counter_ops->install_pe(evsel, cpu, fd); } int bpf_counter__load(struct evsel *evsel, struct target *target) { if (target->bpf_str) evsel->bpf_counter_ops = &bpf_program_profiler_ops; else if (cgrp_event_expanded && target->use_bpf) evsel->bpf_counter_ops = &bperf_cgrp_ops; else if (target->use_bpf || evsel->bpf_counter || evsel__match_bpf_counter_events(evsel->name)) evsel->bpf_counter_ops = &bperf_ops; if (evsel->bpf_counter_ops) return evsel->bpf_counter_ops->load(evsel, target); return 0; } int bpf_counter__enable(struct evsel *evsel) { if (bpf_counter_skip(evsel)) return 0; return evsel->bpf_counter_ops->enable(evsel); } int bpf_counter__disable(struct evsel *evsel) { if (bpf_counter_skip(evsel)) return 0; return evsel->bpf_counter_ops->disable(evsel); } int bpf_counter__read(struct evsel *evsel) { if (bpf_counter_skip(evsel)) return -EAGAIN; return evsel->bpf_counter_ops->read(evsel); } void bpf_counter__destroy(struct evsel *evsel) { if (bpf_counter_skip(evsel)) return; evsel->bpf_counter_ops->destroy(evsel); evsel->bpf_counter_ops = NULL; }