/* * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo * * Parts came from builtin-{top,stat,record}.c, see those files for further * copyright notes. * * Released under the GPL v2. (and only v2, not any later version) */ #include "util.h" #include #include #include "cpumap.h" #include "thread_map.h" #include "target.h" #include "evlist.h" #include "evsel.h" #include "debug.h" #include #include "parse-events.h" #include #include #include #include #include #include static void perf_evlist__mmap_put(struct perf_evlist *evlist, int idx); static void __perf_evlist__munmap(struct perf_evlist *evlist, int idx); #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y)) #define SID(e, x, y) xyarray__entry(e->sample_id, x, y) void perf_evlist__init(struct perf_evlist *evlist, struct cpu_map *cpus, struct thread_map *threads) { int i; for (i = 0; i < PERF_EVLIST__HLIST_SIZE; ++i) INIT_HLIST_HEAD(&evlist->heads[i]); INIT_LIST_HEAD(&evlist->entries); perf_evlist__set_maps(evlist, cpus, threads); fdarray__init(&evlist->pollfd, 64); evlist->workload.pid = -1; evlist->backward = false; } struct perf_evlist *perf_evlist__new(void) { struct perf_evlist *evlist = zalloc(sizeof(*evlist)); if (evlist != NULL) perf_evlist__init(evlist, NULL, NULL); return evlist; } struct perf_evlist *perf_evlist__new_default(void) { struct perf_evlist *evlist = perf_evlist__new(); if (evlist && perf_evlist__add_default(evlist)) { perf_evlist__delete(evlist); evlist = NULL; } return evlist; } struct perf_evlist *perf_evlist__new_dummy(void) { struct perf_evlist *evlist = perf_evlist__new(); if (evlist && perf_evlist__add_dummy(evlist)) { perf_evlist__delete(evlist); evlist = NULL; } return evlist; } /** * perf_evlist__set_id_pos - set the positions of event ids. * @evlist: selected event list * * Events with compatible sample types all have the same id_pos * and is_pos. For convenience, put a copy on evlist. */ void perf_evlist__set_id_pos(struct perf_evlist *evlist) { struct perf_evsel *first = perf_evlist__first(evlist); evlist->id_pos = first->id_pos; evlist->is_pos = first->is_pos; } static void perf_evlist__update_id_pos(struct perf_evlist *evlist) { struct perf_evsel *evsel; evlist__for_each_entry(evlist, evsel) perf_evsel__calc_id_pos(evsel); perf_evlist__set_id_pos(evlist); } static void perf_evlist__purge(struct perf_evlist *evlist) { struct perf_evsel *pos, *n; evlist__for_each_entry_safe(evlist, n, pos) { list_del_init(&pos->node); pos->evlist = NULL; perf_evsel__delete(pos); } evlist->nr_entries = 0; } void perf_evlist__exit(struct perf_evlist *evlist) { zfree(&evlist->mmap); fdarray__exit(&evlist->pollfd); } void perf_evlist__delete(struct perf_evlist *evlist) { if (evlist == NULL) return; perf_evlist__munmap(evlist); perf_evlist__close(evlist); cpu_map__put(evlist->cpus); thread_map__put(evlist->threads); evlist->cpus = NULL; evlist->threads = NULL; perf_evlist__purge(evlist); perf_evlist__exit(evlist); free(evlist); } static void __perf_evlist__propagate_maps(struct perf_evlist *evlist, struct perf_evsel *evsel) { /* * We already have cpus for evsel (via PMU sysfs) so * keep it, if there's no target cpu list defined. */ if (!evsel->own_cpus || evlist->has_user_cpus) { cpu_map__put(evsel->cpus); evsel->cpus = cpu_map__get(evlist->cpus); } else if (evsel->cpus != evsel->own_cpus) { cpu_map__put(evsel->cpus); evsel->cpus = cpu_map__get(evsel->own_cpus); } thread_map__put(evsel->threads); evsel->threads = thread_map__get(evlist->threads); } static void perf_evlist__propagate_maps(struct perf_evlist *evlist) { struct perf_evsel *evsel; evlist__for_each_entry(evlist, evsel) __perf_evlist__propagate_maps(evlist, evsel); } void perf_evlist__add(struct perf_evlist *evlist, struct perf_evsel *entry) { entry->evlist = evlist; list_add_tail(&entry->node, &evlist->entries); entry->idx = evlist->nr_entries; entry->tracking = !entry->idx; if (!evlist->nr_entries++) perf_evlist__set_id_pos(evlist); __perf_evlist__propagate_maps(evlist, entry); } void perf_evlist__remove(struct perf_evlist *evlist, struct perf_evsel *evsel) { evsel->evlist = NULL; list_del_init(&evsel->node); evlist->nr_entries -= 1; } void perf_evlist__splice_list_tail(struct perf_evlist *evlist, struct list_head *list) { struct perf_evsel *evsel, *temp; __evlist__for_each_entry_safe(list, temp, evsel) { list_del_init(&evsel->node); perf_evlist__add(evlist, evsel); } } void __perf_evlist__set_leader(struct list_head *list) { struct perf_evsel *evsel, *leader; leader = list_entry(list->next, struct perf_evsel, node); evsel = list_entry(list->prev, struct perf_evsel, node); leader->nr_members = evsel->idx - leader->idx + 1; __evlist__for_each_entry(list, evsel) { evsel->leader = leader; } } void perf_evlist__set_leader(struct perf_evlist *evlist) { if (evlist->nr_entries) { evlist->nr_groups = evlist->nr_entries > 1 ? 1 : 0; __perf_evlist__set_leader(&evlist->entries); } } void perf_event_attr__set_max_precise_ip(struct perf_event_attr *attr) { attr->precise_ip = 3; while (attr->precise_ip != 0) { int fd = sys_perf_event_open(attr, 0, -1, -1, 0); if (fd != -1) { close(fd); break; } --attr->precise_ip; } } int perf_evlist__add_default(struct perf_evlist *evlist) { struct perf_event_attr attr = { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_CPU_CYCLES, }; struct perf_evsel *evsel; event_attr_init(&attr); perf_event_attr__set_max_precise_ip(&attr); evsel = perf_evsel__new(&attr); if (evsel == NULL) goto error; /* use asprintf() because free(evsel) assumes name is allocated */ if (asprintf(&evsel->name, "cycles%.*s", attr.precise_ip ? attr.precise_ip + 1 : 0, ":ppp") < 0) goto error_free; perf_evlist__add(evlist, evsel); return 0; error_free: perf_evsel__delete(evsel); error: return -ENOMEM; } int perf_evlist__add_dummy(struct perf_evlist *evlist) { struct perf_event_attr attr = { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_DUMMY, .size = sizeof(attr), /* to capture ABI version */ }; struct perf_evsel *evsel = perf_evsel__new(&attr); if (evsel == NULL) return -ENOMEM; perf_evlist__add(evlist, evsel); return 0; } static int perf_evlist__add_attrs(struct perf_evlist *evlist, struct perf_event_attr *attrs, size_t nr_attrs) { struct perf_evsel *evsel, *n; LIST_HEAD(head); size_t i; for (i = 0; i < nr_attrs; i++) { evsel = perf_evsel__new_idx(attrs + i, evlist->nr_entries + i); if (evsel == NULL) goto out_delete_partial_list; list_add_tail(&evsel->node, &head); } perf_evlist__splice_list_tail(evlist, &head); return 0; out_delete_partial_list: __evlist__for_each_entry_safe(&head, n, evsel) perf_evsel__delete(evsel); return -1; } int __perf_evlist__add_default_attrs(struct perf_evlist *evlist, struct perf_event_attr *attrs, size_t nr_attrs) { size_t i; for (i = 0; i < nr_attrs; i++) event_attr_init(attrs + i); return perf_evlist__add_attrs(evlist, attrs, nr_attrs); } struct perf_evsel * perf_evlist__find_tracepoint_by_id(struct perf_evlist *evlist, int id) { struct perf_evsel *evsel; evlist__for_each_entry(evlist, evsel) { if (evsel->attr.type == PERF_TYPE_TRACEPOINT && (int)evsel->attr.config == id) return evsel; } return NULL; } struct perf_evsel * perf_evlist__find_tracepoint_by_name(struct perf_evlist *evlist, const char *name) { struct perf_evsel *evsel; evlist__for_each_entry(evlist, evsel) { if ((evsel->attr.type == PERF_TYPE_TRACEPOINT) && (strcmp(evsel->name, name) == 0)) return evsel; } return NULL; } int perf_evlist__add_newtp(struct perf_evlist *evlist, const char *sys, const char *name, void *handler) { struct perf_evsel *evsel = perf_evsel__newtp(sys, name); if (IS_ERR(evsel)) return -1; evsel->handler = handler; perf_evlist__add(evlist, evsel); return 0; } static int perf_evlist__nr_threads(struct perf_evlist *evlist, struct perf_evsel *evsel) { if (evsel->system_wide) return 1; else return thread_map__nr(evlist->threads); } void perf_evlist__disable(struct perf_evlist *evlist) { struct perf_evsel *pos; evlist__for_each_entry(evlist, pos) { if (!perf_evsel__is_group_leader(pos) || !pos->fd) continue; perf_evsel__disable(pos); } evlist->enabled = false; } void perf_evlist__enable(struct perf_evlist *evlist) { struct perf_evsel *pos; evlist__for_each_entry(evlist, pos) { if (!perf_evsel__is_group_leader(pos) || !pos->fd) continue; perf_evsel__enable(pos); } evlist->enabled = true; } void perf_evlist__toggle_enable(struct perf_evlist *evlist) { (evlist->enabled ? perf_evlist__disable : perf_evlist__enable)(evlist); } static int perf_evlist__enable_event_cpu(struct perf_evlist *evlist, struct perf_evsel *evsel, int cpu) { int thread, err; int nr_threads = perf_evlist__nr_threads(evlist, evsel); if (!evsel->fd) return -EINVAL; for (thread = 0; thread < nr_threads; thread++) { err = ioctl(FD(evsel, cpu, thread), PERF_EVENT_IOC_ENABLE, 0); if (err) return err; } return 0; } static int perf_evlist__enable_event_thread(struct perf_evlist *evlist, struct perf_evsel *evsel, int thread) { int cpu, err; int nr_cpus = cpu_map__nr(evlist->cpus); if (!evsel->fd) return -EINVAL; for (cpu = 0; cpu < nr_cpus; cpu++) { err = ioctl(FD(evsel, cpu, thread), PERF_EVENT_IOC_ENABLE, 0); if (err) return err; } return 0; } int perf_evlist__enable_event_idx(struct perf_evlist *evlist, struct perf_evsel *evsel, int idx) { bool per_cpu_mmaps = !cpu_map__empty(evlist->cpus); if (per_cpu_mmaps) return perf_evlist__enable_event_cpu(evlist, evsel, idx); else return perf_evlist__enable_event_thread(evlist, evsel, idx); } int perf_evlist__alloc_pollfd(struct perf_evlist *evlist) { int nr_cpus = cpu_map__nr(evlist->cpus); int nr_threads = thread_map__nr(evlist->threads); int nfds = 0; struct perf_evsel *evsel; evlist__for_each_entry(evlist, evsel) { if (evsel->system_wide) nfds += nr_cpus; else nfds += nr_cpus * nr_threads; } if (fdarray__available_entries(&evlist->pollfd) < nfds && fdarray__grow(&evlist->pollfd, nfds) < 0) return -ENOMEM; return 0; } static int __perf_evlist__add_pollfd(struct perf_evlist *evlist, int fd, int idx, short revent) { int pos = fdarray__add(&evlist->pollfd, fd, revent | POLLERR | POLLHUP); /* * Save the idx so that when we filter out fds POLLHUP'ed we can * close the associated evlist->mmap[] entry. */ if (pos >= 0) { evlist->pollfd.priv[pos].idx = idx; fcntl(fd, F_SETFL, O_NONBLOCK); } return pos; } int perf_evlist__add_pollfd(struct perf_evlist *evlist, int fd) { return __perf_evlist__add_pollfd(evlist, fd, -1, POLLIN); } static void perf_evlist__munmap_filtered(struct fdarray *fda, int fd, void *arg __maybe_unused) { struct perf_evlist *evlist = container_of(fda, struct perf_evlist, pollfd); perf_evlist__mmap_put(evlist, fda->priv[fd].idx); } int perf_evlist__filter_pollfd(struct perf_evlist *evlist, short revents_and_mask) { return fdarray__filter(&evlist->pollfd, revents_and_mask, perf_evlist__munmap_filtered, NULL); } int perf_evlist__poll(struct perf_evlist *evlist, int timeout) { return fdarray__poll(&evlist->pollfd, timeout); } static void perf_evlist__id_hash(struct perf_evlist *evlist, struct perf_evsel *evsel, int cpu, int thread, u64 id) { int hash; struct perf_sample_id *sid = SID(evsel, cpu, thread); sid->id = id; sid->evsel = evsel; hash = hash_64(sid->id, PERF_EVLIST__HLIST_BITS); hlist_add_head(&sid->node, &evlist->heads[hash]); } void perf_evlist__id_add(struct perf_evlist *evlist, struct perf_evsel *evsel, int cpu, int thread, u64 id) { perf_evlist__id_hash(evlist, evsel, cpu, thread, id); evsel->id[evsel->ids++] = id; } int perf_evlist__id_add_fd(struct perf_evlist *evlist, struct perf_evsel *evsel, int cpu, int thread, int fd) { u64 read_data[4] = { 0, }; int id_idx = 1; /* The first entry is the counter value */ u64 id; int ret; ret = ioctl(fd, PERF_EVENT_IOC_ID, &id); if (!ret) goto add; if (errno != ENOTTY) return -1; /* Legacy way to get event id.. All hail to old kernels! */ /* * This way does not work with group format read, so bail * out in that case. */ if (perf_evlist__read_format(evlist) & PERF_FORMAT_GROUP) return -1; if (!(evsel->attr.read_format & PERF_FORMAT_ID) || read(fd, &read_data, sizeof(read_data)) == -1) return -1; if (evsel->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) ++id_idx; if (evsel->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) ++id_idx; id = read_data[id_idx]; add: perf_evlist__id_add(evlist, evsel, cpu, thread, id); return 0; } static void perf_evlist__set_sid_idx(struct perf_evlist *evlist, struct perf_evsel *evsel, int idx, int cpu, int thread) { struct perf_sample_id *sid = SID(evsel, cpu, thread); sid->idx = idx; if (evlist->cpus && cpu >= 0) sid->cpu = evlist->cpus->map[cpu]; else sid->cpu = -1; if (!evsel->system_wide && evlist->threads && thread >= 0) sid->tid = thread_map__pid(evlist->threads, thread); else sid->tid = -1; } struct perf_sample_id *perf_evlist__id2sid(struct perf_evlist *evlist, u64 id) { struct hlist_head *head; struct perf_sample_id *sid; int hash; hash = hash_64(id, PERF_EVLIST__HLIST_BITS); head = &evlist->heads[hash]; hlist_for_each_entry(sid, head, node) if (sid->id == id) return sid; return NULL; } struct perf_evsel *perf_evlist__id2evsel(struct perf_evlist *evlist, u64 id) { struct perf_sample_id *sid; if (evlist->nr_entries == 1 || !id) return perf_evlist__first(evlist); sid = perf_evlist__id2sid(evlist, id); if (sid) return sid->evsel; if (!perf_evlist__sample_id_all(evlist)) return perf_evlist__first(evlist); return NULL; } struct perf_evsel *perf_evlist__id2evsel_strict(struct perf_evlist *evlist, u64 id) { struct perf_sample_id *sid; if (!id) return NULL; sid = perf_evlist__id2sid(evlist, id); if (sid) return sid->evsel; return NULL; } static int perf_evlist__event2id(struct perf_evlist *evlist, union perf_event *event, u64 *id) { const u64 *array = event->sample.array; ssize_t n; n = (event->header.size - sizeof(event->header)) >> 3; if (event->header.type == PERF_RECORD_SAMPLE) { if (evlist->id_pos >= n) return -1; *id = array[evlist->id_pos]; } else { if (evlist->is_pos > n) return -1; n -= evlist->is_pos; *id = array[n]; } return 0; } static struct perf_evsel *perf_evlist__event2evsel(struct perf_evlist *evlist, union perf_event *event) { struct perf_evsel *first = perf_evlist__first(evlist); struct hlist_head *head; struct perf_sample_id *sid; int hash; u64 id; if (evlist->nr_entries == 1) return first; if (!first->attr.sample_id_all && event->header.type != PERF_RECORD_SAMPLE) return first; if (perf_evlist__event2id(evlist, event, &id)) return NULL; /* Synthesized events have an id of zero */ if (!id) return first; hash = hash_64(id, PERF_EVLIST__HLIST_BITS); head = &evlist->heads[hash]; hlist_for_each_entry(sid, head, node) { if (sid->id == id) return sid->evsel; } return NULL; } static int perf_evlist__set_paused(struct perf_evlist *evlist, bool value) { int i; for (i = 0; i < evlist->nr_mmaps; i++) { int fd = evlist->mmap[i].fd; int err; if (fd < 0) continue; err = ioctl(fd, PERF_EVENT_IOC_PAUSE_OUTPUT, value ? 1 : 0); if (err) return err; } return 0; } int perf_evlist__pause(struct perf_evlist *evlist) { return perf_evlist__set_paused(evlist, true); } int perf_evlist__resume(struct perf_evlist *evlist) { return perf_evlist__set_paused(evlist, false); } /* When check_messup is true, 'end' must points to a good entry */ static union perf_event * perf_mmap__read(struct perf_mmap *md, bool check_messup, u64 start, u64 end, u64 *prev) { unsigned char *data = md->base + page_size; union perf_event *event = NULL; int diff = end - start; if (check_messup) { /* * If we're further behind than half the buffer, there's a chance * the writer will bite our tail and mess up the samples under us. * * If we somehow ended up ahead of the 'end', we got messed up. * * In either case, truncate and restart at 'end'. */ if (diff > md->mask / 2 || diff < 0) { fprintf(stderr, "WARNING: failed to keep up with mmap data.\n"); /* * 'end' points to a known good entry, start there. */ start = end; diff = 0; } } if (diff >= (int)sizeof(event->header)) { size_t size; event = (union perf_event *)&data[start & md->mask]; size = event->header.size; if (size < sizeof(event->header) || diff < (int)size) { event = NULL; goto broken_event; } /* * Event straddles the mmap boundary -- header should always * be inside due to u64 alignment of output. */ if ((start & md->mask) + size != ((start + size) & md->mask)) { unsigned int offset = start; unsigned int len = min(sizeof(*event), size), cpy; void *dst = md->event_copy; do { cpy = min(md->mask + 1 - (offset & md->mask), len); memcpy(dst, &data[offset & md->mask], cpy); offset += cpy; dst += cpy; len -= cpy; } while (len); event = (union perf_event *) md->event_copy; } start += size; } broken_event: if (prev) *prev = start; return event; } union perf_event *perf_evlist__mmap_read_forward(struct perf_evlist *evlist, int idx) { struct perf_mmap *md = &evlist->mmap[idx]; u64 head; u64 old = md->prev; /* * Check if event was unmapped due to a POLLHUP/POLLERR. */ if (!atomic_read(&md->refcnt)) return NULL; head = perf_mmap__read_head(md); return perf_mmap__read(md, evlist->overwrite, old, head, &md->prev); } union perf_event * perf_evlist__mmap_read_backward(struct perf_evlist *evlist, int idx) { struct perf_mmap *md = &evlist->mmap[idx]; u64 head, end; u64 start = md->prev; /* * Check if event was unmapped due to a POLLHUP/POLLERR. */ if (!atomic_read(&md->refcnt)) return NULL; head = perf_mmap__read_head(md); if (!head) return NULL; /* * 'head' pointer starts from 0. Kernel minus sizeof(record) form * it each time when kernel writes to it, so in fact 'head' is * negative. 'end' pointer is made manually by adding the size of * the ring buffer to 'head' pointer, means the validate data can * read is the whole ring buffer. If 'end' is positive, the ring * buffer has not fully filled, so we must adjust 'end' to 0. * * However, since both 'head' and 'end' is unsigned, we can't * simply compare 'end' against 0. Here we compare '-head' and * the size of the ring buffer, where -head is the number of bytes * kernel write to the ring buffer. */ if (-head < (u64)(md->mask + 1)) end = 0; else end = head + md->mask + 1; return perf_mmap__read(md, false, start, end, &md->prev); } union perf_event *perf_evlist__mmap_read(struct perf_evlist *evlist, int idx) { if (!evlist->backward) return perf_evlist__mmap_read_forward(evlist, idx); return perf_evlist__mmap_read_backward(evlist, idx); } void perf_evlist__mmap_read_catchup(struct perf_evlist *evlist, int idx) { struct perf_mmap *md = &evlist->mmap[idx]; u64 head; if (!atomic_read(&md->refcnt)) return; head = perf_mmap__read_head(md); md->prev = head; } static bool perf_mmap__empty(struct perf_mmap *md) { return perf_mmap__read_head(md) == md->prev && !md->auxtrace_mmap.base; } static void perf_evlist__mmap_get(struct perf_evlist *evlist, int idx) { atomic_inc(&evlist->mmap[idx].refcnt); } static void perf_evlist__mmap_put(struct perf_evlist *evlist, int idx) { struct perf_mmap *md = &evlist->mmap[idx]; BUG_ON(md->base && atomic_read(&md->refcnt) == 0); if (atomic_dec_and_test(&md->refcnt)) __perf_evlist__munmap(evlist, idx); } void perf_evlist__mmap_consume(struct perf_evlist *evlist, int idx) { struct perf_mmap *md = &evlist->mmap[idx]; if (!evlist->overwrite) { u64 old = md->prev; perf_mmap__write_tail(md, old); } if (atomic_read(&md->refcnt) == 1 && perf_mmap__empty(md)) perf_evlist__mmap_put(evlist, idx); } int __weak auxtrace_mmap__mmap(struct auxtrace_mmap *mm __maybe_unused, struct auxtrace_mmap_params *mp __maybe_unused, void *userpg __maybe_unused, int fd __maybe_unused) { return 0; } void __weak auxtrace_mmap__munmap(struct auxtrace_mmap *mm __maybe_unused) { } void __weak auxtrace_mmap_params__init( struct auxtrace_mmap_params *mp __maybe_unused, off_t auxtrace_offset __maybe_unused, unsigned int auxtrace_pages __maybe_unused, bool auxtrace_overwrite __maybe_unused) { } void __weak auxtrace_mmap_params__set_idx( struct auxtrace_mmap_params *mp __maybe_unused, struct perf_evlist *evlist __maybe_unused, int idx __maybe_unused, bool per_cpu __maybe_unused) { } static void __perf_evlist__munmap(struct perf_evlist *evlist, int idx) { if (evlist->mmap[idx].base != NULL) { munmap(evlist->mmap[idx].base, evlist->mmap_len); evlist->mmap[idx].base = NULL; evlist->mmap[idx].fd = -1; atomic_set(&evlist->mmap[idx].refcnt, 0); } auxtrace_mmap__munmap(&evlist->mmap[idx].auxtrace_mmap); } void perf_evlist__munmap(struct perf_evlist *evlist) { int i; if (evlist->mmap == NULL) return; for (i = 0; i < evlist->nr_mmaps; i++) __perf_evlist__munmap(evlist, i); zfree(&evlist->mmap); } static int perf_evlist__alloc_mmap(struct perf_evlist *evlist) { int i; evlist->nr_mmaps = cpu_map__nr(evlist->cpus); if (cpu_map__empty(evlist->cpus)) evlist->nr_mmaps = thread_map__nr(evlist->threads); evlist->mmap = zalloc(evlist->nr_mmaps * sizeof(struct perf_mmap)); if (!evlist->mmap) return -ENOMEM; for (i = 0; i < evlist->nr_mmaps; i++) evlist->mmap[i].fd = -1; return 0; } struct mmap_params { int prot; int mask; struct auxtrace_mmap_params auxtrace_mp; }; static int __perf_evlist__mmap(struct perf_evlist *evlist, int idx, struct mmap_params *mp, int fd) { /* * The last one will be done at perf_evlist__mmap_consume(), so that we * make sure we don't prevent tools from consuming every last event in * the ring buffer. * * I.e. we can get the POLLHUP meaning that the fd doesn't exist * anymore, but the last events for it are still in the ring buffer, * waiting to be consumed. * * Tools can chose to ignore this at their own discretion, but the * evlist layer can't just drop it when filtering events in * perf_evlist__filter_pollfd(). */ atomic_set(&evlist->mmap[idx].refcnt, 2); evlist->mmap[idx].prev = 0; evlist->mmap[idx].mask = mp->mask; evlist->mmap[idx].base = mmap(NULL, evlist->mmap_len, mp->prot, MAP_SHARED, fd, 0); if (evlist->mmap[idx].base == MAP_FAILED) { pr_debug2("failed to mmap perf event ring buffer, error %d\n", errno); evlist->mmap[idx].base = NULL; return -1; } evlist->mmap[idx].fd = fd; if (auxtrace_mmap__mmap(&evlist->mmap[idx].auxtrace_mmap, &mp->auxtrace_mp, evlist->mmap[idx].base, fd)) return -1; return 0; } static bool perf_evlist__should_poll(struct perf_evlist *evlist __maybe_unused, struct perf_evsel *evsel) { if (evsel->overwrite) return false; return true; } static int perf_evlist__mmap_per_evsel(struct perf_evlist *evlist, int idx, struct mmap_params *mp, int cpu, int thread, int *output) { struct perf_evsel *evsel; int revent; evlist__for_each_entry(evlist, evsel) { int fd; if (evsel->overwrite != (evlist->overwrite && evlist->backward)) continue; if (evsel->system_wide && thread) continue; fd = FD(evsel, cpu, thread); if (*output == -1) { *output = fd; if (__perf_evlist__mmap(evlist, idx, mp, *output) < 0) return -1; } else { if (ioctl(fd, PERF_EVENT_IOC_SET_OUTPUT, *output) != 0) return -1; perf_evlist__mmap_get(evlist, idx); } revent = perf_evlist__should_poll(evlist, evsel) ? POLLIN : 0; /* * The system_wide flag causes a selected event to be opened * always without a pid. Consequently it will never get a * POLLHUP, but it is used for tracking in combination with * other events, so it should not need to be polled anyway. * Therefore don't add it for polling. */ if (!evsel->system_wide && __perf_evlist__add_pollfd(evlist, fd, idx, revent) < 0) { perf_evlist__mmap_put(evlist, idx); return -1; } if (evsel->attr.read_format & PERF_FORMAT_ID) { if (perf_evlist__id_add_fd(evlist, evsel, cpu, thread, fd) < 0) return -1; perf_evlist__set_sid_idx(evlist, evsel, idx, cpu, thread); } } return 0; } static int perf_evlist__mmap_per_cpu(struct perf_evlist *evlist, struct mmap_params *mp) { int cpu, thread; int nr_cpus = cpu_map__nr(evlist->cpus); int nr_threads = thread_map__nr(evlist->threads); pr_debug2("perf event ring buffer mmapped per cpu\n"); for (cpu = 0; cpu < nr_cpus; cpu++) { int output = -1; auxtrace_mmap_params__set_idx(&mp->auxtrace_mp, evlist, cpu, true); for (thread = 0; thread < nr_threads; thread++) { if (perf_evlist__mmap_per_evsel(evlist, cpu, mp, cpu, thread, &output)) goto out_unmap; } } return 0; out_unmap: for (cpu = 0; cpu < nr_cpus; cpu++) __perf_evlist__munmap(evlist, cpu); return -1; } static int perf_evlist__mmap_per_thread(struct perf_evlist *evlist, struct mmap_params *mp) { int thread; int nr_threads = thread_map__nr(evlist->threads); pr_debug2("perf event ring buffer mmapped per thread\n"); for (thread = 0; thread < nr_threads; thread++) { int output = -1; auxtrace_mmap_params__set_idx(&mp->auxtrace_mp, evlist, thread, false); if (perf_evlist__mmap_per_evsel(evlist, thread, mp, 0, thread, &output)) goto out_unmap; } return 0; out_unmap: for (thread = 0; thread < nr_threads; thread++) __perf_evlist__munmap(evlist, thread); return -1; } unsigned long perf_event_mlock_kb_in_pages(void) { unsigned long pages; int max; if (sysctl__read_int("kernel/perf_event_mlock_kb", &max) < 0) { /* * Pick a once upon a time good value, i.e. things look * strange since we can't read a sysctl value, but lets not * die yet... */ max = 512; } else { max -= (page_size / 1024); } pages = (max * 1024) / page_size; if (!is_power_of_2(pages)) pages = rounddown_pow_of_two(pages); return pages; } static size_t perf_evlist__mmap_size(unsigned long pages) { if (pages == UINT_MAX) pages = perf_event_mlock_kb_in_pages(); else if (!is_power_of_2(pages)) return 0; return (pages + 1) * page_size; } static long parse_pages_arg(const char *str, unsigned long min, unsigned long max) { unsigned long pages, val; static struct parse_tag tags[] = { { .tag = 'B', .mult = 1 }, { .tag = 'K', .mult = 1 << 10 }, { .tag = 'M', .mult = 1 << 20 }, { .tag = 'G', .mult = 1 << 30 }, { .tag = 0 }, }; if (str == NULL) return -EINVAL; val = parse_tag_value(str, tags); if (val != (unsigned long) -1) { /* we got file size value */ pages = PERF_ALIGN(val, page_size) / page_size; } else { /* we got pages count value */ char *eptr; pages = strtoul(str, &eptr, 10); if (*eptr != '\0') return -EINVAL; } if (pages == 0 && min == 0) { /* leave number of pages at 0 */ } else if (!is_power_of_2(pages)) { /* round pages up to next power of 2 */ pages = roundup_pow_of_two(pages); if (!pages) return -EINVAL; pr_info("rounding mmap pages size to %lu bytes (%lu pages)\n", pages * page_size, pages); } if (pages > max) return -EINVAL; return pages; } int __perf_evlist__parse_mmap_pages(unsigned int *mmap_pages, const char *str) { unsigned long max = UINT_MAX; long pages; if (max > SIZE_MAX / page_size) max = SIZE_MAX / page_size; pages = parse_pages_arg(str, 1, max); if (pages < 0) { pr_err("Invalid argument for --mmap_pages/-m\n"); return -1; } *mmap_pages = pages; return 0; } int perf_evlist__parse_mmap_pages(const struct option *opt, const char *str, int unset __maybe_unused) { return __perf_evlist__parse_mmap_pages(opt->value, str); } /** * perf_evlist__mmap_ex - Create mmaps to receive events. * @evlist: list of events * @pages: map length in pages * @overwrite: overwrite older events? * @auxtrace_pages - auxtrace map length in pages * @auxtrace_overwrite - overwrite older auxtrace data? * * If @overwrite is %false the user needs to signal event consumption using * perf_mmap__write_tail(). Using perf_evlist__mmap_read() does this * automatically. * * Similarly, if @auxtrace_overwrite is %false the user needs to signal data * consumption using auxtrace_mmap__write_tail(). * * Return: %0 on success, negative error code otherwise. */ int perf_evlist__mmap_ex(struct perf_evlist *evlist, unsigned int pages, bool overwrite, unsigned int auxtrace_pages, bool auxtrace_overwrite) { struct perf_evsel *evsel; const struct cpu_map *cpus = evlist->cpus; const struct thread_map *threads = evlist->threads; struct mmap_params mp = { .prot = PROT_READ | (overwrite ? 0 : PROT_WRITE), }; if (evlist->mmap == NULL && perf_evlist__alloc_mmap(evlist) < 0) return -ENOMEM; if (evlist->pollfd.entries == NULL && perf_evlist__alloc_pollfd(evlist) < 0) return -ENOMEM; evlist->overwrite = overwrite; evlist->mmap_len = perf_evlist__mmap_size(pages); pr_debug("mmap size %zuB\n", evlist->mmap_len); mp.mask = evlist->mmap_len - page_size - 1; auxtrace_mmap_params__init(&mp.auxtrace_mp, evlist->mmap_len, auxtrace_pages, auxtrace_overwrite); evlist__for_each_entry(evlist, evsel) { if ((evsel->attr.read_format & PERF_FORMAT_ID) && evsel->sample_id == NULL && perf_evsel__alloc_id(evsel, cpu_map__nr(cpus), threads->nr) < 0) return -ENOMEM; } if (cpu_map__empty(cpus)) return perf_evlist__mmap_per_thread(evlist, &mp); return perf_evlist__mmap_per_cpu(evlist, &mp); } int perf_evlist__mmap(struct perf_evlist *evlist, unsigned int pages, bool overwrite) { return perf_evlist__mmap_ex(evlist, pages, overwrite, 0, false); } int perf_evlist__create_maps(struct perf_evlist *evlist, struct target *target) { struct cpu_map *cpus; struct thread_map *threads; threads = thread_map__new_str(target->pid, target->tid, target->uid); if (!threads) return -1; if (target__uses_dummy_map(target)) cpus = cpu_map__dummy_new(); else cpus = cpu_map__new(target->cpu_list); if (!cpus) goto out_delete_threads; evlist->has_user_cpus = !!target->cpu_list; perf_evlist__set_maps(evlist, cpus, threads); return 0; out_delete_threads: thread_map__put(threads); return -1; } void perf_evlist__set_maps(struct perf_evlist *evlist, struct cpu_map *cpus, struct thread_map *threads) { /* * Allow for the possibility that one or another of the maps isn't being * changed i.e. don't put it. Note we are assuming the maps that are * being applied are brand new and evlist is taking ownership of the * original reference count of 1. If that is not the case it is up to * the caller to increase the reference count. */ if (cpus != evlist->cpus) { cpu_map__put(evlist->cpus); evlist->cpus = cpu_map__get(cpus); } if (threads != evlist->threads) { thread_map__put(evlist->threads); evlist->threads = thread_map__get(threads); } perf_evlist__propagate_maps(evlist); } void __perf_evlist__set_sample_bit(struct perf_evlist *evlist, enum perf_event_sample_format bit) { struct perf_evsel *evsel; evlist__for_each_entry(evlist, evsel) __perf_evsel__set_sample_bit(evsel, bit); } void __perf_evlist__reset_sample_bit(struct perf_evlist *evlist, enum perf_event_sample_format bit) { struct perf_evsel *evsel; evlist__for_each_entry(evlist, evsel) __perf_evsel__reset_sample_bit(evsel, bit); } int perf_evlist__apply_filters(struct perf_evlist *evlist, struct perf_evsel **err_evsel) { struct perf_evsel *evsel; int err = 0; const int ncpus = cpu_map__nr(evlist->cpus), nthreads = thread_map__nr(evlist->threads); evlist__for_each_entry(evlist, evsel) { if (evsel->filter == NULL) continue; /* * filters only work for tracepoint event, which doesn't have cpu limit. * So evlist and evsel should always be same. */ err = perf_evsel__apply_filter(evsel, ncpus, nthreads, evsel->filter); if (err) { *err_evsel = evsel; break; } } return err; } int perf_evlist__set_filter(struct perf_evlist *evlist, const char *filter) { struct perf_evsel *evsel; int err = 0; evlist__for_each_entry(evlist, evsel) { if (evsel->attr.type != PERF_TYPE_TRACEPOINT) continue; err = perf_evsel__set_filter(evsel, filter); if (err) break; } return err; } int perf_evlist__set_filter_pids(struct perf_evlist *evlist, size_t npids, pid_t *pids) { char *filter; int ret = -1; size_t i; for (i = 0; i < npids; ++i) { if (i == 0) { if (asprintf(&filter, "common_pid != %d", pids[i]) < 0) return -1; } else { char *tmp; if (asprintf(&tmp, "%s && common_pid != %d", filter, pids[i]) < 0) goto out_free; free(filter); filter = tmp; } } ret = perf_evlist__set_filter(evlist, filter); out_free: free(filter); return ret; } int perf_evlist__set_filter_pid(struct perf_evlist *evlist, pid_t pid) { return perf_evlist__set_filter_pids(evlist, 1, &pid); } bool perf_evlist__valid_sample_type(struct perf_evlist *evlist) { struct perf_evsel *pos; if (evlist->nr_entries == 1) return true; if (evlist->id_pos < 0 || evlist->is_pos < 0) return false; evlist__for_each_entry(evlist, pos) { if (pos->id_pos != evlist->id_pos || pos->is_pos != evlist->is_pos) return false; } return true; } u64 __perf_evlist__combined_sample_type(struct perf_evlist *evlist) { struct perf_evsel *evsel; if (evlist->combined_sample_type) return evlist->combined_sample_type; evlist__for_each_entry(evlist, evsel) evlist->combined_sample_type |= evsel->attr.sample_type; return evlist->combined_sample_type; } u64 perf_evlist__combined_sample_type(struct perf_evlist *evlist) { evlist->combined_sample_type = 0; return __perf_evlist__combined_sample_type(evlist); } u64 perf_evlist__combined_branch_type(struct perf_evlist *evlist) { struct perf_evsel *evsel; u64 branch_type = 0; evlist__for_each_entry(evlist, evsel) branch_type |= evsel->attr.branch_sample_type; return branch_type; } bool perf_evlist__valid_read_format(struct perf_evlist *evlist) { struct perf_evsel *first = perf_evlist__first(evlist), *pos = first; u64 read_format = first->attr.read_format; u64 sample_type = first->attr.sample_type; evlist__for_each_entry(evlist, pos) { if (read_format != pos->attr.read_format) return false; } /* PERF_SAMPLE_READ imples PERF_FORMAT_ID. */ if ((sample_type & PERF_SAMPLE_READ) && !(read_format & PERF_FORMAT_ID)) { return false; } return true; } u64 perf_evlist__read_format(struct perf_evlist *evlist) { struct perf_evsel *first = perf_evlist__first(evlist); return first->attr.read_format; } u16 perf_evlist__id_hdr_size(struct perf_evlist *evlist) { struct perf_evsel *first = perf_evlist__first(evlist); struct perf_sample *data; u64 sample_type; u16 size = 0; if (!first->attr.sample_id_all) goto out; sample_type = first->attr.sample_type; if (sample_type & PERF_SAMPLE_TID) size += sizeof(data->tid) * 2; if (sample_type & PERF_SAMPLE_TIME) size += sizeof(data->time); if (sample_type & PERF_SAMPLE_ID) size += sizeof(data->id); if (sample_type & PERF_SAMPLE_STREAM_ID) size += sizeof(data->stream_id); if (sample_type & PERF_SAMPLE_CPU) size += sizeof(data->cpu) * 2; if (sample_type & PERF_SAMPLE_IDENTIFIER) size += sizeof(data->id); out: return size; } bool perf_evlist__valid_sample_id_all(struct perf_evlist *evlist) { struct perf_evsel *first = perf_evlist__first(evlist), *pos = first; evlist__for_each_entry_continue(evlist, pos) { if (first->attr.sample_id_all != pos->attr.sample_id_all) return false; } return true; } bool perf_evlist__sample_id_all(struct perf_evlist *evlist) { struct perf_evsel *first = perf_evlist__first(evlist); return first->attr.sample_id_all; } void perf_evlist__set_selected(struct perf_evlist *evlist, struct perf_evsel *evsel) { evlist->selected = evsel; } void perf_evlist__close(struct perf_evlist *evlist) { struct perf_evsel *evsel; int ncpus = cpu_map__nr(evlist->cpus); int nthreads = thread_map__nr(evlist->threads); int n; evlist__for_each_entry_reverse(evlist, evsel) { n = evsel->cpus ? evsel->cpus->nr : ncpus; perf_evsel__close(evsel, n, nthreads); } } static int perf_evlist__create_syswide_maps(struct perf_evlist *evlist) { struct cpu_map *cpus; struct thread_map *threads; int err = -ENOMEM; /* * Try reading /sys/devices/system/cpu/online to get * an all cpus map. * * FIXME: -ENOMEM is the best we can do here, the cpu_map * code needs an overhaul to properly forward the * error, and we may not want to do that fallback to a * default cpu identity map :-\ */ cpus = cpu_map__new(NULL); if (!cpus) goto out; threads = thread_map__new_dummy(); if (!threads) goto out_put; perf_evlist__set_maps(evlist, cpus, threads); out: return err; out_put: cpu_map__put(cpus); goto out; } int perf_evlist__open(struct perf_evlist *evlist) { struct perf_evsel *evsel; int err; /* * Default: one fd per CPU, all threads, aka systemwide * as sys_perf_event_open(cpu = -1, thread = -1) is EINVAL */ if (evlist->threads == NULL && evlist->cpus == NULL) { err = perf_evlist__create_syswide_maps(evlist); if (err < 0) goto out_err; } perf_evlist__update_id_pos(evlist); evlist__for_each_entry(evlist, evsel) { err = perf_evsel__open(evsel, evsel->cpus, evsel->threads); if (err < 0) goto out_err; } return 0; out_err: perf_evlist__close(evlist); errno = -err; return err; } int perf_evlist__prepare_workload(struct perf_evlist *evlist, struct target *target, const char *argv[], bool pipe_output, void (*exec_error)(int signo, siginfo_t *info, void *ucontext)) { int child_ready_pipe[2], go_pipe[2]; char bf; if (pipe(child_ready_pipe) < 0) { perror("failed to create 'ready' pipe"); return -1; } if (pipe(go_pipe) < 0) { perror("failed to create 'go' pipe"); goto out_close_ready_pipe; } evlist->workload.pid = fork(); if (evlist->workload.pid < 0) { perror("failed to fork"); goto out_close_pipes; } if (!evlist->workload.pid) { int ret; if (pipe_output) dup2(2, 1); signal(SIGTERM, SIG_DFL); close(child_ready_pipe[0]); close(go_pipe[1]); fcntl(go_pipe[0], F_SETFD, FD_CLOEXEC); /* * Tell the parent we're ready to go */ close(child_ready_pipe[1]); /* * Wait until the parent tells us to go. */ ret = read(go_pipe[0], &bf, 1); /* * The parent will ask for the execvp() to be performed by * writing exactly one byte, in workload.cork_fd, usually via * perf_evlist__start_workload(). * * For cancelling the workload without actually running it, * the parent will just close workload.cork_fd, without writing * anything, i.e. read will return zero and we just exit() * here. */ if (ret != 1) { if (ret == -1) perror("unable to read pipe"); exit(ret); } execvp(argv[0], (char **)argv); if (exec_error) { union sigval val; val.sival_int = errno; if (sigqueue(getppid(), SIGUSR1, val)) perror(argv[0]); } else perror(argv[0]); exit(-1); } if (exec_error) { struct sigaction act = { .sa_flags = SA_SIGINFO, .sa_sigaction = exec_error, }; sigaction(SIGUSR1, &act, NULL); } if (target__none(target)) { if (evlist->threads == NULL) { fprintf(stderr, "FATAL: evlist->threads need to be set at this point (%s:%d).\n", __func__, __LINE__); goto out_close_pipes; } thread_map__set_pid(evlist->threads, 0, evlist->workload.pid); } close(child_ready_pipe[1]); close(go_pipe[0]); /* * wait for child to settle */ if (read(child_ready_pipe[0], &bf, 1) == -1) { perror("unable to read pipe"); goto out_close_pipes; } fcntl(go_pipe[1], F_SETFD, FD_CLOEXEC); evlist->workload.cork_fd = go_pipe[1]; close(child_ready_pipe[0]); return 0; out_close_pipes: close(go_pipe[0]); close(go_pipe[1]); out_close_ready_pipe: close(child_ready_pipe[0]); close(child_ready_pipe[1]); return -1; } int perf_evlist__start_workload(struct perf_evlist *evlist) { if (evlist->workload.cork_fd > 0) { char bf = 0; int ret; /* * Remove the cork, let it rip! */ ret = write(evlist->workload.cork_fd, &bf, 1); if (ret < 0) perror("enable to write to pipe"); close(evlist->workload.cork_fd); return ret; } return 0; } int perf_evlist__parse_sample(struct perf_evlist *evlist, union perf_event *event, struct perf_sample *sample) { struct perf_evsel *evsel = perf_evlist__event2evsel(evlist, event); if (!evsel) return -EFAULT; return perf_evsel__parse_sample(evsel, event, sample); } size_t perf_evlist__fprintf(struct perf_evlist *evlist, FILE *fp) { struct perf_evsel *evsel; size_t printed = 0; evlist__for_each_entry(evlist, evsel) { printed += fprintf(fp, "%s%s", evsel->idx ? ", " : "", perf_evsel__name(evsel)); } return printed + fprintf(fp, "\n"); } int perf_evlist__strerror_open(struct perf_evlist *evlist, int err, char *buf, size_t size) { int printed, value; char sbuf[STRERR_BUFSIZE], *emsg = strerror_r(err, sbuf, sizeof(sbuf)); switch (err) { case EACCES: case EPERM: printed = scnprintf(buf, size, "Error:\t%s.\n" "Hint:\tCheck /proc/sys/kernel/perf_event_paranoid setting.", emsg); value = perf_event_paranoid(); printed += scnprintf(buf + printed, size - printed, "\nHint:\t"); if (value >= 2) { printed += scnprintf(buf + printed, size - printed, "For your workloads it needs to be <= 1\nHint:\t"); } printed += scnprintf(buf + printed, size - printed, "For system wide tracing it needs to be set to -1.\n"); printed += scnprintf(buf + printed, size - printed, "Hint:\tTry: 'sudo sh -c \"echo -1 > /proc/sys/kernel/perf_event_paranoid\"'\n" "Hint:\tThe current value is %d.", value); break; case EINVAL: { struct perf_evsel *first = perf_evlist__first(evlist); int max_freq; if (sysctl__read_int("kernel/perf_event_max_sample_rate", &max_freq) < 0) goto out_default; if (first->attr.sample_freq < (u64)max_freq) goto out_default; printed = scnprintf(buf, size, "Error:\t%s.\n" "Hint:\tCheck /proc/sys/kernel/perf_event_max_sample_rate.\n" "Hint:\tThe current value is %d and %" PRIu64 " is being requested.", emsg, max_freq, first->attr.sample_freq); break; } default: out_default: scnprintf(buf, size, "%s", emsg); break; } return 0; } int perf_evlist__strerror_mmap(struct perf_evlist *evlist, int err, char *buf, size_t size) { char sbuf[STRERR_BUFSIZE], *emsg = strerror_r(err, sbuf, sizeof(sbuf)); int pages_attempted = evlist->mmap_len / 1024, pages_max_per_user, printed = 0; switch (err) { case EPERM: sysctl__read_int("kernel/perf_event_mlock_kb", &pages_max_per_user); printed += scnprintf(buf + printed, size - printed, "Error:\t%s.\n" "Hint:\tCheck /proc/sys/kernel/perf_event_mlock_kb (%d kB) setting.\n" "Hint:\tTried using %zd kB.\n", emsg, pages_max_per_user, pages_attempted); if (pages_attempted >= pages_max_per_user) { printed += scnprintf(buf + printed, size - printed, "Hint:\tTry 'sudo sh -c \"echo %d > /proc/sys/kernel/perf_event_mlock_kb\"', or\n", pages_max_per_user + pages_attempted); } printed += scnprintf(buf + printed, size - printed, "Hint:\tTry using a smaller -m/--mmap-pages value."); break; default: scnprintf(buf, size, "%s", emsg); break; } return 0; } void perf_evlist__to_front(struct perf_evlist *evlist, struct perf_evsel *move_evsel) { struct perf_evsel *evsel, *n; LIST_HEAD(move); if (move_evsel == perf_evlist__first(evlist)) return; evlist__for_each_entry_safe(evlist, n, evsel) { if (evsel->leader == move_evsel->leader) list_move_tail(&evsel->node, &move); } list_splice(&move, &evlist->entries); } void perf_evlist__set_tracking_event(struct perf_evlist *evlist, struct perf_evsel *tracking_evsel) { struct perf_evsel *evsel; if (tracking_evsel->tracking) return; evlist__for_each_entry(evlist, evsel) { if (evsel != tracking_evsel) evsel->tracking = false; } tracking_evsel->tracking = true; } struct perf_evsel * perf_evlist__find_evsel_by_str(struct perf_evlist *evlist, const char *str) { struct perf_evsel *evsel; evlist__for_each_entry(evlist, evsel) { if (!evsel->name) continue; if (strcmp(str, evsel->name) == 0) return evsel; } return NULL; }