// SPDX-License-Identifier: GPL-2.0 #include #include #include #include #include #include "callchain.h" #include "debug.h" #include "dso.h" #include "env.h" #include "event.h" #include "evsel.h" #include "hist.h" #include "machine.h" #include "map.h" #include "map_symbol.h" #include "branch.h" #include "mem-events.h" #include "mem-info.h" #include "path.h" #include "srcline.h" #include "symbol.h" #include "sort.h" #include "strlist.h" #include "target.h" #include "thread.h" #include "util.h" #include "vdso.h" #include #include #include #include #include "unwind.h" #include "linux/hash.h" #include "asm/bug.h" #include "bpf-event.h" #include // page_size #include "cgroup.h" #include "arm64-frame-pointer-unwind-support.h" #include #include #include #include #include static struct dso *machine__kernel_dso(struct machine *machine) { return map__dso(machine->vmlinux_map); } static int machine__set_mmap_name(struct machine *machine) { if (machine__is_host(machine)) machine->mmap_name = strdup("[kernel.kallsyms]"); else if (machine__is_default_guest(machine)) machine->mmap_name = strdup("[guest.kernel.kallsyms]"); else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]", machine->pid) < 0) machine->mmap_name = NULL; return machine->mmap_name ? 0 : -ENOMEM; } static void thread__set_guest_comm(struct thread *thread, pid_t pid) { char comm[64]; snprintf(comm, sizeof(comm), "[guest/%d]", pid); thread__set_comm(thread, comm, 0); } int machine__init(struct machine *machine, const char *root_dir, pid_t pid) { int err = -ENOMEM; memset(machine, 0, sizeof(*machine)); machine->kmaps = maps__new(machine); if (machine->kmaps == NULL) return -ENOMEM; RB_CLEAR_NODE(&machine->rb_node); dsos__init(&machine->dsos); threads__init(&machine->threads); machine->vdso_info = NULL; machine->env = NULL; machine->pid = pid; machine->id_hdr_size = 0; machine->kptr_restrict_warned = false; machine->comm_exec = false; machine->kernel_start = 0; machine->vmlinux_map = NULL; machine->root_dir = strdup(root_dir); if (machine->root_dir == NULL) goto out; if (machine__set_mmap_name(machine)) goto out; if (pid != HOST_KERNEL_ID) { struct thread *thread = machine__findnew_thread(machine, -1, pid); if (thread == NULL) goto out; thread__set_guest_comm(thread, pid); thread__put(thread); } machine->current_tid = NULL; err = 0; out: if (err) { zfree(&machine->kmaps); zfree(&machine->root_dir); zfree(&machine->mmap_name); } return 0; } struct machine *machine__new_host(void) { struct machine *machine = malloc(sizeof(*machine)); if (machine != NULL) { machine__init(machine, "", HOST_KERNEL_ID); if (machine__create_kernel_maps(machine) < 0) goto out_delete; } return machine; out_delete: free(machine); return NULL; } struct machine *machine__new_kallsyms(void) { struct machine *machine = machine__new_host(); /* * FIXME: * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly * ask for not using the kcore parsing code, once this one is fixed * to create a map per module. */ if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) { machine__delete(machine); machine = NULL; } return machine; } void machine__delete_threads(struct machine *machine) { threads__remove_all_threads(&machine->threads); } void machine__exit(struct machine *machine) { if (machine == NULL) return; machine__destroy_kernel_maps(machine); maps__zput(machine->kmaps); dsos__exit(&machine->dsos); machine__exit_vdso(machine); zfree(&machine->root_dir); zfree(&machine->mmap_name); zfree(&machine->current_tid); zfree(&machine->kallsyms_filename); threads__exit(&machine->threads); } void machine__delete(struct machine *machine) { if (machine) { machine__exit(machine); free(machine); } } void machines__init(struct machines *machines) { machine__init(&machines->host, "", HOST_KERNEL_ID); machines->guests = RB_ROOT_CACHED; } void machines__exit(struct machines *machines) { machine__exit(&machines->host); /* XXX exit guest */ } struct machine *machines__add(struct machines *machines, pid_t pid, const char *root_dir) { struct rb_node **p = &machines->guests.rb_root.rb_node; struct rb_node *parent = NULL; struct machine *pos, *machine = malloc(sizeof(*machine)); bool leftmost = true; if (machine == NULL) return NULL; if (machine__init(machine, root_dir, pid) != 0) { free(machine); return NULL; } while (*p != NULL) { parent = *p; pos = rb_entry(parent, struct machine, rb_node); if (pid < pos->pid) p = &(*p)->rb_left; else { p = &(*p)->rb_right; leftmost = false; } } rb_link_node(&machine->rb_node, parent, p); rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost); machine->machines = machines; return machine; } void machines__set_comm_exec(struct machines *machines, bool comm_exec) { struct rb_node *nd; machines->host.comm_exec = comm_exec; for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { struct machine *machine = rb_entry(nd, struct machine, rb_node); machine->comm_exec = comm_exec; } } struct machine *machines__find(struct machines *machines, pid_t pid) { struct rb_node **p = &machines->guests.rb_root.rb_node; struct rb_node *parent = NULL; struct machine *machine; struct machine *default_machine = NULL; if (pid == HOST_KERNEL_ID) return &machines->host; while (*p != NULL) { parent = *p; machine = rb_entry(parent, struct machine, rb_node); if (pid < machine->pid) p = &(*p)->rb_left; else if (pid > machine->pid) p = &(*p)->rb_right; else return machine; if (!machine->pid) default_machine = machine; } return default_machine; } struct machine *machines__findnew(struct machines *machines, pid_t pid) { char path[PATH_MAX]; const char *root_dir = ""; struct machine *machine = machines__find(machines, pid); if (machine && (machine->pid == pid)) goto out; if ((pid != HOST_KERNEL_ID) && (pid != DEFAULT_GUEST_KERNEL_ID) && (symbol_conf.guestmount)) { sprintf(path, "%s/%d", symbol_conf.guestmount, pid); if (access(path, R_OK)) { static struct strlist *seen; if (!seen) seen = strlist__new(NULL, NULL); if (!strlist__has_entry(seen, path)) { pr_err("Can't access file %s\n", path); strlist__add(seen, path); } machine = NULL; goto out; } root_dir = path; } machine = machines__add(machines, pid, root_dir); out: return machine; } struct machine *machines__find_guest(struct machines *machines, pid_t pid) { struct machine *machine = machines__find(machines, pid); if (!machine) machine = machines__findnew(machines, DEFAULT_GUEST_KERNEL_ID); return machine; } /* * A common case for KVM test programs is that the test program acts as the * hypervisor, creating, running and destroying the virtual machine, and * providing the guest object code from its own object code. In this case, * the VM is not running an OS, but only the functions loaded into it by the * hypervisor test program, and conveniently, loaded at the same virtual * addresses. * * Normally to resolve addresses, MMAP events are needed to map addresses * back to the object code and debug symbols for that object code. * * Currently, there is no way to get such mapping information from guests * but, in the scenario described above, the guest has the same mappings * as the hypervisor, so support for that scenario can be achieved. * * To support that, copy the host thread's maps to the guest thread's maps. * Note, we do not discover the guest until we encounter a guest event, * which works well because it is not until then that we know that the host * thread's maps have been set up. * * This function returns the guest thread. Apart from keeping the data * structures sane, using a thread belonging to the guest machine, instead * of the host thread, allows it to have its own comm (refer * thread__set_guest_comm()). */ static struct thread *findnew_guest_code(struct machine *machine, struct machine *host_machine, pid_t pid) { struct thread *host_thread; struct thread *thread; int err; if (!machine) return NULL; thread = machine__findnew_thread(machine, -1, pid); if (!thread) return NULL; /* Assume maps are set up if there are any */ if (!maps__empty(thread__maps(thread))) return thread; host_thread = machine__find_thread(host_machine, -1, pid); if (!host_thread) goto out_err; thread__set_guest_comm(thread, pid); /* * Guest code can be found in hypervisor process at the same address * so copy host maps. */ err = maps__copy_from(thread__maps(thread), thread__maps(host_thread)); thread__put(host_thread); if (err) goto out_err; return thread; out_err: thread__zput(thread); return NULL; } struct thread *machines__findnew_guest_code(struct machines *machines, pid_t pid) { struct machine *host_machine = machines__find(machines, HOST_KERNEL_ID); struct machine *machine = machines__findnew(machines, pid); return findnew_guest_code(machine, host_machine, pid); } struct thread *machine__findnew_guest_code(struct machine *machine, pid_t pid) { struct machines *machines = machine->machines; struct machine *host_machine; if (!machines) return NULL; host_machine = machines__find(machines, HOST_KERNEL_ID); return findnew_guest_code(machine, host_machine, pid); } void machines__process_guests(struct machines *machines, machine__process_t process, void *data) { struct rb_node *nd; for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { struct machine *pos = rb_entry(nd, struct machine, rb_node); process(pos, data); } } void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size) { struct rb_node *node; struct machine *machine; machines->host.id_hdr_size = id_hdr_size; for (node = rb_first_cached(&machines->guests); node; node = rb_next(node)) { machine = rb_entry(node, struct machine, rb_node); machine->id_hdr_size = id_hdr_size; } return; } static void machine__update_thread_pid(struct machine *machine, struct thread *th, pid_t pid) { struct thread *leader; if (pid == thread__pid(th) || pid == -1 || thread__pid(th) != -1) return; thread__set_pid(th, pid); if (thread__pid(th) == thread__tid(th)) return; leader = machine__findnew_thread(machine, thread__pid(th), thread__pid(th)); if (!leader) goto out_err; if (!thread__maps(leader)) thread__set_maps(leader, maps__new(machine)); if (!thread__maps(leader)) goto out_err; if (thread__maps(th) == thread__maps(leader)) goto out_put; if (thread__maps(th)) { /* * Maps are created from MMAP events which provide the pid and * tid. Consequently there never should be any maps on a thread * with an unknown pid. Just print an error if there are. */ if (!maps__empty(thread__maps(th))) pr_err("Discarding thread maps for %d:%d\n", thread__pid(th), thread__tid(th)); maps__put(thread__maps(th)); } thread__set_maps(th, maps__get(thread__maps(leader))); out_put: thread__put(leader); return; out_err: pr_err("Failed to join map groups for %d:%d\n", thread__pid(th), thread__tid(th)); goto out_put; } /* * Caller must eventually drop thread->refcnt returned with a successful * lookup/new thread inserted. */ static struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid, bool create) { struct thread *th = threads__find(&machine->threads, tid); bool created; if (th) { machine__update_thread_pid(machine, th, pid); return th; } if (!create) return NULL; th = threads__findnew(&machine->threads, pid, tid, &created); if (created) { /* * We have to initialize maps separately after rb tree is * updated. * * The reason is that we call machine__findnew_thread within * thread__init_maps to find the thread leader and that would * screwed the rb tree. */ if (thread__init_maps(th, machine)) { pr_err("Thread init failed thread %d\n", pid); threads__remove(&machine->threads, th); thread__put(th); return NULL; } } else machine__update_thread_pid(machine, th, pid); return th; } struct thread *machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid) { return __machine__findnew_thread(machine, pid, tid, /*create=*/true); } struct thread *machine__find_thread(struct machine *machine, pid_t pid, pid_t tid) { return __machine__findnew_thread(machine, pid, tid, /*create=*/false); } /* * Threads are identified by pid and tid, and the idle task has pid == tid == 0. * So here a single thread is created for that, but actually there is a separate * idle task per cpu, so there should be one 'struct thread' per cpu, but there * is only 1. That causes problems for some tools, requiring workarounds. For * example get_idle_thread() in builtin-sched.c, or thread_stack__per_cpu(). */ struct thread *machine__idle_thread(struct machine *machine) { struct thread *thread = machine__findnew_thread(machine, 0, 0); if (!thread || thread__set_comm(thread, "swapper", 0) || thread__set_namespaces(thread, 0, NULL)) pr_err("problem inserting idle task for machine pid %d\n", machine->pid); return thread; } struct comm *machine__thread_exec_comm(struct machine *machine, struct thread *thread) { if (machine->comm_exec) return thread__exec_comm(thread); else return thread__comm(thread); } int machine__process_comm_event(struct machine *machine, union perf_event *event, struct perf_sample *sample) { struct thread *thread = machine__findnew_thread(machine, event->comm.pid, event->comm.tid); bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC; int err = 0; if (exec) machine->comm_exec = true; if (dump_trace) perf_event__fprintf_comm(event, stdout); if (thread == NULL || __thread__set_comm(thread, event->comm.comm, sample->time, exec)) { dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n"); err = -1; } thread__put(thread); return err; } int machine__process_namespaces_event(struct machine *machine __maybe_unused, union perf_event *event, struct perf_sample *sample __maybe_unused) { struct thread *thread = machine__findnew_thread(machine, event->namespaces.pid, event->namespaces.tid); int err = 0; WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES, "\nWARNING: kernel seems to support more namespaces than perf" " tool.\nTry updating the perf tool..\n\n"); WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES, "\nWARNING: perf tool seems to support more namespaces than" " the kernel.\nTry updating the kernel..\n\n"); if (dump_trace) perf_event__fprintf_namespaces(event, stdout); if (thread == NULL || thread__set_namespaces(thread, sample->time, &event->namespaces)) { dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n"); err = -1; } thread__put(thread); return err; } int machine__process_cgroup_event(struct machine *machine, union perf_event *event, struct perf_sample *sample __maybe_unused) { struct cgroup *cgrp; if (dump_trace) perf_event__fprintf_cgroup(event, stdout); cgrp = cgroup__findnew(machine->env, event->cgroup.id, event->cgroup.path); if (cgrp == NULL) return -ENOMEM; return 0; } int machine__process_lost_event(struct machine *machine __maybe_unused, union perf_event *event, struct perf_sample *sample __maybe_unused) { dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n", event->lost.id, event->lost.lost); return 0; } int machine__process_lost_samples_event(struct machine *machine __maybe_unused, union perf_event *event, struct perf_sample *sample) { dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "%s\n", sample->id, event->lost_samples.lost, event->header.misc & PERF_RECORD_MISC_LOST_SAMPLES_BPF ? " (BPF)" : ""); return 0; } int machine__process_aux_event(struct machine *machine __maybe_unused, union perf_event *event) { if (dump_trace) perf_event__fprintf_aux(event, stdout); return 0; } int machine__process_itrace_start_event(struct machine *machine __maybe_unused, union perf_event *event) { if (dump_trace) perf_event__fprintf_itrace_start(event, stdout); return 0; } int machine__process_aux_output_hw_id_event(struct machine *machine __maybe_unused, union perf_event *event) { if (dump_trace) perf_event__fprintf_aux_output_hw_id(event, stdout); return 0; } int machine__process_switch_event(struct machine *machine __maybe_unused, union perf_event *event) { if (dump_trace) perf_event__fprintf_switch(event, stdout); return 0; } static int machine__process_ksymbol_register(struct machine *machine, union perf_event *event, struct perf_sample *sample __maybe_unused) { struct symbol *sym; struct dso *dso = NULL; struct map *map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr); int err = 0; if (!map) { dso = dso__new(event->ksymbol.name); if (!dso) { err = -ENOMEM; goto out; } dso__set_kernel(dso, DSO_SPACE__KERNEL); map = map__new2(0, dso); if (!map) { err = -ENOMEM; goto out; } if (event->ksymbol.ksym_type == PERF_RECORD_KSYMBOL_TYPE_OOL) { dso__set_binary_type(dso, DSO_BINARY_TYPE__OOL); dso__data(dso)->file_size = event->ksymbol.len; dso__set_loaded(dso); } map__set_start(map, event->ksymbol.addr); map__set_end(map, map__start(map) + event->ksymbol.len); err = maps__insert(machine__kernel_maps(machine), map); if (err) { err = -ENOMEM; goto out; } dso__set_loaded(dso); if (is_bpf_image(event->ksymbol.name)) { dso__set_binary_type(dso, DSO_BINARY_TYPE__BPF_IMAGE); dso__set_long_name(dso, "", false); } } else { dso = dso__get(map__dso(map)); } sym = symbol__new(map__map_ip(map, map__start(map)), event->ksymbol.len, 0, 0, event->ksymbol.name); if (!sym) { err = -ENOMEM; goto out; } dso__insert_symbol(dso, sym); out: map__put(map); dso__put(dso); return err; } static int machine__process_ksymbol_unregister(struct machine *machine, union perf_event *event, struct perf_sample *sample __maybe_unused) { struct symbol *sym; struct map *map; map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr); if (!map) return 0; if (!RC_CHK_EQUAL(map, machine->vmlinux_map)) maps__remove(machine__kernel_maps(machine), map); else { struct dso *dso = map__dso(map); sym = dso__find_symbol(dso, map__map_ip(map, map__start(map))); if (sym) dso__delete_symbol(dso, sym); } map__put(map); return 0; } int machine__process_ksymbol(struct machine *machine __maybe_unused, union perf_event *event, struct perf_sample *sample) { if (dump_trace) perf_event__fprintf_ksymbol(event, stdout); if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER) return machine__process_ksymbol_unregister(machine, event, sample); return machine__process_ksymbol_register(machine, event, sample); } int machine__process_text_poke(struct machine *machine, union perf_event *event, struct perf_sample *sample __maybe_unused) { struct map *map = maps__find(machine__kernel_maps(machine), event->text_poke.addr); u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; struct dso *dso = map ? map__dso(map) : NULL; if (dump_trace) perf_event__fprintf_text_poke(event, machine, stdout); if (!event->text_poke.new_len) goto out; if (cpumode != PERF_RECORD_MISC_KERNEL) { pr_debug("%s: unsupported cpumode - ignoring\n", __func__); goto out; } if (dso) { u8 *new_bytes = event->text_poke.bytes + event->text_poke.old_len; int ret; /* * Kernel maps might be changed when loading symbols so loading * must be done prior to using kernel maps. */ map__load(map); ret = dso__data_write_cache_addr(dso, map, machine, event->text_poke.addr, new_bytes, event->text_poke.new_len); if (ret != event->text_poke.new_len) pr_debug("Failed to write kernel text poke at %#" PRI_lx64 "\n", event->text_poke.addr); } else { pr_debug("Failed to find kernel text poke address map for %#" PRI_lx64 "\n", event->text_poke.addr); } out: map__put(map); return 0; } static struct map *machine__addnew_module_map(struct machine *machine, u64 start, const char *filename) { struct map *map = NULL; struct kmod_path m; struct dso *dso; int err; if (kmod_path__parse_name(&m, filename)) return NULL; dso = dsos__findnew_module_dso(&machine->dsos, machine, &m, filename); if (dso == NULL) goto out; map = map__new2(start, dso); if (map == NULL) goto out; err = maps__insert(machine__kernel_maps(machine), map); /* If maps__insert failed, return NULL. */ if (err) { map__put(map); map = NULL; } out: /* put the dso here, corresponding to machine__findnew_module_dso */ dso__put(dso); zfree(&m.name); return map; } size_t machines__fprintf_dsos(struct machines *machines, FILE *fp) { struct rb_node *nd; size_t ret = dsos__fprintf(&machines->host.dsos, fp); for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { struct machine *pos = rb_entry(nd, struct machine, rb_node); ret += dsos__fprintf(&pos->dsos, fp); } return ret; } size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp, bool (skip)(struct dso *dso, int parm), int parm) { return dsos__fprintf_buildid(&m->dsos, fp, skip, parm); } size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp, bool (skip)(struct dso *dso, int parm), int parm) { struct rb_node *nd; size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm); for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { struct machine *pos = rb_entry(nd, struct machine, rb_node); ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm); } return ret; } size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp) { int i; size_t printed = 0; struct dso *kdso = machine__kernel_dso(machine); if (dso__has_build_id(kdso)) { char filename[PATH_MAX]; if (dso__build_id_filename(kdso, filename, sizeof(filename), false)) printed += fprintf(fp, "[0] %s\n", filename); } for (i = 0; i < vmlinux_path__nr_entries; ++i) { printed += fprintf(fp, "[%d] %s\n", i + dso__has_build_id(kdso), vmlinux_path[i]); } return printed; } struct machine_fprintf_cb_args { FILE *fp; size_t printed; }; static int machine_fprintf_cb(struct thread *thread, void *data) { struct machine_fprintf_cb_args *args = data; /* TODO: handle fprintf errors. */ args->printed += thread__fprintf(thread, args->fp); return 0; } size_t machine__fprintf(struct machine *machine, FILE *fp) { struct machine_fprintf_cb_args args = { .fp = fp, .printed = 0, }; size_t ret = fprintf(fp, "Threads: %zu\n", threads__nr(&machine->threads)); machine__for_each_thread(machine, machine_fprintf_cb, &args); return ret + args.printed; } static struct dso *machine__get_kernel(struct machine *machine) { const char *vmlinux_name = machine->mmap_name; struct dso *kernel; if (machine__is_host(machine)) { if (symbol_conf.vmlinux_name) vmlinux_name = symbol_conf.vmlinux_name; kernel = machine__findnew_kernel(machine, vmlinux_name, "[kernel]", DSO_SPACE__KERNEL); } else { if (symbol_conf.default_guest_vmlinux_name) vmlinux_name = symbol_conf.default_guest_vmlinux_name; kernel = machine__findnew_kernel(machine, vmlinux_name, "[guest.kernel]", DSO_SPACE__KERNEL_GUEST); } if (kernel != NULL && (!dso__has_build_id(kernel))) dso__read_running_kernel_build_id(kernel, machine); return kernel; } void machine__get_kallsyms_filename(struct machine *machine, char *buf, size_t bufsz) { if (machine__is_default_guest(machine)) scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms); else scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir); } const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL}; /* Figure out the start address of kernel map from /proc/kallsyms. * Returns the name of the start symbol in *symbol_name. Pass in NULL as * symbol_name if it's not that important. */ static int machine__get_running_kernel_start(struct machine *machine, const char **symbol_name, u64 *start, u64 *end) { char filename[PATH_MAX]; int i, err = -1; const char *name; u64 addr = 0; machine__get_kallsyms_filename(machine, filename, PATH_MAX); if (symbol__restricted_filename(filename, "/proc/kallsyms")) return 0; for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) { err = kallsyms__get_function_start(filename, name, &addr); if (!err) break; } if (err) return -1; if (symbol_name) *symbol_name = name; *start = addr; err = kallsyms__get_symbol_start(filename, "_edata", &addr); if (err) err = kallsyms__get_function_start(filename, "_etext", &addr); if (!err) *end = addr; return 0; } int machine__create_extra_kernel_map(struct machine *machine, struct dso *kernel, struct extra_kernel_map *xm) { struct kmap *kmap; struct map *map; int err; map = map__new2(xm->start, kernel); if (!map) return -ENOMEM; map__set_end(map, xm->end); map__set_pgoff(map, xm->pgoff); kmap = map__kmap(map); strlcpy(kmap->name, xm->name, KMAP_NAME_LEN); err = maps__insert(machine__kernel_maps(machine), map); if (!err) { pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n", kmap->name, map__start(map), map__end(map)); } map__put(map); return err; } static u64 find_entry_trampoline(struct dso *dso) { /* Duplicates are removed so lookup all aliases */ const char *syms[] = { "_entry_trampoline", "__entry_trampoline_start", "entry_SYSCALL_64_trampoline", }; struct symbol *sym = dso__first_symbol(dso); unsigned int i; for (; sym; sym = dso__next_symbol(sym)) { if (sym->binding != STB_GLOBAL) continue; for (i = 0; i < ARRAY_SIZE(syms); i++) { if (!strcmp(sym->name, syms[i])) return sym->start; } } return 0; } /* * These values can be used for kernels that do not have symbols for the entry * trampolines in kallsyms. */ #define X86_64_CPU_ENTRY_AREA_PER_CPU 0xfffffe0000000000ULL #define X86_64_CPU_ENTRY_AREA_SIZE 0x2c000 #define X86_64_ENTRY_TRAMPOLINE 0x6000 struct machine__map_x86_64_entry_trampolines_args { struct maps *kmaps; bool found; }; static int machine__map_x86_64_entry_trampolines_cb(struct map *map, void *data) { struct machine__map_x86_64_entry_trampolines_args *args = data; struct map *dest_map; struct kmap *kmap = __map__kmap(map); if (!kmap || !is_entry_trampoline(kmap->name)) return 0; dest_map = maps__find(args->kmaps, map__pgoff(map)); if (RC_CHK_ACCESS(dest_map) != RC_CHK_ACCESS(map)) map__set_pgoff(map, map__map_ip(dest_map, map__pgoff(map))); map__put(dest_map); args->found = true; return 0; } /* Map x86_64 PTI entry trampolines */ int machine__map_x86_64_entry_trampolines(struct machine *machine, struct dso *kernel) { struct machine__map_x86_64_entry_trampolines_args args = { .kmaps = machine__kernel_maps(machine), .found = false, }; int nr_cpus_avail, cpu; u64 pgoff; /* * In the vmlinux case, pgoff is a virtual address which must now be * mapped to a vmlinux offset. */ maps__for_each_map(args.kmaps, machine__map_x86_64_entry_trampolines_cb, &args); if (args.found || machine->trampolines_mapped) return 0; pgoff = find_entry_trampoline(kernel); if (!pgoff) return 0; nr_cpus_avail = machine__nr_cpus_avail(machine); /* Add a 1 page map for each CPU's entry trampoline */ for (cpu = 0; cpu < nr_cpus_avail; cpu++) { u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU + cpu * X86_64_CPU_ENTRY_AREA_SIZE + X86_64_ENTRY_TRAMPOLINE; struct extra_kernel_map xm = { .start = va, .end = va + page_size, .pgoff = pgoff, }; strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN); if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0) return -1; } machine->trampolines_mapped = nr_cpus_avail; return 0; } int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused, struct dso *kernel __maybe_unused) { return 0; } static int __machine__create_kernel_maps(struct machine *machine, struct dso *kernel) { /* In case of renewal the kernel map, destroy previous one */ machine__destroy_kernel_maps(machine); map__put(machine->vmlinux_map); machine->vmlinux_map = map__new2(0, kernel); if (machine->vmlinux_map == NULL) return -ENOMEM; map__set_mapping_type(machine->vmlinux_map, MAPPING_TYPE__IDENTITY); return maps__insert(machine__kernel_maps(machine), machine->vmlinux_map); } void machine__destroy_kernel_maps(struct machine *machine) { struct kmap *kmap; struct map *map = machine__kernel_map(machine); if (map == NULL) return; kmap = map__kmap(map); maps__remove(machine__kernel_maps(machine), map); if (kmap && kmap->ref_reloc_sym) { zfree((char **)&kmap->ref_reloc_sym->name); zfree(&kmap->ref_reloc_sym); } map__zput(machine->vmlinux_map); } int machines__create_guest_kernel_maps(struct machines *machines) { int ret = 0; struct dirent **namelist = NULL; int i, items = 0; char path[PATH_MAX]; pid_t pid; char *endp; if (symbol_conf.default_guest_vmlinux_name || symbol_conf.default_guest_modules || symbol_conf.default_guest_kallsyms) { machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID); } if (symbol_conf.guestmount) { items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL); if (items <= 0) return -ENOENT; for (i = 0; i < items; i++) { if (!isdigit(namelist[i]->d_name[0])) { /* Filter out . and .. */ continue; } pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10); if ((*endp != '\0') || (endp == namelist[i]->d_name) || (errno == ERANGE)) { pr_debug("invalid directory (%s). Skipping.\n", namelist[i]->d_name); continue; } sprintf(path, "%s/%s/proc/kallsyms", symbol_conf.guestmount, namelist[i]->d_name); ret = access(path, R_OK); if (ret) { pr_debug("Can't access file %s\n", path); goto failure; } machines__create_kernel_maps(machines, pid); } failure: free(namelist); } return ret; } void machines__destroy_kernel_maps(struct machines *machines) { struct rb_node *next = rb_first_cached(&machines->guests); machine__destroy_kernel_maps(&machines->host); while (next) { struct machine *pos = rb_entry(next, struct machine, rb_node); next = rb_next(&pos->rb_node); rb_erase_cached(&pos->rb_node, &machines->guests); machine__delete(pos); } } int machines__create_kernel_maps(struct machines *machines, pid_t pid) { struct machine *machine = machines__findnew(machines, pid); if (machine == NULL) return -1; return machine__create_kernel_maps(machine); } int machine__load_kallsyms(struct machine *machine, const char *filename) { struct map *map = machine__kernel_map(machine); struct dso *dso = map__dso(map); int ret = __dso__load_kallsyms(dso, filename, map, true); if (ret > 0) { dso__set_loaded(dso); /* * Since /proc/kallsyms will have multiple sessions for the * kernel, with modules between them, fixup the end of all * sections. */ maps__fixup_end(machine__kernel_maps(machine)); } return ret; } int machine__load_vmlinux_path(struct machine *machine) { struct map *map = machine__kernel_map(machine); struct dso *dso = map__dso(map); int ret = dso__load_vmlinux_path(dso, map); if (ret > 0) dso__set_loaded(dso); return ret; } static char *get_kernel_version(const char *root_dir) { char version[PATH_MAX]; FILE *file; char *name, *tmp; const char *prefix = "Linux version "; sprintf(version, "%s/proc/version", root_dir); file = fopen(version, "r"); if (!file) return NULL; tmp = fgets(version, sizeof(version), file); fclose(file); if (!tmp) return NULL; name = strstr(version, prefix); if (!name) return NULL; name += strlen(prefix); tmp = strchr(name, ' '); if (tmp) *tmp = '\0'; return strdup(name); } static bool is_kmod_dso(struct dso *dso) { return dso__symtab_type(dso) == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE || dso__symtab_type(dso) == DSO_BINARY_TYPE__GUEST_KMODULE; } static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m) { char *long_name; struct dso *dso; struct map *map = maps__find_by_name(maps, m->name); if (map == NULL) return 0; long_name = strdup(path); if (long_name == NULL) { map__put(map); return -ENOMEM; } dso = map__dso(map); dso__set_long_name(dso, long_name, true); dso__kernel_module_get_build_id(dso, ""); /* * Full name could reveal us kmod compression, so * we need to update the symtab_type if needed. */ if (m->comp && is_kmod_dso(dso)) { dso__set_symtab_type(dso, dso__symtab_type(dso)); dso__set_comp(dso, m->comp); } map__put(map); return 0; } static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth) { struct dirent *dent; DIR *dir = opendir(dir_name); int ret = 0; if (!dir) { pr_debug("%s: cannot open %s dir\n", __func__, dir_name); return -1; } while ((dent = readdir(dir)) != NULL) { char path[PATH_MAX]; struct stat st; /*sshfs might return bad dent->d_type, so we have to stat*/ path__join(path, sizeof(path), dir_name, dent->d_name); if (stat(path, &st)) continue; if (S_ISDIR(st.st_mode)) { if (!strcmp(dent->d_name, ".") || !strcmp(dent->d_name, "..")) continue; /* Do not follow top-level source and build symlinks */ if (depth == 0) { if (!strcmp(dent->d_name, "source") || !strcmp(dent->d_name, "build")) continue; } ret = maps__set_modules_path_dir(maps, path, depth + 1); if (ret < 0) goto out; } else { struct kmod_path m; ret = kmod_path__parse_name(&m, dent->d_name); if (ret) goto out; if (m.kmod) ret = maps__set_module_path(maps, path, &m); zfree(&m.name); if (ret) goto out; } } out: closedir(dir); return ret; } static int machine__set_modules_path(struct machine *machine) { char *version; char modules_path[PATH_MAX]; version = get_kernel_version(machine->root_dir); if (!version) return -1; snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s", machine->root_dir, version); free(version); return maps__set_modules_path_dir(machine__kernel_maps(machine), modules_path, 0); } int __weak arch__fix_module_text_start(u64 *start __maybe_unused, u64 *size __maybe_unused, const char *name __maybe_unused) { return 0; } static int machine__create_module(void *arg, const char *name, u64 start, u64 size) { struct machine *machine = arg; struct map *map; if (arch__fix_module_text_start(&start, &size, name) < 0) return -1; map = machine__addnew_module_map(machine, start, name); if (map == NULL) return -1; map__set_end(map, start + size); dso__kernel_module_get_build_id(map__dso(map), machine->root_dir); map__put(map); return 0; } static int machine__create_modules(struct machine *machine) { const char *modules; char path[PATH_MAX]; if (machine__is_default_guest(machine)) { modules = symbol_conf.default_guest_modules; } else { snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir); modules = path; } if (symbol__restricted_filename(modules, "/proc/modules")) return -1; if (modules__parse(modules, machine, machine__create_module)) return -1; if (!machine__set_modules_path(machine)) return 0; pr_debug("Problems setting modules path maps, continuing anyway...\n"); return 0; } static void machine__set_kernel_mmap(struct machine *machine, u64 start, u64 end) { map__set_start(machine->vmlinux_map, start); map__set_end(machine->vmlinux_map, end); /* * Be a bit paranoid here, some perf.data file came with * a zero sized synthesized MMAP event for the kernel. */ if (start == 0 && end == 0) map__set_end(machine->vmlinux_map, ~0ULL); } static int machine__update_kernel_mmap(struct machine *machine, u64 start, u64 end) { struct map *orig, *updated; int err; orig = machine->vmlinux_map; updated = map__get(orig); machine->vmlinux_map = updated; maps__remove(machine__kernel_maps(machine), orig); machine__set_kernel_mmap(machine, start, end); err = maps__insert(machine__kernel_maps(machine), updated); map__put(orig); return err; } int machine__create_kernel_maps(struct machine *machine) { struct dso *kernel = machine__get_kernel(machine); const char *name = NULL; u64 start = 0, end = ~0ULL; int ret; if (kernel == NULL) return -1; ret = __machine__create_kernel_maps(machine, kernel); if (ret < 0) goto out_put; if (symbol_conf.use_modules && machine__create_modules(machine) < 0) { if (machine__is_host(machine)) pr_debug("Problems creating module maps, " "continuing anyway...\n"); else pr_debug("Problems creating module maps for guest %d, " "continuing anyway...\n", machine->pid); } if (!machine__get_running_kernel_start(machine, &name, &start, &end)) { if (name && map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) { machine__destroy_kernel_maps(machine); ret = -1; goto out_put; } /* * we have a real start address now, so re-order the kmaps * assume it's the last in the kmaps */ ret = machine__update_kernel_mmap(machine, start, end); if (ret < 0) goto out_put; } if (machine__create_extra_kernel_maps(machine, kernel)) pr_debug("Problems creating extra kernel maps, continuing anyway...\n"); if (end == ~0ULL) { /* update end address of the kernel map using adjacent module address */ struct map *next = maps__find_next_entry(machine__kernel_maps(machine), machine__kernel_map(machine)); if (next) { machine__set_kernel_mmap(machine, start, map__start(next)); map__put(next); } } out_put: dso__put(kernel); return ret; } static int machine__uses_kcore_cb(struct dso *dso, void *data __maybe_unused) { return dso__is_kcore(dso) ? 1 : 0; } static bool machine__uses_kcore(struct machine *machine) { return dsos__for_each_dso(&machine->dsos, machine__uses_kcore_cb, NULL) != 0 ? true : false; } static bool perf_event__is_extra_kernel_mmap(struct machine *machine, struct extra_kernel_map *xm) { return machine__is(machine, "x86_64") && is_entry_trampoline(xm->name); } static int machine__process_extra_kernel_map(struct machine *machine, struct extra_kernel_map *xm) { struct dso *kernel = machine__kernel_dso(machine); if (kernel == NULL) return -1; return machine__create_extra_kernel_map(machine, kernel, xm); } static int machine__process_kernel_mmap_event(struct machine *machine, struct extra_kernel_map *xm, struct build_id *bid) { enum dso_space_type dso_space; bool is_kernel_mmap; const char *mmap_name = machine->mmap_name; /* If we have maps from kcore then we do not need or want any others */ if (machine__uses_kcore(machine)) return 0; if (machine__is_host(machine)) dso_space = DSO_SPACE__KERNEL; else dso_space = DSO_SPACE__KERNEL_GUEST; is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0; if (!is_kernel_mmap && !machine__is_host(machine)) { /* * If the event was recorded inside the guest and injected into * the host perf.data file, then it will match a host mmap_name, * so try that - see machine__set_mmap_name(). */ mmap_name = "[kernel.kallsyms]"; is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0; } if (xm->name[0] == '/' || (!is_kernel_mmap && xm->name[0] == '[')) { struct map *map = machine__addnew_module_map(machine, xm->start, xm->name); if (map == NULL) goto out_problem; map__set_end(map, map__start(map) + xm->end - xm->start); if (build_id__is_defined(bid)) dso__set_build_id(map__dso(map), bid); map__put(map); } else if (is_kernel_mmap) { const char *symbol_name = xm->name + strlen(mmap_name); /* * Should be there already, from the build-id table in * the header. */ struct dso *kernel = dsos__find_kernel_dso(&machine->dsos); if (kernel == NULL) kernel = machine__findnew_dso(machine, machine->mmap_name); if (kernel == NULL) goto out_problem; dso__set_kernel(kernel, dso_space); if (__machine__create_kernel_maps(machine, kernel) < 0) { dso__put(kernel); goto out_problem; } if (strstr(dso__long_name(kernel), "vmlinux")) dso__set_short_name(kernel, "[kernel.vmlinux]", false); if (machine__update_kernel_mmap(machine, xm->start, xm->end) < 0) { dso__put(kernel); goto out_problem; } if (build_id__is_defined(bid)) dso__set_build_id(kernel, bid); /* * Avoid using a zero address (kptr_restrict) for the ref reloc * symbol. Effectively having zero here means that at record * time /proc/sys/kernel/kptr_restrict was non zero. */ if (xm->pgoff != 0) { map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, symbol_name, xm->pgoff); } if (machine__is_default_guest(machine)) { /* * preload dso of guest kernel and modules */ dso__load(kernel, machine__kernel_map(machine)); } dso__put(kernel); } else if (perf_event__is_extra_kernel_mmap(machine, xm)) { return machine__process_extra_kernel_map(machine, xm); } return 0; out_problem: return -1; } int machine__process_mmap2_event(struct machine *machine, union perf_event *event, struct perf_sample *sample) { struct thread *thread; struct map *map; struct dso_id dso_id = { .maj = event->mmap2.maj, .min = event->mmap2.min, .ino = event->mmap2.ino, .ino_generation = event->mmap2.ino_generation, }; struct build_id __bid, *bid = NULL; int ret = 0; if (dump_trace) perf_event__fprintf_mmap2(event, stdout); if (event->header.misc & PERF_RECORD_MISC_MMAP_BUILD_ID) { bid = &__bid; build_id__init(bid, event->mmap2.build_id, event->mmap2.build_id_size); } if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || sample->cpumode == PERF_RECORD_MISC_KERNEL) { struct extra_kernel_map xm = { .start = event->mmap2.start, .end = event->mmap2.start + event->mmap2.len, .pgoff = event->mmap2.pgoff, }; strlcpy(xm.name, event->mmap2.filename, KMAP_NAME_LEN); ret = machine__process_kernel_mmap_event(machine, &xm, bid); if (ret < 0) goto out_problem; return 0; } thread = machine__findnew_thread(machine, event->mmap2.pid, event->mmap2.tid); if (thread == NULL) goto out_problem; map = map__new(machine, event->mmap2.start, event->mmap2.len, event->mmap2.pgoff, &dso_id, event->mmap2.prot, event->mmap2.flags, bid, event->mmap2.filename, thread); if (map == NULL) goto out_problem_map; ret = thread__insert_map(thread, map); if (ret) goto out_problem_insert; thread__put(thread); map__put(map); return 0; out_problem_insert: map__put(map); out_problem_map: thread__put(thread); out_problem: dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n"); return 0; } int machine__process_mmap_event(struct machine *machine, union perf_event *event, struct perf_sample *sample) { struct thread *thread; struct map *map; u32 prot = 0; int ret = 0; if (dump_trace) perf_event__fprintf_mmap(event, stdout); if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || sample->cpumode == PERF_RECORD_MISC_KERNEL) { struct extra_kernel_map xm = { .start = event->mmap.start, .end = event->mmap.start + event->mmap.len, .pgoff = event->mmap.pgoff, }; strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN); ret = machine__process_kernel_mmap_event(machine, &xm, NULL); if (ret < 0) goto out_problem; return 0; } thread = machine__findnew_thread(machine, event->mmap.pid, event->mmap.tid); if (thread == NULL) goto out_problem; if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA)) prot = PROT_EXEC; map = map__new(machine, event->mmap.start, event->mmap.len, event->mmap.pgoff, NULL, prot, 0, NULL, event->mmap.filename, thread); if (map == NULL) goto out_problem_map; ret = thread__insert_map(thread, map); if (ret) goto out_problem_insert; thread__put(thread); map__put(map); return 0; out_problem_insert: map__put(map); out_problem_map: thread__put(thread); out_problem: dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n"); return 0; } void machine__remove_thread(struct machine *machine, struct thread *th) { return threads__remove(&machine->threads, th); } int machine__process_fork_event(struct machine *machine, union perf_event *event, struct perf_sample *sample) { struct thread *thread = machine__find_thread(machine, event->fork.pid, event->fork.tid); struct thread *parent = machine__findnew_thread(machine, event->fork.ppid, event->fork.ptid); bool do_maps_clone = true; int err = 0; if (dump_trace) perf_event__fprintf_task(event, stdout); /* * There may be an existing thread that is not actually the parent, * either because we are processing events out of order, or because the * (fork) event that would have removed the thread was lost. Assume the * latter case and continue on as best we can. */ if (thread__pid(parent) != (pid_t)event->fork.ppid) { dump_printf("removing erroneous parent thread %d/%d\n", thread__pid(parent), thread__tid(parent)); machine__remove_thread(machine, parent); thread__put(parent); parent = machine__findnew_thread(machine, event->fork.ppid, event->fork.ptid); } /* if a thread currently exists for the thread id remove it */ if (thread != NULL) { machine__remove_thread(machine, thread); thread__put(thread); } thread = machine__findnew_thread(machine, event->fork.pid, event->fork.tid); /* * When synthesizing FORK events, we are trying to create thread * objects for the already running tasks on the machine. * * Normally, for a kernel FORK event, we want to clone the parent's * maps because that is what the kernel just did. * * But when synthesizing, this should not be done. If we do, we end up * with overlapping maps as we process the synthesized MMAP2 events that * get delivered shortly thereafter. * * Use the FORK event misc flags in an internal way to signal this * situation, so we can elide the map clone when appropriate. */ if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC) do_maps_clone = false; if (thread == NULL || parent == NULL || thread__fork(thread, parent, sample->time, do_maps_clone) < 0) { dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n"); err = -1; } thread__put(thread); thread__put(parent); return err; } int machine__process_exit_event(struct machine *machine, union perf_event *event, struct perf_sample *sample __maybe_unused) { struct thread *thread = machine__find_thread(machine, event->fork.pid, event->fork.tid); if (dump_trace) perf_event__fprintf_task(event, stdout); if (thread != NULL) { if (symbol_conf.keep_exited_threads) thread__set_exited(thread, /*exited=*/true); else machine__remove_thread(machine, thread); } thread__put(thread); return 0; } int machine__process_event(struct machine *machine, union perf_event *event, struct perf_sample *sample) { int ret; switch (event->header.type) { case PERF_RECORD_COMM: ret = machine__process_comm_event(machine, event, sample); break; case PERF_RECORD_MMAP: ret = machine__process_mmap_event(machine, event, sample); break; case PERF_RECORD_NAMESPACES: ret = machine__process_namespaces_event(machine, event, sample); break; case PERF_RECORD_CGROUP: ret = machine__process_cgroup_event(machine, event, sample); break; case PERF_RECORD_MMAP2: ret = machine__process_mmap2_event(machine, event, sample); break; case PERF_RECORD_FORK: ret = machine__process_fork_event(machine, event, sample); break; case PERF_RECORD_EXIT: ret = machine__process_exit_event(machine, event, sample); break; case PERF_RECORD_LOST: ret = machine__process_lost_event(machine, event, sample); break; case PERF_RECORD_AUX: ret = machine__process_aux_event(machine, event); break; case PERF_RECORD_ITRACE_START: ret = machine__process_itrace_start_event(machine, event); break; case PERF_RECORD_LOST_SAMPLES: ret = machine__process_lost_samples_event(machine, event, sample); break; case PERF_RECORD_SWITCH: case PERF_RECORD_SWITCH_CPU_WIDE: ret = machine__process_switch_event(machine, event); break; case PERF_RECORD_KSYMBOL: ret = machine__process_ksymbol(machine, event, sample); break; case PERF_RECORD_BPF_EVENT: ret = machine__process_bpf(machine, event, sample); break; case PERF_RECORD_TEXT_POKE: ret = machine__process_text_poke(machine, event, sample); break; case PERF_RECORD_AUX_OUTPUT_HW_ID: ret = machine__process_aux_output_hw_id_event(machine, event); break; default: ret = -1; break; } return ret; } static bool symbol__match_regex(struct symbol *sym, regex_t *regex) { return regexec(regex, sym->name, 0, NULL, 0) == 0; } static void ip__resolve_ams(struct thread *thread, struct addr_map_symbol *ams, u64 ip) { struct addr_location al; addr_location__init(&al); /* * We cannot use the header.misc hint to determine whether a * branch stack address is user, kernel, guest, hypervisor. * Branches may straddle the kernel/user/hypervisor boundaries. * Thus, we have to try consecutively until we find a match * or else, the symbol is unknown */ thread__find_cpumode_addr_location(thread, ip, &al); ams->addr = ip; ams->al_addr = al.addr; ams->al_level = al.level; ams->ms.maps = maps__get(al.maps); ams->ms.sym = al.sym; ams->ms.map = map__get(al.map); ams->phys_addr = 0; ams->data_page_size = 0; addr_location__exit(&al); } static void ip__resolve_data(struct thread *thread, u8 m, struct addr_map_symbol *ams, u64 addr, u64 phys_addr, u64 daddr_page_size) { struct addr_location al; addr_location__init(&al); thread__find_symbol(thread, m, addr, &al); ams->addr = addr; ams->al_addr = al.addr; ams->al_level = al.level; ams->ms.maps = maps__get(al.maps); ams->ms.sym = al.sym; ams->ms.map = map__get(al.map); ams->phys_addr = phys_addr; ams->data_page_size = daddr_page_size; addr_location__exit(&al); } struct mem_info *sample__resolve_mem(struct perf_sample *sample, struct addr_location *al) { struct mem_info *mi = mem_info__new(); if (!mi) return NULL; ip__resolve_ams(al->thread, mem_info__iaddr(mi), sample->ip); ip__resolve_data(al->thread, al->cpumode, mem_info__daddr(mi), sample->addr, sample->phys_addr, sample->data_page_size); mem_info__data_src(mi)->val = sample->data_src; return mi; } static char *callchain_srcline(struct map_symbol *ms, u64 ip) { struct map *map = ms->map; char *srcline = NULL; struct dso *dso; if (!map || callchain_param.key == CCKEY_FUNCTION) return srcline; dso = map__dso(map); srcline = srcline__tree_find(dso__srclines(dso), ip); if (!srcline) { bool show_sym = false; bool show_addr = callchain_param.key == CCKEY_ADDRESS; srcline = get_srcline(dso, map__rip_2objdump(map, ip), ms->sym, show_sym, show_addr, ip); srcline__tree_insert(dso__srclines(dso), ip, srcline); } return srcline; } struct iterations { int nr_loop_iter; u64 cycles; }; static int add_callchain_ip(struct thread *thread, struct callchain_cursor *cursor, struct symbol **parent, struct addr_location *root_al, u8 *cpumode, u64 ip, bool branch, struct branch_flags *flags, struct iterations *iter, u64 branch_from, bool symbols) { struct map_symbol ms = {}; struct addr_location al; int nr_loop_iter = 0, err = 0; u64 iter_cycles = 0; const char *srcline = NULL; addr_location__init(&al); al.filtered = 0; al.sym = NULL; al.srcline = NULL; if (!cpumode) { thread__find_cpumode_addr_location(thread, ip, &al); } else { if (ip >= PERF_CONTEXT_MAX) { switch (ip) { case PERF_CONTEXT_HV: *cpumode = PERF_RECORD_MISC_HYPERVISOR; break; case PERF_CONTEXT_KERNEL: *cpumode = PERF_RECORD_MISC_KERNEL; break; case PERF_CONTEXT_USER: *cpumode = PERF_RECORD_MISC_USER; break; default: pr_debug("invalid callchain context: " "%"PRId64"\n", (s64) ip); /* * It seems the callchain is corrupted. * Discard all. */ callchain_cursor_reset(cursor); err = 1; goto out; } goto out; } if (symbols) thread__find_symbol(thread, *cpumode, ip, &al); } if (al.sym != NULL) { if (perf_hpp_list.parent && !*parent && symbol__match_regex(al.sym, &parent_regex)) *parent = al.sym; else if (have_ignore_callees && root_al && symbol__match_regex(al.sym, &ignore_callees_regex)) { /* Treat this symbol as the root, forgetting its callees. */ addr_location__copy(root_al, &al); callchain_cursor_reset(cursor); } } if (symbol_conf.hide_unresolved && al.sym == NULL) goto out; if (iter) { nr_loop_iter = iter->nr_loop_iter; iter_cycles = iter->cycles; } ms.maps = maps__get(al.maps); ms.map = map__get(al.map); ms.sym = al.sym; srcline = callchain_srcline(&ms, al.addr); err = callchain_cursor_append(cursor, ip, &ms, branch, flags, nr_loop_iter, iter_cycles, branch_from, srcline); out: addr_location__exit(&al); map_symbol__exit(&ms); return err; } struct branch_info *sample__resolve_bstack(struct perf_sample *sample, struct addr_location *al) { unsigned int i; const struct branch_stack *bs = sample->branch_stack; struct branch_entry *entries = perf_sample__branch_entries(sample); u64 *branch_stack_cntr = sample->branch_stack_cntr; struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info)); if (!bi) return NULL; for (i = 0; i < bs->nr; i++) { ip__resolve_ams(al->thread, &bi[i].to, entries[i].to); ip__resolve_ams(al->thread, &bi[i].from, entries[i].from); bi[i].flags = entries[i].flags; if (branch_stack_cntr) bi[i].branch_stack_cntr = branch_stack_cntr[i]; } return bi; } static void save_iterations(struct iterations *iter, struct branch_entry *be, int nr) { int i; iter->nr_loop_iter++; iter->cycles = 0; for (i = 0; i < nr; i++) iter->cycles += be[i].flags.cycles; } #define CHASHSZ 127 #define CHASHBITS 7 #define NO_ENTRY 0xff #define PERF_MAX_BRANCH_DEPTH 127 /* Remove loops. */ static int remove_loops(struct branch_entry *l, int nr, struct iterations *iter) { int i, j, off; unsigned char chash[CHASHSZ]; memset(chash, NO_ENTRY, sizeof(chash)); BUG_ON(PERF_MAX_BRANCH_DEPTH > 255); for (i = 0; i < nr; i++) { int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ; /* no collision handling for now */ if (chash[h] == NO_ENTRY) { chash[h] = i; } else if (l[chash[h]].from == l[i].from) { bool is_loop = true; /* check if it is a real loop */ off = 0; for (j = chash[h]; j < i && i + off < nr; j++, off++) if (l[j].from != l[i + off].from) { is_loop = false; break; } if (is_loop) { j = nr - (i + off); if (j > 0) { save_iterations(iter + i + off, l + i, off); memmove(iter + i, iter + i + off, j * sizeof(*iter)); memmove(l + i, l + i + off, j * sizeof(*l)); } nr -= off; } } } return nr; } static int lbr_callchain_add_kernel_ip(struct thread *thread, struct callchain_cursor *cursor, struct perf_sample *sample, struct symbol **parent, struct addr_location *root_al, u64 branch_from, bool callee, int end, bool symbols) { struct ip_callchain *chain = sample->callchain; u8 cpumode = PERF_RECORD_MISC_USER; int err, i; if (callee) { for (i = 0; i < end + 1; i++) { err = add_callchain_ip(thread, cursor, parent, root_al, &cpumode, chain->ips[i], false, NULL, NULL, branch_from, symbols); if (err) return err; } return 0; } for (i = end; i >= 0; i--) { err = add_callchain_ip(thread, cursor, parent, root_al, &cpumode, chain->ips[i], false, NULL, NULL, branch_from, symbols); if (err) return err; } return 0; } static void save_lbr_cursor_node(struct thread *thread, struct callchain_cursor *cursor, int idx) { struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread); if (!lbr_stitch) return; if (cursor->pos == cursor->nr) { lbr_stitch->prev_lbr_cursor[idx].valid = false; return; } if (!cursor->curr) cursor->curr = cursor->first; else cursor->curr = cursor->curr->next; map_symbol__exit(&lbr_stitch->prev_lbr_cursor[idx].ms); memcpy(&lbr_stitch->prev_lbr_cursor[idx], cursor->curr, sizeof(struct callchain_cursor_node)); lbr_stitch->prev_lbr_cursor[idx].ms.maps = maps__get(cursor->curr->ms.maps); lbr_stitch->prev_lbr_cursor[idx].ms.map = map__get(cursor->curr->ms.map); lbr_stitch->prev_lbr_cursor[idx].valid = true; cursor->pos++; } static int lbr_callchain_add_lbr_ip(struct thread *thread, struct callchain_cursor *cursor, struct perf_sample *sample, struct symbol **parent, struct addr_location *root_al, u64 *branch_from, bool callee, bool symbols) { struct branch_stack *lbr_stack = sample->branch_stack; struct branch_entry *entries = perf_sample__branch_entries(sample); u8 cpumode = PERF_RECORD_MISC_USER; int lbr_nr = lbr_stack->nr; struct branch_flags *flags; int err, i; u64 ip; /* * The curr and pos are not used in writing session. They are cleared * in callchain_cursor_commit() when the writing session is closed. * Using curr and pos to track the current cursor node. */ if (thread__lbr_stitch(thread)) { cursor->curr = NULL; cursor->pos = cursor->nr; if (cursor->nr) { cursor->curr = cursor->first; for (i = 0; i < (int)(cursor->nr - 1); i++) cursor->curr = cursor->curr->next; } } if (callee) { /* Add LBR ip from first entries.to */ ip = entries[0].to; flags = &entries[0].flags; *branch_from = entries[0].from; err = add_callchain_ip(thread, cursor, parent, root_al, &cpumode, ip, true, flags, NULL, *branch_from, symbols); if (err) return err; /* * The number of cursor node increases. * Move the current cursor node. * But does not need to save current cursor node for entry 0. * It's impossible to stitch the whole LBRs of previous sample. */ if (thread__lbr_stitch(thread) && (cursor->pos != cursor->nr)) { if (!cursor->curr) cursor->curr = cursor->first; else cursor->curr = cursor->curr->next; cursor->pos++; } /* Add LBR ip from entries.from one by one. */ for (i = 0; i < lbr_nr; i++) { ip = entries[i].from; flags = &entries[i].flags; err = add_callchain_ip(thread, cursor, parent, root_al, &cpumode, ip, true, flags, NULL, *branch_from, symbols); if (err) return err; save_lbr_cursor_node(thread, cursor, i); } return 0; } /* Add LBR ip from entries.from one by one. */ for (i = lbr_nr - 1; i >= 0; i--) { ip = entries[i].from; flags = &entries[i].flags; err = add_callchain_ip(thread, cursor, parent, root_al, &cpumode, ip, true, flags, NULL, *branch_from, symbols); if (err) return err; save_lbr_cursor_node(thread, cursor, i); } if (lbr_nr > 0) { /* Add LBR ip from first entries.to */ ip = entries[0].to; flags = &entries[0].flags; *branch_from = entries[0].from; err = add_callchain_ip(thread, cursor, parent, root_al, &cpumode, ip, true, flags, NULL, *branch_from, symbols); if (err) return err; } return 0; } static int lbr_callchain_add_stitched_lbr_ip(struct thread *thread, struct callchain_cursor *cursor) { struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread); struct callchain_cursor_node *cnode; struct stitch_list *stitch_node; int err; list_for_each_entry(stitch_node, &lbr_stitch->lists, node) { cnode = &stitch_node->cursor; err = callchain_cursor_append(cursor, cnode->ip, &cnode->ms, cnode->branch, &cnode->branch_flags, cnode->nr_loop_iter, cnode->iter_cycles, cnode->branch_from, cnode->srcline); if (err) return err; } return 0; } static struct stitch_list *get_stitch_node(struct thread *thread) { struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread); struct stitch_list *stitch_node; if (!list_empty(&lbr_stitch->free_lists)) { stitch_node = list_first_entry(&lbr_stitch->free_lists, struct stitch_list, node); list_del(&stitch_node->node); return stitch_node; } return malloc(sizeof(struct stitch_list)); } static bool has_stitched_lbr(struct thread *thread, struct perf_sample *cur, struct perf_sample *prev, unsigned int max_lbr, bool callee) { struct branch_stack *cur_stack = cur->branch_stack; struct branch_entry *cur_entries = perf_sample__branch_entries(cur); struct branch_stack *prev_stack = prev->branch_stack; struct branch_entry *prev_entries = perf_sample__branch_entries(prev); struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread); int i, j, nr_identical_branches = 0; struct stitch_list *stitch_node; u64 cur_base, distance; if (!cur_stack || !prev_stack) return false; /* Find the physical index of the base-of-stack for current sample. */ cur_base = max_lbr - cur_stack->nr + cur_stack->hw_idx + 1; distance = (prev_stack->hw_idx > cur_base) ? (prev_stack->hw_idx - cur_base) : (max_lbr + prev_stack->hw_idx - cur_base); /* Previous sample has shorter stack. Nothing can be stitched. */ if (distance + 1 > prev_stack->nr) return false; /* * Check if there are identical LBRs between two samples. * Identical LBRs must have same from, to and flags values. Also, * they have to be saved in the same LBR registers (same physical * index). * * Starts from the base-of-stack of current sample. */ for (i = distance, j = cur_stack->nr - 1; (i >= 0) && (j >= 0); i--, j--) { if ((prev_entries[i].from != cur_entries[j].from) || (prev_entries[i].to != cur_entries[j].to) || (prev_entries[i].flags.value != cur_entries[j].flags.value)) break; nr_identical_branches++; } if (!nr_identical_branches) return false; /* * Save the LBRs between the base-of-stack of previous sample * and the base-of-stack of current sample into lbr_stitch->lists. * These LBRs will be stitched later. */ for (i = prev_stack->nr - 1; i > (int)distance; i--) { if (!lbr_stitch->prev_lbr_cursor[i].valid) continue; stitch_node = get_stitch_node(thread); if (!stitch_node) return false; memcpy(&stitch_node->cursor, &lbr_stitch->prev_lbr_cursor[i], sizeof(struct callchain_cursor_node)); stitch_node->cursor.ms.maps = maps__get(lbr_stitch->prev_lbr_cursor[i].ms.maps); stitch_node->cursor.ms.map = map__get(lbr_stitch->prev_lbr_cursor[i].ms.map); if (callee) list_add(&stitch_node->node, &lbr_stitch->lists); else list_add_tail(&stitch_node->node, &lbr_stitch->lists); } return true; } static bool alloc_lbr_stitch(struct thread *thread, unsigned int max_lbr) { if (thread__lbr_stitch(thread)) return true; thread__set_lbr_stitch(thread, zalloc(sizeof(struct lbr_stitch))); if (!thread__lbr_stitch(thread)) goto err; thread__lbr_stitch(thread)->prev_lbr_cursor = calloc(max_lbr + 1, sizeof(struct callchain_cursor_node)); if (!thread__lbr_stitch(thread)->prev_lbr_cursor) goto free_lbr_stitch; thread__lbr_stitch(thread)->prev_lbr_cursor_size = max_lbr + 1; INIT_LIST_HEAD(&thread__lbr_stitch(thread)->lists); INIT_LIST_HEAD(&thread__lbr_stitch(thread)->free_lists); return true; free_lbr_stitch: free(thread__lbr_stitch(thread)); thread__set_lbr_stitch(thread, NULL); err: pr_warning("Failed to allocate space for stitched LBRs. Disable LBR stitch\n"); thread__set_lbr_stitch_enable(thread, false); return false; } /* * Resolve LBR callstack chain sample * Return: * 1 on success get LBR callchain information * 0 no available LBR callchain information, should try fp * negative error code on other errors. */ static int resolve_lbr_callchain_sample(struct thread *thread, struct callchain_cursor *cursor, struct perf_sample *sample, struct symbol **parent, struct addr_location *root_al, int max_stack, unsigned int max_lbr, bool symbols) { bool callee = (callchain_param.order == ORDER_CALLEE); struct ip_callchain *chain = sample->callchain; int chain_nr = min(max_stack, (int)chain->nr), i; struct lbr_stitch *lbr_stitch; bool stitched_lbr = false; u64 branch_from = 0; int err; for (i = 0; i < chain_nr; i++) { if (chain->ips[i] == PERF_CONTEXT_USER) break; } /* LBR only affects the user callchain */ if (i == chain_nr) return 0; if (thread__lbr_stitch_enable(thread) && !sample->no_hw_idx && (max_lbr > 0) && alloc_lbr_stitch(thread, max_lbr)) { lbr_stitch = thread__lbr_stitch(thread); stitched_lbr = has_stitched_lbr(thread, sample, &lbr_stitch->prev_sample, max_lbr, callee); if (!stitched_lbr && !list_empty(&lbr_stitch->lists)) { struct stitch_list *stitch_node; list_for_each_entry(stitch_node, &lbr_stitch->lists, node) map_symbol__exit(&stitch_node->cursor.ms); list_splice_init(&lbr_stitch->lists, &lbr_stitch->free_lists); } memcpy(&lbr_stitch->prev_sample, sample, sizeof(*sample)); } if (callee) { /* Add kernel ip */ err = lbr_callchain_add_kernel_ip(thread, cursor, sample, parent, root_al, branch_from, true, i, symbols); if (err) goto error; err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent, root_al, &branch_from, true, symbols); if (err) goto error; if (stitched_lbr) { err = lbr_callchain_add_stitched_lbr_ip(thread, cursor); if (err) goto error; } } else { if (stitched_lbr) { err = lbr_callchain_add_stitched_lbr_ip(thread, cursor); if (err) goto error; } err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent, root_al, &branch_from, false, symbols); if (err) goto error; /* Add kernel ip */ err = lbr_callchain_add_kernel_ip(thread, cursor, sample, parent, root_al, branch_from, false, i, symbols); if (err) goto error; } return 1; error: return (err < 0) ? err : 0; } static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread, struct callchain_cursor *cursor, struct symbol **parent, struct addr_location *root_al, u8 *cpumode, int ent, bool symbols) { int err = 0; while (--ent >= 0) { u64 ip = chain->ips[ent]; if (ip >= PERF_CONTEXT_MAX) { err = add_callchain_ip(thread, cursor, parent, root_al, cpumode, ip, false, NULL, NULL, 0, symbols); break; } } return err; } static u64 get_leaf_frame_caller(struct perf_sample *sample, struct thread *thread, int usr_idx) { if (machine__normalized_is(maps__machine(thread__maps(thread)), "arm64")) return get_leaf_frame_caller_aarch64(sample, thread, usr_idx); else return 0; } static int thread__resolve_callchain_sample(struct thread *thread, struct callchain_cursor *cursor, struct evsel *evsel, struct perf_sample *sample, struct symbol **parent, struct addr_location *root_al, int max_stack, bool symbols) { struct branch_stack *branch = sample->branch_stack; struct branch_entry *entries = perf_sample__branch_entries(sample); struct ip_callchain *chain = sample->callchain; int chain_nr = 0; u8 cpumode = PERF_RECORD_MISC_USER; int i, j, err, nr_entries, usr_idx; int skip_idx = -1; int first_call = 0; u64 leaf_frame_caller; if (chain) chain_nr = chain->nr; if (evsel__has_branch_callstack(evsel)) { struct perf_env *env = evsel__env(evsel); err = resolve_lbr_callchain_sample(thread, cursor, sample, parent, root_al, max_stack, !env ? 0 : env->max_branches, symbols); if (err) return (err < 0) ? err : 0; } /* * Based on DWARF debug information, some architectures skip * a callchain entry saved by the kernel. */ skip_idx = arch_skip_callchain_idx(thread, chain); /* * Add branches to call stack for easier browsing. This gives * more context for a sample than just the callers. * * This uses individual histograms of paths compared to the * aggregated histograms the normal LBR mode uses. * * Limitations for now: * - No extra filters * - No annotations (should annotate somehow) */ if (branch && callchain_param.branch_callstack) { int nr = min(max_stack, (int)branch->nr); struct branch_entry be[nr]; struct iterations iter[nr]; if (branch->nr > PERF_MAX_BRANCH_DEPTH) { pr_warning("corrupted branch chain. skipping...\n"); goto check_calls; } for (i = 0; i < nr; i++) { if (callchain_param.order == ORDER_CALLEE) { be[i] = entries[i]; if (chain == NULL) continue; /* * Check for overlap into the callchain. * The return address is one off compared to * the branch entry. To adjust for this * assume the calling instruction is not longer * than 8 bytes. */ if (i == skip_idx || chain->ips[first_call] >= PERF_CONTEXT_MAX) first_call++; else if (be[i].from < chain->ips[first_call] && be[i].from >= chain->ips[first_call] - 8) first_call++; } else be[i] = entries[branch->nr - i - 1]; } memset(iter, 0, sizeof(struct iterations) * nr); nr = remove_loops(be, nr, iter); for (i = 0; i < nr; i++) { err = add_callchain_ip(thread, cursor, parent, root_al, NULL, be[i].to, true, &be[i].flags, NULL, be[i].from, symbols); if (!err) { err = add_callchain_ip(thread, cursor, parent, root_al, NULL, be[i].from, true, &be[i].flags, &iter[i], 0, symbols); } if (err == -EINVAL) break; if (err) return err; } if (chain_nr == 0) return 0; chain_nr -= nr; } check_calls: if (chain && callchain_param.order != ORDER_CALLEE) { err = find_prev_cpumode(chain, thread, cursor, parent, root_al, &cpumode, chain->nr - first_call, symbols); if (err) return (err < 0) ? err : 0; } for (i = first_call, nr_entries = 0; i < chain_nr && nr_entries < max_stack; i++) { u64 ip; if (callchain_param.order == ORDER_CALLEE) j = i; else j = chain->nr - i - 1; #ifdef HAVE_SKIP_CALLCHAIN_IDX if (j == skip_idx) continue; #endif ip = chain->ips[j]; if (ip < PERF_CONTEXT_MAX) ++nr_entries; else if (callchain_param.order != ORDER_CALLEE) { err = find_prev_cpumode(chain, thread, cursor, parent, root_al, &cpumode, j, symbols); if (err) return (err < 0) ? err : 0; continue; } /* * PERF_CONTEXT_USER allows us to locate where the user stack ends. * Depending on callchain_param.order and the position of PERF_CONTEXT_USER, * the index will be different in order to add the missing frame * at the right place. */ usr_idx = callchain_param.order == ORDER_CALLEE ? j-2 : j-1; if (usr_idx >= 0 && chain->ips[usr_idx] == PERF_CONTEXT_USER) { leaf_frame_caller = get_leaf_frame_caller(sample, thread, usr_idx); /* * check if leaf_frame_Caller != ip to not add the same * value twice. */ if (leaf_frame_caller && leaf_frame_caller != ip) { err = add_callchain_ip(thread, cursor, parent, root_al, &cpumode, leaf_frame_caller, false, NULL, NULL, 0, symbols); if (err) return (err < 0) ? err : 0; } } err = add_callchain_ip(thread, cursor, parent, root_al, &cpumode, ip, false, NULL, NULL, 0, symbols); if (err) return (err < 0) ? err : 0; } return 0; } static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip) { struct symbol *sym = ms->sym; struct map *map = ms->map; struct inline_node *inline_node; struct inline_list *ilist; struct dso *dso; u64 addr; int ret = 1; struct map_symbol ilist_ms; if (!symbol_conf.inline_name || !map || !sym) return ret; addr = map__dso_map_ip(map, ip); addr = map__rip_2objdump(map, addr); dso = map__dso(map); inline_node = inlines__tree_find(dso__inlined_nodes(dso), addr); if (!inline_node) { inline_node = dso__parse_addr_inlines(dso, addr, sym); if (!inline_node) return ret; inlines__tree_insert(dso__inlined_nodes(dso), inline_node); } ilist_ms = (struct map_symbol) { .maps = maps__get(ms->maps), .map = map__get(map), }; list_for_each_entry(ilist, &inline_node->val, list) { ilist_ms.sym = ilist->symbol; ret = callchain_cursor_append(cursor, ip, &ilist_ms, false, NULL, 0, 0, 0, ilist->srcline); if (ret != 0) return ret; } map_symbol__exit(&ilist_ms); return ret; } static int unwind_entry(struct unwind_entry *entry, void *arg) { struct callchain_cursor *cursor = arg; const char *srcline = NULL; u64 addr = entry->ip; if (symbol_conf.hide_unresolved && entry->ms.sym == NULL) return 0; if (append_inlines(cursor, &entry->ms, entry->ip) == 0) return 0; /* * Convert entry->ip from a virtual address to an offset in * its corresponding binary. */ if (entry->ms.map) addr = map__dso_map_ip(entry->ms.map, entry->ip); srcline = callchain_srcline(&entry->ms, addr); return callchain_cursor_append(cursor, entry->ip, &entry->ms, false, NULL, 0, 0, 0, srcline); } static int thread__resolve_callchain_unwind(struct thread *thread, struct callchain_cursor *cursor, struct evsel *evsel, struct perf_sample *sample, int max_stack, bool symbols) { /* Can we do dwarf post unwind? */ if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) && (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER))) return 0; /* Bail out if nothing was captured. */ if ((!sample->user_regs.regs) || (!sample->user_stack.size)) return 0; if (!symbols) pr_debug("Not resolving symbols with an unwinder isn't currently supported\n"); return unwind__get_entries(unwind_entry, cursor, thread, sample, max_stack, false); } int __thread__resolve_callchain(struct thread *thread, struct callchain_cursor *cursor, struct evsel *evsel, struct perf_sample *sample, struct symbol **parent, struct addr_location *root_al, int max_stack, bool symbols) { int ret = 0; if (cursor == NULL) return -ENOMEM; callchain_cursor_reset(cursor); if (callchain_param.order == ORDER_CALLEE) { ret = thread__resolve_callchain_sample(thread, cursor, evsel, sample, parent, root_al, max_stack, symbols); if (ret) return ret; ret = thread__resolve_callchain_unwind(thread, cursor, evsel, sample, max_stack, symbols); } else { ret = thread__resolve_callchain_unwind(thread, cursor, evsel, sample, max_stack, symbols); if (ret) return ret; ret = thread__resolve_callchain_sample(thread, cursor, evsel, sample, parent, root_al, max_stack, symbols); } return ret; } int machine__for_each_thread(struct machine *machine, int (*fn)(struct thread *thread, void *p), void *priv) { return threads__for_each_thread(&machine->threads, fn, priv); } int machines__for_each_thread(struct machines *machines, int (*fn)(struct thread *thread, void *p), void *priv) { struct rb_node *nd; int rc = 0; rc = machine__for_each_thread(&machines->host, fn, priv); if (rc != 0) return rc; for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { struct machine *machine = rb_entry(nd, struct machine, rb_node); rc = machine__for_each_thread(machine, fn, priv); if (rc != 0) return rc; } return rc; } static int thread_list_cb(struct thread *thread, void *data) { struct list_head *list = data; struct thread_list *entry = malloc(sizeof(*entry)); if (!entry) return -ENOMEM; entry->thread = thread__get(thread); list_add_tail(&entry->list, list); return 0; } int machine__thread_list(struct machine *machine, struct list_head *list) { return machine__for_each_thread(machine, thread_list_cb, list); } void thread_list__delete(struct list_head *list) { struct thread_list *pos, *next; list_for_each_entry_safe(pos, next, list, list) { thread__zput(pos->thread); list_del(&pos->list); free(pos); } } pid_t machine__get_current_tid(struct machine *machine, int cpu) { if (cpu < 0 || (size_t)cpu >= machine->current_tid_sz) return -1; return machine->current_tid[cpu]; } int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid, pid_t tid) { struct thread *thread; const pid_t init_val = -1; if (cpu < 0) return -EINVAL; if (realloc_array_as_needed(machine->current_tid, machine->current_tid_sz, (unsigned int)cpu, &init_val)) return -ENOMEM; machine->current_tid[cpu] = tid; thread = machine__findnew_thread(machine, pid, tid); if (!thread) return -ENOMEM; thread__set_cpu(thread, cpu); thread__put(thread); return 0; } /* * Compares the raw arch string. N.B. see instead perf_env__arch() or * machine__normalized_is() if a normalized arch is needed. */ bool machine__is(struct machine *machine, const char *arch) { return machine && !strcmp(perf_env__raw_arch(machine->env), arch); } bool machine__normalized_is(struct machine *machine, const char *arch) { return machine && !strcmp(perf_env__arch(machine->env), arch); } int machine__nr_cpus_avail(struct machine *machine) { return machine ? perf_env__nr_cpus_avail(machine->env) : 0; } int machine__get_kernel_start(struct machine *machine) { struct map *map = machine__kernel_map(machine); int err = 0; /* * The only addresses above 2^63 are kernel addresses of a 64-bit * kernel. Note that addresses are unsigned so that on a 32-bit system * all addresses including kernel addresses are less than 2^32. In * that case (32-bit system), if the kernel mapping is unknown, all * addresses will be assumed to be in user space - see * machine__kernel_ip(). */ machine->kernel_start = 1ULL << 63; if (map) { err = map__load(map); /* * On x86_64, PTI entry trampolines are less than the * start of kernel text, but still above 2^63. So leave * kernel_start = 1ULL << 63 for x86_64. */ if (!err && !machine__is(machine, "x86_64")) machine->kernel_start = map__start(map); } return err; } u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr) { u8 addr_cpumode = cpumode; bool kernel_ip; if (!machine->single_address_space) goto out; kernel_ip = machine__kernel_ip(machine, addr); switch (cpumode) { case PERF_RECORD_MISC_KERNEL: case PERF_RECORD_MISC_USER: addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL : PERF_RECORD_MISC_USER; break; case PERF_RECORD_MISC_GUEST_KERNEL: case PERF_RECORD_MISC_GUEST_USER: addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL : PERF_RECORD_MISC_GUEST_USER; break; default: break; } out: return addr_cpumode; } struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename, const struct dso_id *id) { return dsos__findnew_id(&machine->dsos, filename, id); } struct dso *machine__findnew_dso(struct machine *machine, const char *filename) { return machine__findnew_dso_id(machine, filename, NULL); } char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp) { struct machine *machine = vmachine; struct map *map; struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map); if (sym == NULL) return NULL; *modp = __map__is_kmodule(map) ? (char *)dso__short_name(map__dso(map)) : NULL; *addrp = map__unmap_ip(map, sym->start); return sym->name; } struct machine__for_each_dso_cb_args { struct machine *machine; machine__dso_t fn; void *priv; }; static int machine__for_each_dso_cb(struct dso *dso, void *data) { struct machine__for_each_dso_cb_args *args = data; return args->fn(dso, args->machine, args->priv); } int machine__for_each_dso(struct machine *machine, machine__dso_t fn, void *priv) { struct machine__for_each_dso_cb_args args = { .machine = machine, .fn = fn, .priv = priv, }; return dsos__for_each_dso(&machine->dsos, machine__for_each_dso_cb, &args); } int machine__for_each_kernel_map(struct machine *machine, machine__map_t fn, void *priv) { struct maps *maps = machine__kernel_maps(machine); return maps__for_each_map(maps, fn, priv); } bool machine__is_lock_function(struct machine *machine, u64 addr) { if (!machine->sched.text_start) { struct map *kmap; struct symbol *sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_start", &kmap); if (!sym) { /* to avoid retry */ machine->sched.text_start = 1; return false; } machine->sched.text_start = map__unmap_ip(kmap, sym->start); /* should not fail from here */ sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_end", &kmap); machine->sched.text_end = map__unmap_ip(kmap, sym->start); sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_start", &kmap); machine->lock.text_start = map__unmap_ip(kmap, sym->start); sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_end", &kmap); machine->lock.text_end = map__unmap_ip(kmap, sym->start); sym = machine__find_kernel_symbol_by_name(machine, "__traceiter_contention_begin", &kmap); if (sym) { machine->traceiter.text_start = map__unmap_ip(kmap, sym->start); machine->traceiter.text_end = map__unmap_ip(kmap, sym->end); } sym = machine__find_kernel_symbol_by_name(machine, "trace_contention_begin", &kmap); if (sym) { machine->trace.text_start = map__unmap_ip(kmap, sym->start); machine->trace.text_end = map__unmap_ip(kmap, sym->end); } } /* failed to get kernel symbols */ if (machine->sched.text_start == 1) return false; /* mutex and rwsem functions are in sched text section */ if (machine->sched.text_start <= addr && addr < machine->sched.text_end) return true; /* spinlock functions are in lock text section */ if (machine->lock.text_start <= addr && addr < machine->lock.text_end) return true; /* traceiter functions currently don't have their own section * but we consider them lock functions */ if (machine->traceiter.text_start != 0) { if (machine->traceiter.text_start <= addr && addr < machine->traceiter.text_end) return true; } if (machine->trace.text_start != 0) { if (machine->trace.text_start <= addr && addr < machine->trace.text_end) return true; } return false; } int machine__hit_all_dsos(struct machine *machine) { return dsos__hit_all(&machine->dsos); }