// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2011-2017, Red Hat Inc, Arnaldo Carvalho de Melo * * Parts came from evlist.c builtin-{top,stat,record}.c, see those files for further * copyright notes. */ #include #include #include #include #include #include #include // sysconf() #include #ifdef HAVE_LIBNUMA_SUPPORT #include #endif #include "cpumap.h" #include "debug.h" #include "event.h" #include "mmap.h" #include "../perf.h" #include /* page_size */ size_t mmap__mmap_len(struct mmap *map) { return perf_mmap__mmap_len(&map->core); } /* When check_messup is true, 'end' must points to a good entry */ static union perf_event *perf_mmap__read(struct mmap *map, u64 *startp, u64 end) { unsigned char *data = map->core.base + page_size; union perf_event *event = NULL; int diff = end - *startp; if (diff >= (int)sizeof(event->header)) { size_t size; event = (union perf_event *)&data[*startp & map->core.mask]; size = event->header.size; if (size < sizeof(event->header) || diff < (int)size) return NULL; /* * Event straddles the mmap boundary -- header should always * be inside due to u64 alignment of output. */ if ((*startp & map->core.mask) + size != ((*startp + size) & map->core.mask)) { unsigned int offset = *startp; unsigned int len = min(sizeof(*event), size), cpy; void *dst = map->core.event_copy; do { cpy = min(map->core.mask + 1 - (offset & map->core.mask), len); memcpy(dst, &data[offset & map->core.mask], cpy); offset += cpy; dst += cpy; len -= cpy; } while (len); event = (union perf_event *)map->core.event_copy; } *startp += size; } return event; } /* * Read event from ring buffer one by one. * Return one event for each call. * * Usage: * perf_mmap__read_init() * while(event = perf_mmap__read_event()) { * //process the event * perf_mmap__consume() * } * perf_mmap__read_done() */ union perf_event *perf_mmap__read_event(struct mmap *map) { union perf_event *event; /* * Check if event was unmapped due to a POLLHUP/POLLERR. */ if (!refcount_read(&map->core.refcnt)) return NULL; /* non-overwirte doesn't pause the ringbuffer */ if (!map->core.overwrite) map->core.end = perf_mmap__read_head(&map->core); event = perf_mmap__read(map, &map->core.start, map->core.end); if (!map->core.overwrite) map->core.prev = map->core.start; return event; } int __weak auxtrace_mmap__mmap(struct auxtrace_mmap *mm __maybe_unused, struct auxtrace_mmap_params *mp __maybe_unused, void *userpg __maybe_unused, int fd __maybe_unused) { return 0; } void __weak auxtrace_mmap__munmap(struct auxtrace_mmap *mm __maybe_unused) { } void __weak auxtrace_mmap_params__init(struct auxtrace_mmap_params *mp __maybe_unused, off_t auxtrace_offset __maybe_unused, unsigned int auxtrace_pages __maybe_unused, bool auxtrace_overwrite __maybe_unused) { } void __weak auxtrace_mmap_params__set_idx(struct auxtrace_mmap_params *mp __maybe_unused, struct evlist *evlist __maybe_unused, int idx __maybe_unused, bool per_cpu __maybe_unused) { } #ifdef HAVE_AIO_SUPPORT static int perf_mmap__aio_enabled(struct mmap *map) { return map->aio.nr_cblocks > 0; } #ifdef HAVE_LIBNUMA_SUPPORT static int perf_mmap__aio_alloc(struct mmap *map, int idx) { map->aio.data[idx] = mmap(NULL, mmap__mmap_len(map), PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, 0, 0); if (map->aio.data[idx] == MAP_FAILED) { map->aio.data[idx] = NULL; return -1; } return 0; } static void perf_mmap__aio_free(struct mmap *map, int idx) { if (map->aio.data[idx]) { munmap(map->aio.data[idx], mmap__mmap_len(map)); map->aio.data[idx] = NULL; } } static int perf_mmap__aio_bind(struct mmap *map, int idx, int cpu, int affinity) { void *data; size_t mmap_len; unsigned long node_mask; if (affinity != PERF_AFFINITY_SYS && cpu__max_node() > 1) { data = map->aio.data[idx]; mmap_len = mmap__mmap_len(map); node_mask = 1UL << cpu__get_node(cpu); if (mbind(data, mmap_len, MPOL_BIND, &node_mask, 1, 0)) { pr_err("Failed to bind [%p-%p] AIO buffer to node %d: error %m\n", data, data + mmap_len, cpu__get_node(cpu)); return -1; } } return 0; } #else /* !HAVE_LIBNUMA_SUPPORT */ static int perf_mmap__aio_alloc(struct mmap *map, int idx) { map->aio.data[idx] = malloc(mmap__mmap_len(map)); if (map->aio.data[idx] == NULL) return -1; return 0; } static void perf_mmap__aio_free(struct mmap *map, int idx) { zfree(&(map->aio.data[idx])); } static int perf_mmap__aio_bind(struct mmap *map __maybe_unused, int idx __maybe_unused, int cpu __maybe_unused, int affinity __maybe_unused) { return 0; } #endif static int perf_mmap__aio_mmap(struct mmap *map, struct mmap_params *mp) { int delta_max, i, prio, ret; map->aio.nr_cblocks = mp->nr_cblocks; if (map->aio.nr_cblocks) { map->aio.aiocb = calloc(map->aio.nr_cblocks, sizeof(struct aiocb *)); if (!map->aio.aiocb) { pr_debug2("failed to allocate aiocb for data buffer, error %m\n"); return -1; } map->aio.cblocks = calloc(map->aio.nr_cblocks, sizeof(struct aiocb)); if (!map->aio.cblocks) { pr_debug2("failed to allocate cblocks for data buffer, error %m\n"); return -1; } map->aio.data = calloc(map->aio.nr_cblocks, sizeof(void *)); if (!map->aio.data) { pr_debug2("failed to allocate data buffer, error %m\n"); return -1; } delta_max = sysconf(_SC_AIO_PRIO_DELTA_MAX); for (i = 0; i < map->aio.nr_cblocks; ++i) { ret = perf_mmap__aio_alloc(map, i); if (ret == -1) { pr_debug2("failed to allocate data buffer area, error %m"); return -1; } ret = perf_mmap__aio_bind(map, i, map->core.cpu, mp->affinity); if (ret == -1) return -1; /* * Use cblock.aio_fildes value different from -1 * to denote started aio write operation on the * cblock so it requires explicit record__aio_sync() * call prior the cblock may be reused again. */ map->aio.cblocks[i].aio_fildes = -1; /* * Allocate cblocks with priority delta to have * faster aio write system calls because queued requests * are kept in separate per-prio queues and adding * a new request will iterate thru shorter per-prio * list. Blocks with numbers higher than * _SC_AIO_PRIO_DELTA_MAX go with priority 0. */ prio = delta_max - i; map->aio.cblocks[i].aio_reqprio = prio >= 0 ? prio : 0; } } return 0; } static void perf_mmap__aio_munmap(struct mmap *map) { int i; for (i = 0; i < map->aio.nr_cblocks; ++i) perf_mmap__aio_free(map, i); if (map->aio.data) zfree(&map->aio.data); zfree(&map->aio.cblocks); zfree(&map->aio.aiocb); } #else /* !HAVE_AIO_SUPPORT */ static int perf_mmap__aio_enabled(struct mmap *map __maybe_unused) { return 0; } static int perf_mmap__aio_mmap(struct mmap *map __maybe_unused, struct mmap_params *mp __maybe_unused) { return 0; } static void perf_mmap__aio_munmap(struct mmap *map __maybe_unused) { } #endif void mmap__munmap(struct mmap *map) { perf_mmap__aio_munmap(map); if (map->data != NULL) { munmap(map->data, mmap__mmap_len(map)); map->data = NULL; } auxtrace_mmap__munmap(&map->auxtrace_mmap); } static void build_node_mask(int node, cpu_set_t *mask) { int c, cpu, nr_cpus; const struct perf_cpu_map *cpu_map = NULL; cpu_map = cpu_map__online(); if (!cpu_map) return; nr_cpus = perf_cpu_map__nr(cpu_map); for (c = 0; c < nr_cpus; c++) { cpu = cpu_map->map[c]; /* map c index to online cpu index */ if (cpu__get_node(cpu) == node) CPU_SET(cpu, mask); } } static void perf_mmap__setup_affinity_mask(struct mmap *map, struct mmap_params *mp) { CPU_ZERO(&map->affinity_mask); if (mp->affinity == PERF_AFFINITY_NODE && cpu__max_node() > 1) build_node_mask(cpu__get_node(map->core.cpu), &map->affinity_mask); else if (mp->affinity == PERF_AFFINITY_CPU) CPU_SET(map->core.cpu, &map->affinity_mask); } int mmap__mmap(struct mmap *map, struct mmap_params *mp, int fd, int cpu) { /* * The last one will be done at perf_mmap__consume(), so that we * make sure we don't prevent tools from consuming every last event in * the ring buffer. * * I.e. we can get the POLLHUP meaning that the fd doesn't exist * anymore, but the last events for it are still in the ring buffer, * waiting to be consumed. * * Tools can chose to ignore this at their own discretion, but the * evlist layer can't just drop it when filtering events in * perf_evlist__filter_pollfd(). */ refcount_set(&map->core.refcnt, 2); if (perf_mmap__mmap(&map->core, &mp->core, fd, cpu)) { pr_debug2("failed to mmap perf event ring buffer, error %d\n", errno); return -1; } perf_mmap__setup_affinity_mask(map, mp); map->core.flush = mp->flush; map->comp_level = mp->comp_level; if (map->comp_level && !perf_mmap__aio_enabled(map)) { map->data = mmap(NULL, mmap__mmap_len(map), PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, 0, 0); if (map->data == MAP_FAILED) { pr_debug2("failed to mmap data buffer, error %d\n", errno); map->data = NULL; return -1; } } if (auxtrace_mmap__mmap(&map->auxtrace_mmap, &mp->auxtrace_mp, map->core.base, fd)) return -1; return perf_mmap__aio_mmap(map, mp); } int perf_mmap__push(struct mmap *md, void *to, int push(struct mmap *map, void *to, void *buf, size_t size)) { u64 head = perf_mmap__read_head(&md->core); unsigned char *data = md->core.base + page_size; unsigned long size; void *buf; int rc = 0; rc = perf_mmap__read_init(&md->core); if (rc < 0) return (rc == -EAGAIN) ? 1 : -1; size = md->core.end - md->core.start; if ((md->core.start & md->core.mask) + size != (md->core.end & md->core.mask)) { buf = &data[md->core.start & md->core.mask]; size = md->core.mask + 1 - (md->core.start & md->core.mask); md->core.start += size; if (push(md, to, buf, size) < 0) { rc = -1; goto out; } } buf = &data[md->core.start & md->core.mask]; size = md->core.end - md->core.start; md->core.start += size; if (push(md, to, buf, size) < 0) { rc = -1; goto out; } md->core.prev = head; perf_mmap__consume(&md->core); out: return rc; } /* * Mandatory for overwrite mode * The direction of overwrite mode is backward. * The last perf_mmap__read() will set tail to map->core.prev. * Need to correct the map->core.prev to head which is the end of next read. */ void perf_mmap__read_done(struct mmap *map) { /* * Check if event was unmapped due to a POLLHUP/POLLERR. */ if (!refcount_read(&map->core.refcnt)) return; map->core.prev = perf_mmap__read_head(&map->core); }