// SPDX-License-Identifier: GPL-2.0 #include #include #include #include #include #include "counts.h" #include "cpumap.h" #include "debug.h" #include "header.h" #include "stat.h" #include "session.h" #include "target.h" #include "evlist.h" #include "evsel.h" #include "thread_map.h" #include "util/hashmap.h" #include void update_stats(struct stats *stats, u64 val) { double delta; stats->n++; delta = val - stats->mean; stats->mean += delta / stats->n; stats->M2 += delta*(val - stats->mean); if (val > stats->max) stats->max = val; if (val < stats->min) stats->min = val; } double avg_stats(struct stats *stats) { return stats->mean; } /* * http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance * * (\Sum n_i^2) - ((\Sum n_i)^2)/n * s^2 = ------------------------------- * n - 1 * * http://en.wikipedia.org/wiki/Stddev * * The std dev of the mean is related to the std dev by: * * s * s_mean = ------- * sqrt(n) * */ double stddev_stats(struct stats *stats) { double variance, variance_mean; if (stats->n < 2) return 0.0; variance = stats->M2 / (stats->n - 1); variance_mean = variance / stats->n; return sqrt(variance_mean); } double rel_stddev_stats(double stddev, double avg) { double pct = 0.0; if (avg) pct = 100.0 * stddev/avg; return pct; } static void evsel__reset_aggr_stats(struct evsel *evsel) { struct perf_stat_evsel *ps = evsel->stats; struct perf_stat_aggr *aggr = ps->aggr; if (aggr) memset(aggr, 0, sizeof(*aggr) * ps->nr_aggr); } static void evsel__reset_stat_priv(struct evsel *evsel) { struct perf_stat_evsel *ps = evsel->stats; init_stats(&ps->res_stats); evsel__reset_aggr_stats(evsel); } static int evsel__alloc_aggr_stats(struct evsel *evsel, int nr_aggr) { struct perf_stat_evsel *ps = evsel->stats; if (ps == NULL) return 0; ps->nr_aggr = nr_aggr; ps->aggr = calloc(nr_aggr, sizeof(*ps->aggr)); if (ps->aggr == NULL) return -ENOMEM; return 0; } int evlist__alloc_aggr_stats(struct evlist *evlist, int nr_aggr) { struct evsel *evsel; evlist__for_each_entry(evlist, evsel) { if (evsel__alloc_aggr_stats(evsel, nr_aggr) < 0) return -1; } return 0; } static int evsel__alloc_stat_priv(struct evsel *evsel, int nr_aggr) { struct perf_stat_evsel *ps; ps = zalloc(sizeof(*ps)); if (ps == NULL) return -ENOMEM; evsel->stats = ps; if (nr_aggr && evsel__alloc_aggr_stats(evsel, nr_aggr) < 0) { evsel->stats = NULL; free(ps); return -ENOMEM; } evsel__reset_stat_priv(evsel); return 0; } static void evsel__free_stat_priv(struct evsel *evsel) { struct perf_stat_evsel *ps = evsel->stats; if (ps) { zfree(&ps->aggr); zfree(&ps->group_data); } zfree(&evsel->stats); } static int evsel__alloc_prev_raw_counts(struct evsel *evsel) { int cpu_map_nr = evsel__nr_cpus(evsel); int nthreads = perf_thread_map__nr(evsel->core.threads); struct perf_counts *counts; counts = perf_counts__new(cpu_map_nr, nthreads); if (counts) evsel->prev_raw_counts = counts; return counts ? 0 : -ENOMEM; } static void evsel__free_prev_raw_counts(struct evsel *evsel) { perf_counts__delete(evsel->prev_raw_counts); evsel->prev_raw_counts = NULL; } static void evsel__reset_prev_raw_counts(struct evsel *evsel) { if (evsel->prev_raw_counts) perf_counts__reset(evsel->prev_raw_counts); } static int evsel__alloc_stats(struct evsel *evsel, int nr_aggr, bool alloc_raw) { if (evsel__alloc_stat_priv(evsel, nr_aggr) < 0 || evsel__alloc_counts(evsel) < 0 || (alloc_raw && evsel__alloc_prev_raw_counts(evsel) < 0)) return -ENOMEM; return 0; } int evlist__alloc_stats(struct perf_stat_config *config, struct evlist *evlist, bool alloc_raw) { struct evsel *evsel; int nr_aggr = 0; if (config && config->aggr_map) nr_aggr = config->aggr_map->nr; evlist__for_each_entry(evlist, evsel) { if (evsel__alloc_stats(evsel, nr_aggr, alloc_raw)) goto out_free; } return 0; out_free: evlist__free_stats(evlist); return -1; } void evlist__free_stats(struct evlist *evlist) { struct evsel *evsel; evlist__for_each_entry(evlist, evsel) { evsel__free_stat_priv(evsel); evsel__free_counts(evsel); evsel__free_prev_raw_counts(evsel); } } void evlist__reset_stats(struct evlist *evlist) { struct evsel *evsel; evlist__for_each_entry(evlist, evsel) { evsel__reset_stat_priv(evsel); evsel__reset_counts(evsel); } } void evlist__reset_aggr_stats(struct evlist *evlist) { struct evsel *evsel; evlist__for_each_entry(evlist, evsel) evsel__reset_aggr_stats(evsel); } void evlist__reset_prev_raw_counts(struct evlist *evlist) { struct evsel *evsel; evlist__for_each_entry(evlist, evsel) evsel__reset_prev_raw_counts(evsel); } static void evsel__copy_prev_raw_counts(struct evsel *evsel) { int idx, nthreads = perf_thread_map__nr(evsel->core.threads); for (int thread = 0; thread < nthreads; thread++) { perf_cpu_map__for_each_idx(idx, evsel__cpus(evsel)) { *perf_counts(evsel->counts, idx, thread) = *perf_counts(evsel->prev_raw_counts, idx, thread); } } } void evlist__copy_prev_raw_counts(struct evlist *evlist) { struct evsel *evsel; evlist__for_each_entry(evlist, evsel) evsel__copy_prev_raw_counts(evsel); } static void evsel__copy_res_stats(struct evsel *evsel) { struct perf_stat_evsel *ps = evsel->stats; /* * For GLOBAL aggregation mode, it updates the counts for each run * in the evsel->stats.res_stats. See perf_stat_process_counter(). */ *ps->aggr[0].counts.values = avg_stats(&ps->res_stats); } void evlist__copy_res_stats(struct perf_stat_config *config, struct evlist *evlist) { struct evsel *evsel; if (config->aggr_mode != AGGR_GLOBAL) return; evlist__for_each_entry(evlist, evsel) evsel__copy_res_stats(evsel); } static size_t pkg_id_hash(long __key, void *ctx __maybe_unused) { uint64_t *key = (uint64_t *) __key; return *key & 0xffffffff; } static bool pkg_id_equal(long __key1, long __key2, void *ctx __maybe_unused) { uint64_t *key1 = (uint64_t *) __key1; uint64_t *key2 = (uint64_t *) __key2; return *key1 == *key2; } static int check_per_pkg(struct evsel *counter, struct perf_counts_values *vals, int cpu_map_idx, bool *skip) { struct hashmap *mask = counter->per_pkg_mask; struct perf_cpu_map *cpus = evsel__cpus(counter); struct perf_cpu cpu = perf_cpu_map__cpu(cpus, cpu_map_idx); int s, d, ret = 0; uint64_t *key; *skip = false; if (!counter->per_pkg) return 0; if (perf_cpu_map__is_any_cpu_or_is_empty(cpus)) return 0; if (!mask) { mask = hashmap__new(pkg_id_hash, pkg_id_equal, NULL); if (IS_ERR(mask)) return -ENOMEM; counter->per_pkg_mask = mask; } /* * we do not consider an event that has not run as a good * instance to mark a package as used (skip=1). Otherwise * we may run into a situation where the first CPU in a package * is not running anything, yet the second is, and this function * would mark the package as used after the first CPU and would * not read the values from the second CPU. */ if (!(vals->run && vals->ena)) return 0; s = cpu__get_socket_id(cpu); if (s < 0) return -1; /* * On multi-die system, die_id > 0. On no-die system, die_id = 0. * We use hashmap(socket, die) to check the used socket+die pair. */ d = cpu__get_die_id(cpu); if (d < 0) return -1; key = malloc(sizeof(*key)); if (!key) return -ENOMEM; *key = (uint64_t)d << 32 | s; if (hashmap__find(mask, key, NULL)) { *skip = true; free(key); } else ret = hashmap__add(mask, key, 1); return ret; } static bool evsel__count_has_error(struct evsel *evsel, struct perf_counts_values *count, struct perf_stat_config *config) { /* the evsel was failed already */ if (evsel->err || evsel->counts->scaled == -1) return true; /* this is meaningful for CPU aggregation modes only */ if (config->aggr_mode == AGGR_GLOBAL) return false; /* it's considered ok when it actually ran */ if (count->ena != 0 && count->run != 0) return false; return true; } static int process_counter_values(struct perf_stat_config *config, struct evsel *evsel, int cpu_map_idx, int thread, struct perf_counts_values *count) { struct perf_stat_evsel *ps = evsel->stats; static struct perf_counts_values zero; bool skip = false; if (check_per_pkg(evsel, count, cpu_map_idx, &skip)) { pr_err("failed to read per-pkg counter\n"); return -1; } if (skip) count = &zero; if (!evsel->snapshot) evsel__compute_deltas(evsel, cpu_map_idx, thread, count); perf_counts_values__scale(count, config->scale, NULL); if (config->aggr_mode == AGGR_THREAD) { struct perf_counts_values *aggr_counts = &ps->aggr[thread].counts; /* * Skip value 0 when enabling --per-thread globally, * otherwise too many 0 output. */ if (count->val == 0 && config->system_wide) return 0; ps->aggr[thread].nr++; aggr_counts->val += count->val; aggr_counts->ena += count->ena; aggr_counts->run += count->run; return 0; } if (ps->aggr) { struct perf_cpu cpu = perf_cpu_map__cpu(evsel->core.cpus, cpu_map_idx); struct aggr_cpu_id aggr_id = config->aggr_get_id(config, cpu); struct perf_stat_aggr *ps_aggr; int i; for (i = 0; i < ps->nr_aggr; i++) { if (!aggr_cpu_id__equal(&aggr_id, &config->aggr_map->map[i])) continue; ps_aggr = &ps->aggr[i]; ps_aggr->nr++; /* * When any result is bad, make them all to give consistent output * in interval mode. But per-task counters can have 0 enabled time * when some tasks are idle. */ if (evsel__count_has_error(evsel, count, config) && !ps_aggr->failed) { ps_aggr->counts.val = 0; ps_aggr->counts.ena = 0; ps_aggr->counts.run = 0; ps_aggr->failed = true; } if (!ps_aggr->failed) { ps_aggr->counts.val += count->val; ps_aggr->counts.ena += count->ena; ps_aggr->counts.run += count->run; } break; } } return 0; } static int process_counter_maps(struct perf_stat_config *config, struct evsel *counter) { int nthreads = perf_thread_map__nr(counter->core.threads); int ncpus = evsel__nr_cpus(counter); int idx, thread; for (thread = 0; thread < nthreads; thread++) { for (idx = 0; idx < ncpus; idx++) { if (process_counter_values(config, counter, idx, thread, perf_counts(counter->counts, idx, thread))) return -1; } } return 0; } int perf_stat_process_counter(struct perf_stat_config *config, struct evsel *counter) { struct perf_stat_evsel *ps = counter->stats; u64 *count; int ret; if (counter->per_pkg) evsel__zero_per_pkg(counter); ret = process_counter_maps(config, counter); if (ret) return ret; if (config->aggr_mode != AGGR_GLOBAL) return 0; /* * GLOBAL aggregation mode only has a single aggr counts, * so we can use ps->aggr[0] as the actual output. */ count = ps->aggr[0].counts.values; update_stats(&ps->res_stats, *count); if (verbose > 0) { fprintf(config->output, "%s: %" PRIu64 " %" PRIu64 " %" PRIu64 "\n", evsel__name(counter), count[0], count[1], count[2]); } return 0; } static int evsel__merge_aggr_counters(struct evsel *evsel, struct evsel *alias) { struct perf_stat_evsel *ps_a = evsel->stats; struct perf_stat_evsel *ps_b = alias->stats; int i; if (ps_a->aggr == NULL && ps_b->aggr == NULL) return 0; if (ps_a->nr_aggr != ps_b->nr_aggr) { pr_err("Unmatched aggregation mode between aliases\n"); return -1; } for (i = 0; i < ps_a->nr_aggr; i++) { struct perf_counts_values *aggr_counts_a = &ps_a->aggr[i].counts; struct perf_counts_values *aggr_counts_b = &ps_b->aggr[i].counts; /* NB: don't increase aggr.nr for aliases */ aggr_counts_a->val += aggr_counts_b->val; aggr_counts_a->ena += aggr_counts_b->ena; aggr_counts_a->run += aggr_counts_b->run; } return 0; } /* events should have the same name, scale, unit, cgroup but on different PMUs */ static bool evsel__is_alias(struct evsel *evsel_a, struct evsel *evsel_b) { if (strcmp(evsel__name(evsel_a), evsel__name(evsel_b))) return false; if (evsel_a->scale != evsel_b->scale) return false; if (evsel_a->cgrp != evsel_b->cgrp) return false; if (strcmp(evsel_a->unit, evsel_b->unit)) return false; if (evsel__is_clock(evsel_a) != evsel__is_clock(evsel_b)) return false; return evsel_a->pmu != evsel_b->pmu; } static void evsel__merge_aliases(struct evsel *evsel) { struct evlist *evlist = evsel->evlist; struct evsel *alias; alias = list_prepare_entry(evsel, &(evlist->core.entries), core.node); list_for_each_entry_continue(alias, &evlist->core.entries, core.node) { /* Merge the same events on different PMUs. */ if (evsel__is_alias(evsel, alias)) { evsel__merge_aggr_counters(evsel, alias); alias->merged_stat = true; } } } static bool evsel__should_merge_hybrid(const struct evsel *evsel, const struct perf_stat_config *config) { return config->hybrid_merge && evsel__is_hybrid(evsel); } static void evsel__merge_stats(struct evsel *evsel, struct perf_stat_config *config) { /* this evsel is already merged */ if (evsel->merged_stat) return; if (evsel->auto_merge_stats || evsel__should_merge_hybrid(evsel, config)) evsel__merge_aliases(evsel); } /* merge the same uncore and hybrid events if requested */ void perf_stat_merge_counters(struct perf_stat_config *config, struct evlist *evlist) { struct evsel *evsel; if (config->aggr_mode == AGGR_NONE) return; evlist__for_each_entry(evlist, evsel) evsel__merge_stats(evsel, config); } static void evsel__update_percore_stats(struct evsel *evsel, struct aggr_cpu_id *core_id) { struct perf_stat_evsel *ps = evsel->stats; struct perf_counts_values counts = { 0, }; struct aggr_cpu_id id; struct perf_cpu cpu; int idx; /* collect per-core counts */ perf_cpu_map__for_each_cpu(cpu, idx, evsel->core.cpus) { struct perf_stat_aggr *aggr = &ps->aggr[idx]; id = aggr_cpu_id__core(cpu, NULL); if (!aggr_cpu_id__equal(core_id, &id)) continue; counts.val += aggr->counts.val; counts.ena += aggr->counts.ena; counts.run += aggr->counts.run; } /* update aggregated per-core counts for each CPU */ perf_cpu_map__for_each_cpu(cpu, idx, evsel->core.cpus) { struct perf_stat_aggr *aggr = &ps->aggr[idx]; id = aggr_cpu_id__core(cpu, NULL); if (!aggr_cpu_id__equal(core_id, &id)) continue; aggr->counts.val = counts.val; aggr->counts.ena = counts.ena; aggr->counts.run = counts.run; aggr->used = true; } } /* we have an aggr_map for cpu, but want to aggregate the counters per-core */ static void evsel__process_percore(struct evsel *evsel) { struct perf_stat_evsel *ps = evsel->stats; struct aggr_cpu_id core_id; struct perf_cpu cpu; int idx; if (!evsel->percore) return; perf_cpu_map__for_each_cpu(cpu, idx, evsel->core.cpus) { struct perf_stat_aggr *aggr = &ps->aggr[idx]; if (aggr->used) continue; core_id = aggr_cpu_id__core(cpu, NULL); evsel__update_percore_stats(evsel, &core_id); } } /* process cpu stats on per-core events */ void perf_stat_process_percore(struct perf_stat_config *config, struct evlist *evlist) { struct evsel *evsel; if (config->aggr_mode != AGGR_NONE) return; evlist__for_each_entry(evlist, evsel) evsel__process_percore(evsel); } int perf_event__process_stat_event(struct perf_session *session, union perf_event *event) { struct perf_counts_values count, *ptr; struct perf_record_stat *st = &event->stat; struct evsel *counter; int cpu_map_idx; count.val = st->val; count.ena = st->ena; count.run = st->run; counter = evlist__id2evsel(session->evlist, st->id); if (!counter) { pr_err("Failed to resolve counter for stat event.\n"); return -EINVAL; } cpu_map_idx = perf_cpu_map__idx(evsel__cpus(counter), (struct perf_cpu){.cpu = st->cpu}); if (cpu_map_idx == -1) { pr_err("Invalid CPU %d for event %s.\n", st->cpu, evsel__name(counter)); return -EINVAL; } ptr = perf_counts(counter->counts, cpu_map_idx, st->thread); if (ptr == NULL) { pr_err("Failed to find perf count for CPU %d thread %d on event %s.\n", st->cpu, st->thread, evsel__name(counter)); return -EINVAL; } *ptr = count; counter->supported = true; return 0; } size_t perf_event__fprintf_stat(union perf_event *event, FILE *fp) { struct perf_record_stat *st = (struct perf_record_stat *)event; size_t ret; ret = fprintf(fp, "\n... id %" PRI_lu64 ", cpu %d, thread %d\n", st->id, st->cpu, st->thread); ret += fprintf(fp, "... value %" PRI_lu64 ", enabled %" PRI_lu64 ", running %" PRI_lu64 "\n", st->val, st->ena, st->run); return ret; } size_t perf_event__fprintf_stat_round(union perf_event *event, FILE *fp) { struct perf_record_stat_round *rd = (struct perf_record_stat_round *)event; size_t ret; ret = fprintf(fp, "\n... time %" PRI_lu64 ", type %s\n", rd->time, rd->type == PERF_STAT_ROUND_TYPE__FINAL ? "FINAL" : "INTERVAL"); return ret; } size_t perf_event__fprintf_stat_config(union perf_event *event, FILE *fp) { struct perf_stat_config sc = {}; size_t ret; perf_event__read_stat_config(&sc, &event->stat_config); ret = fprintf(fp, "\n"); ret += fprintf(fp, "... aggr_mode %d\n", sc.aggr_mode); ret += fprintf(fp, "... scale %d\n", sc.scale); ret += fprintf(fp, "... interval %u\n", sc.interval); return ret; } int create_perf_stat_counter(struct evsel *evsel, struct perf_stat_config *config, struct target *target, int cpu_map_idx) { struct perf_event_attr *attr = &evsel->core.attr; struct evsel *leader = evsel__leader(evsel); attr->read_format = PERF_FORMAT_TOTAL_TIME_ENABLED | PERF_FORMAT_TOTAL_TIME_RUNNING; /* * The event is part of non trivial group, let's enable * the group read (for leader) and ID retrieval for all * members. */ if (leader->core.nr_members > 1) attr->read_format |= PERF_FORMAT_ID|PERF_FORMAT_GROUP; attr->inherit = !config->no_inherit && list_empty(&evsel->bpf_counter_list); /* * Some events get initialized with sample_(period/type) set, * like tracepoints. Clear it up for counting. */ attr->sample_period = 0; if (config->identifier) attr->sample_type = PERF_SAMPLE_IDENTIFIER; if (config->all_user) { attr->exclude_kernel = 1; attr->exclude_user = 0; } if (config->all_kernel) { attr->exclude_kernel = 0; attr->exclude_user = 1; } /* * Disabling all counters initially, they will be enabled * either manually by us or by kernel via enable_on_exec * set later. */ if (evsel__is_group_leader(evsel)) { attr->disabled = 1; if (target__enable_on_exec(target)) attr->enable_on_exec = 1; } if (target__has_cpu(target) && !target__has_per_thread(target)) return evsel__open_per_cpu(evsel, evsel__cpus(evsel), cpu_map_idx); return evsel__open_per_thread(evsel, evsel->core.threads); }