// SPDX-License-Identifier: GPL-2.0 /* * KVM demand paging test * Adapted from dirty_log_test.c * * Copyright (C) 2018, Red Hat, Inc. * Copyright (C) 2019, Google, Inc. */ #define _GNU_SOURCE /* for pipe2 */ #include #include #include #include #include #include #include #include "kvm_util.h" #include "test_util.h" #include "memstress.h" #include "guest_modes.h" #include "userfaultfd_util.h" #ifdef __NR_userfaultfd static int nr_vcpus = 1; static uint64_t guest_percpu_mem_size = DEFAULT_PER_VCPU_MEM_SIZE; static size_t demand_paging_size; static char *guest_data_prototype; static void vcpu_worker(struct memstress_vcpu_args *vcpu_args) { struct kvm_vcpu *vcpu = vcpu_args->vcpu; int vcpu_idx = vcpu_args->vcpu_idx; struct kvm_run *run = vcpu->run; struct timespec start; struct timespec ts_diff; int ret; clock_gettime(CLOCK_MONOTONIC, &start); /* Let the guest access its memory */ ret = _vcpu_run(vcpu); TEST_ASSERT(ret == 0, "vcpu_run failed: %d", ret); if (get_ucall(vcpu, NULL) != UCALL_SYNC) { TEST_ASSERT(false, "Invalid guest sync status: exit_reason=%s", exit_reason_str(run->exit_reason)); } ts_diff = timespec_elapsed(start); PER_VCPU_DEBUG("vCPU %d execution time: %ld.%.9lds\n", vcpu_idx, ts_diff.tv_sec, ts_diff.tv_nsec); } static int handle_uffd_page_request(int uffd_mode, int uffd, struct uffd_msg *msg) { pid_t tid = syscall(__NR_gettid); uint64_t addr = msg->arg.pagefault.address; struct timespec start; struct timespec ts_diff; int r; clock_gettime(CLOCK_MONOTONIC, &start); if (uffd_mode == UFFDIO_REGISTER_MODE_MISSING) { struct uffdio_copy copy; copy.src = (uint64_t)guest_data_prototype; copy.dst = addr; copy.len = demand_paging_size; copy.mode = 0; r = ioctl(uffd, UFFDIO_COPY, ©); /* * With multiple vCPU threads fault on a single page and there are * multiple readers for the UFFD, at least one of the UFFDIO_COPYs * will fail with EEXIST: handle that case without signaling an * error. * * Note that this also suppress any EEXISTs occurring from, * e.g., the first UFFDIO_COPY/CONTINUEs on a page. That never * happens here, but a realistic VMM might potentially maintain * some external state to correctly surface EEXISTs to userspace * (or prevent duplicate COPY/CONTINUEs in the first place). */ if (r == -1 && errno != EEXIST) { pr_info("Failed UFFDIO_COPY in 0x%lx from thread %d, errno = %d\n", addr, tid, errno); return r; } } else if (uffd_mode == UFFDIO_REGISTER_MODE_MINOR) { struct uffdio_continue cont = {0}; cont.range.start = addr; cont.range.len = demand_paging_size; r = ioctl(uffd, UFFDIO_CONTINUE, &cont); /* * With multiple vCPU threads fault on a single page and there are * multiple readers for the UFFD, at least one of the UFFDIO_COPYs * will fail with EEXIST: handle that case without signaling an * error. * * Note that this also suppress any EEXISTs occurring from, * e.g., the first UFFDIO_COPY/CONTINUEs on a page. That never * happens here, but a realistic VMM might potentially maintain * some external state to correctly surface EEXISTs to userspace * (or prevent duplicate COPY/CONTINUEs in the first place). */ if (r == -1 && errno != EEXIST) { pr_info("Failed UFFDIO_CONTINUE in 0x%lx, thread %d, errno = %d\n", addr, tid, errno); return r; } } else { TEST_FAIL("Invalid uffd mode %d", uffd_mode); } ts_diff = timespec_elapsed(start); PER_PAGE_DEBUG("UFFD page-in %d \t%ld ns\n", tid, timespec_to_ns(ts_diff)); PER_PAGE_DEBUG("Paged in %ld bytes at 0x%lx from thread %d\n", demand_paging_size, addr, tid); return 0; } struct test_params { int uffd_mode; bool single_uffd; useconds_t uffd_delay; int readers_per_uffd; enum vm_mem_backing_src_type src_type; bool partition_vcpu_memory_access; }; static void prefault_mem(void *alias, uint64_t len) { size_t p; TEST_ASSERT(alias != NULL, "Alias required for minor faults"); for (p = 0; p < (len / demand_paging_size); ++p) { memcpy(alias + (p * demand_paging_size), guest_data_prototype, demand_paging_size); } } static void run_test(enum vm_guest_mode mode, void *arg) { struct memstress_vcpu_args *vcpu_args; struct test_params *p = arg; struct uffd_desc **uffd_descs = NULL; uint64_t uffd_region_size; struct timespec start; struct timespec ts_diff; double vcpu_paging_rate; struct kvm_vm *vm; int i, num_uffds = 0; vm = memstress_create_vm(mode, nr_vcpus, guest_percpu_mem_size, 1, p->src_type, p->partition_vcpu_memory_access); demand_paging_size = get_backing_src_pagesz(p->src_type); guest_data_prototype = malloc(demand_paging_size); TEST_ASSERT(guest_data_prototype, "Failed to allocate buffer for guest data pattern"); memset(guest_data_prototype, 0xAB, demand_paging_size); if (p->uffd_mode == UFFDIO_REGISTER_MODE_MINOR) { num_uffds = p->single_uffd ? 1 : nr_vcpus; for (i = 0; i < num_uffds; i++) { vcpu_args = &memstress_args.vcpu_args[i]; prefault_mem(addr_gpa2alias(vm, vcpu_args->gpa), vcpu_args->pages * memstress_args.guest_page_size); } } if (p->uffd_mode) { num_uffds = p->single_uffd ? 1 : nr_vcpus; uffd_region_size = nr_vcpus * guest_percpu_mem_size / num_uffds; uffd_descs = malloc(num_uffds * sizeof(struct uffd_desc *)); TEST_ASSERT(uffd_descs, "Memory allocation failed"); for (i = 0; i < num_uffds; i++) { struct memstress_vcpu_args *vcpu_args; void *vcpu_hva; vcpu_args = &memstress_args.vcpu_args[i]; /* Cache the host addresses of the region */ vcpu_hva = addr_gpa2hva(vm, vcpu_args->gpa); /* * Set up user fault fd to handle demand paging * requests. */ uffd_descs[i] = uffd_setup_demand_paging( p->uffd_mode, p->uffd_delay, vcpu_hva, uffd_region_size, p->readers_per_uffd, &handle_uffd_page_request); } } pr_info("Finished creating vCPUs and starting uffd threads\n"); clock_gettime(CLOCK_MONOTONIC, &start); memstress_start_vcpu_threads(nr_vcpus, vcpu_worker); pr_info("Started all vCPUs\n"); memstress_join_vcpu_threads(nr_vcpus); ts_diff = timespec_elapsed(start); pr_info("All vCPU threads joined\n"); if (p->uffd_mode) { /* Tell the user fault fd handler threads to quit */ for (i = 0; i < num_uffds; i++) uffd_stop_demand_paging(uffd_descs[i]); } pr_info("Total guest execution time:\t%ld.%.9lds\n", ts_diff.tv_sec, ts_diff.tv_nsec); vcpu_paging_rate = memstress_args.vcpu_args[0].pages / ((double)ts_diff.tv_sec + (double)ts_diff.tv_nsec / NSEC_PER_SEC); pr_info("Per-vcpu demand paging rate:\t%f pgs/sec/vcpu\n", vcpu_paging_rate); pr_info("Overall demand paging rate:\t%f pgs/sec\n", vcpu_paging_rate * nr_vcpus); memstress_destroy_vm(vm); free(guest_data_prototype); if (p->uffd_mode) free(uffd_descs); } static void help(char *name) { puts(""); printf("usage: %s [-h] [-m vm_mode] [-u uffd_mode] [-a]\n" " [-d uffd_delay_usec] [-r readers_per_uffd] [-b memory]\n" " [-s type] [-v vcpus] [-c cpu_list] [-o]\n", name); guest_modes_help(); printf(" -u: use userfaultfd to handle vCPU page faults. Mode is a\n" " UFFD registration mode: 'MISSING' or 'MINOR'.\n"); kvm_print_vcpu_pinning_help(); printf(" -a: Use a single userfaultfd for all of guest memory, instead of\n" " creating one for each region paged by a unique vCPU\n" " Set implicitly with -o, and no effect without -u.\n"); printf(" -d: add a delay in usec to the User Fault\n" " FD handler to simulate demand paging\n" " overheads. Ignored without -u.\n"); printf(" -r: Set the number of reader threads per uffd.\n"); printf(" -b: specify the size of the memory region which should be\n" " demand paged by each vCPU. e.g. 10M or 3G.\n" " Default: 1G\n"); backing_src_help("-s"); printf(" -v: specify the number of vCPUs to run.\n"); printf(" -o: Overlap guest memory accesses instead of partitioning\n" " them into a separate region of memory for each vCPU.\n"); puts(""); exit(0); } int main(int argc, char *argv[]) { int max_vcpus = kvm_check_cap(KVM_CAP_MAX_VCPUS); const char *cpulist = NULL; struct test_params p = { .src_type = DEFAULT_VM_MEM_SRC, .partition_vcpu_memory_access = true, .readers_per_uffd = 1, .single_uffd = false, }; int opt; guest_modes_append_default(); while ((opt = getopt(argc, argv, "ahom:u:d:b:s:v:c:r:")) != -1) { switch (opt) { case 'm': guest_modes_cmdline(optarg); break; case 'u': if (!strcmp("MISSING", optarg)) p.uffd_mode = UFFDIO_REGISTER_MODE_MISSING; else if (!strcmp("MINOR", optarg)) p.uffd_mode = UFFDIO_REGISTER_MODE_MINOR; TEST_ASSERT(p.uffd_mode, "UFFD mode must be 'MISSING' or 'MINOR'."); break; case 'a': p.single_uffd = true; break; case 'd': p.uffd_delay = strtoul(optarg, NULL, 0); TEST_ASSERT(p.uffd_delay >= 0, "A negative UFFD delay is not supported."); break; case 'b': guest_percpu_mem_size = parse_size(optarg); break; case 's': p.src_type = parse_backing_src_type(optarg); break; case 'v': nr_vcpus = atoi_positive("Number of vCPUs", optarg); TEST_ASSERT(nr_vcpus <= max_vcpus, "Invalid number of vcpus, must be between 1 and %d", max_vcpus); break; case 'c': cpulist = optarg; break; case 'o': p.partition_vcpu_memory_access = false; p.single_uffd = true; break; case 'r': p.readers_per_uffd = atoi(optarg); TEST_ASSERT(p.readers_per_uffd >= 1, "Invalid number of readers per uffd %d: must be >=1", p.readers_per_uffd); break; case 'h': default: help(argv[0]); break; } } if (p.uffd_mode == UFFDIO_REGISTER_MODE_MINOR && !backing_src_is_shared(p.src_type)) { TEST_FAIL("userfaultfd MINOR mode requires shared memory; pick a different -s"); } if (cpulist) { kvm_parse_vcpu_pinning(cpulist, memstress_args.vcpu_to_pcpu, nr_vcpus); memstress_args.pin_vcpus = true; } for_each_guest_mode(run_test, &p); return 0; } #else /* __NR_userfaultfd */ #warning "missing __NR_userfaultfd definition" int main(void) { print_skip("__NR_userfaultfd must be present for userfaultfd test"); return KSFT_SKIP; } #endif /* __NR_userfaultfd */