/* * Stress userfaultfd syscall. * * Copyright (C) 2015 Red Hat, Inc. * * This work is licensed under the terms of the GNU GPL, version 2. See * the COPYING file in the top-level directory. * * This test allocates two virtual areas and bounces the physical * memory across the two virtual areas (from area_src to area_dst) * using userfaultfd. * * There are three threads running per CPU: * * 1) one per-CPU thread takes a per-page pthread_mutex in a random * page of the area_dst (while the physical page may still be in * area_src), and increments a per-page counter in the same page, * and checks its value against a verification region. * * 2) another per-CPU thread handles the userfaults generated by * thread 1 above. userfaultfd blocking reads or poll() modes are * exercised interleaved. * * 3) one last per-CPU thread transfers the memory in the background * at maximum bandwidth (if not already transferred by thread * 2). Each cpu thread takes cares of transferring a portion of the * area. * * When all threads of type 3 completed the transfer, one bounce is * complete. area_src and area_dst are then swapped. All threads are * respawned and so the bounce is immediately restarted in the * opposite direction. * * per-CPU threads 1 by triggering userfaults inside * pthread_mutex_lock will also verify the atomicity of the memory * transfer (UFFDIO_COPY). * * The program takes two parameters: the amounts of physical memory in * megabytes (MiB) of the area and the number of bounces to execute. * * # 100MiB 99999 bounces * ./userfaultfd 100 99999 * * # 1GiB 99 bounces * ./userfaultfd 1000 99 * * # 10MiB-~6GiB 999 bounces, continue forever unless an error triggers * while ./userfaultfd $[RANDOM % 6000 + 10] 999; do true; done */ #define _GNU_SOURCE #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "../../../../include/uapi/linux/userfaultfd.h" #ifdef __x86_64__ #define __NR_userfaultfd 323 #elif defined(__i386__) #define __NR_userfaultfd 359 #elif defined(__powewrpc__) #define __NR_userfaultfd 364 #else #error "missing __NR_userfaultfd definition" #endif static unsigned long nr_cpus, nr_pages, nr_pages_per_cpu, page_size; #define BOUNCE_RANDOM (1<<0) #define BOUNCE_RACINGFAULTS (1<<1) #define BOUNCE_VERIFY (1<<2) #define BOUNCE_POLL (1<<3) static int bounces; static unsigned long long *count_verify; static int uffd, finished, *pipefd; static char *area_src, *area_dst; static char *zeropage; pthread_attr_t attr; /* pthread_mutex_t starts at page offset 0 */ #define area_mutex(___area, ___nr) \ ((pthread_mutex_t *) ((___area) + (___nr)*page_size)) /* * count is placed in the page after pthread_mutex_t naturally aligned * to avoid non alignment faults on non-x86 archs. */ #define area_count(___area, ___nr) \ ((volatile unsigned long long *) ((unsigned long) \ ((___area) + (___nr)*page_size + \ sizeof(pthread_mutex_t) + \ sizeof(unsigned long long) - 1) & \ ~(unsigned long)(sizeof(unsigned long long) \ - 1))) static int my_bcmp(char *str1, char *str2, size_t n) { unsigned long i; for (i = 0; i < n; i++) if (str1[i] != str2[i]) return 1; return 0; } static void *locking_thread(void *arg) { unsigned long cpu = (unsigned long) arg; struct random_data rand; unsigned long page_nr = *(&(page_nr)); /* uninitialized warning */ int32_t rand_nr; unsigned long long count; char randstate[64]; unsigned int seed; time_t start; if (bounces & BOUNCE_RANDOM) { seed = (unsigned int) time(NULL) - bounces; if (!(bounces & BOUNCE_RACINGFAULTS)) seed += cpu; bzero(&rand, sizeof(rand)); bzero(&randstate, sizeof(randstate)); if (initstate_r(seed, randstate, sizeof(randstate), &rand)) fprintf(stderr, "srandom_r error\n"), exit(1); } else { page_nr = -bounces; if (!(bounces & BOUNCE_RACINGFAULTS)) page_nr += cpu * nr_pages_per_cpu; } while (!finished) { if (bounces & BOUNCE_RANDOM) { if (random_r(&rand, &rand_nr)) fprintf(stderr, "random_r 1 error\n"), exit(1); page_nr = rand_nr; if (sizeof(page_nr) > sizeof(rand_nr)) { if (random_r(&rand, &rand_nr)) fprintf(stderr, "random_r 2 error\n"), exit(1); page_nr |= ((unsigned long) rand_nr) << 32; } } else page_nr += 1; page_nr %= nr_pages; start = time(NULL); if (bounces & BOUNCE_VERIFY) { count = *area_count(area_dst, page_nr); if (!count) fprintf(stderr, "page_nr %lu wrong count %Lu %Lu\n", page_nr, count, count_verify[page_nr]), exit(1); /* * We can't use bcmp (or memcmp) because that * returns 0 erroneously if the memory is * changing under it (even if the end of the * page is never changing and always * different). */ #if 1 if (!my_bcmp(area_dst + page_nr * page_size, zeropage, page_size)) fprintf(stderr, "my_bcmp page_nr %lu wrong count %Lu %Lu\n", page_nr, count, count_verify[page_nr]), exit(1); #else unsigned long loops; loops = 0; /* uncomment the below line to test with mutex */ /* pthread_mutex_lock(area_mutex(area_dst, page_nr)); */ while (!bcmp(area_dst + page_nr * page_size, zeropage, page_size)) { loops += 1; if (loops > 10) break; } /* uncomment below line to test with mutex */ /* pthread_mutex_unlock(area_mutex(area_dst, page_nr)); */ if (loops) { fprintf(stderr, "page_nr %lu all zero thread %lu %p %lu\n", page_nr, cpu, area_dst + page_nr * page_size, loops); if (loops > 10) exit(1); } #endif } pthread_mutex_lock(area_mutex(area_dst, page_nr)); count = *area_count(area_dst, page_nr); if (count != count_verify[page_nr]) { fprintf(stderr, "page_nr %lu memory corruption %Lu %Lu\n", page_nr, count, count_verify[page_nr]), exit(1); } count++; *area_count(area_dst, page_nr) = count_verify[page_nr] = count; pthread_mutex_unlock(area_mutex(area_dst, page_nr)); if (time(NULL) - start > 1) fprintf(stderr, "userfault too slow %ld " "possible false positive with overcommit\n", time(NULL) - start); } return NULL; } static int copy_page(unsigned long offset) { struct uffdio_copy uffdio_copy; if (offset >= nr_pages * page_size) fprintf(stderr, "unexpected offset %lu\n", offset), exit(1); uffdio_copy.dst = (unsigned long) area_dst + offset; uffdio_copy.src = (unsigned long) area_src + offset; uffdio_copy.len = page_size; uffdio_copy.mode = 0; uffdio_copy.copy = 0; if (ioctl(uffd, UFFDIO_COPY, &uffdio_copy)) { /* real retval in ufdio_copy.copy */ if (uffdio_copy.copy != -EEXIST) fprintf(stderr, "UFFDIO_COPY error %Ld\n", uffdio_copy.copy), exit(1); } else if (uffdio_copy.copy != page_size) { fprintf(stderr, "UFFDIO_COPY unexpected copy %Ld\n", uffdio_copy.copy), exit(1); } else return 1; return 0; } static void *uffd_poll_thread(void *arg) { unsigned long cpu = (unsigned long) arg; struct pollfd pollfd[2]; struct uffd_msg msg; int ret; unsigned long offset; char tmp_chr; unsigned long userfaults = 0; pollfd[0].fd = uffd; pollfd[0].events = POLLIN; pollfd[1].fd = pipefd[cpu*2]; pollfd[1].events = POLLIN; for (;;) { ret = poll(pollfd, 2, -1); if (!ret) fprintf(stderr, "poll error %d\n", ret), exit(1); if (ret < 0) perror("poll"), exit(1); if (pollfd[1].revents & POLLIN) { if (read(pollfd[1].fd, &tmp_chr, 1) != 1) fprintf(stderr, "read pipefd error\n"), exit(1); break; } if (!(pollfd[0].revents & POLLIN)) fprintf(stderr, "pollfd[0].revents %d\n", pollfd[0].revents), exit(1); ret = read(uffd, &msg, sizeof(msg)); if (ret < 0) { if (errno == EAGAIN) continue; perror("nonblocking read error"), exit(1); } if (msg.event != UFFD_EVENT_PAGEFAULT) fprintf(stderr, "unexpected msg event %u\n", msg.event), exit(1); if (msg.arg.pagefault.flags & UFFD_PAGEFAULT_FLAG_WRITE) fprintf(stderr, "unexpected write fault\n"), exit(1); offset = (char *)msg.arg.pagefault.address - area_dst; offset &= ~(page_size-1); if (copy_page(offset)) userfaults++; } return (void *)userfaults; } pthread_mutex_t uffd_read_mutex = PTHREAD_MUTEX_INITIALIZER; static void *uffd_read_thread(void *arg) { unsigned long *this_cpu_userfaults; struct uffd_msg msg; unsigned long offset; int ret; this_cpu_userfaults = (unsigned long *) arg; *this_cpu_userfaults = 0; pthread_mutex_unlock(&uffd_read_mutex); /* from here cancellation is ok */ for (;;) { ret = read(uffd, &msg, sizeof(msg)); if (ret != sizeof(msg)) { if (ret < 0) perror("blocking read error"), exit(1); else fprintf(stderr, "short read\n"), exit(1); } if (msg.event != UFFD_EVENT_PAGEFAULT) fprintf(stderr, "unexpected msg event %u\n", msg.event), exit(1); if (bounces & BOUNCE_VERIFY && msg.arg.pagefault.flags & UFFD_PAGEFAULT_FLAG_WRITE) fprintf(stderr, "unexpected write fault\n"), exit(1); offset = (char *)msg.arg.pagefault.address - area_dst; offset &= ~(page_size-1); if (copy_page(offset)) (*this_cpu_userfaults)++; } return (void *)NULL; } static void *background_thread(void *arg) { unsigned long cpu = (unsigned long) arg; unsigned long page_nr; for (page_nr = cpu * nr_pages_per_cpu; page_nr < (cpu+1) * nr_pages_per_cpu; page_nr++) copy_page(page_nr * page_size); return NULL; } static int stress(unsigned long *userfaults) { unsigned long cpu; pthread_t locking_threads[nr_cpus]; pthread_t uffd_threads[nr_cpus]; pthread_t background_threads[nr_cpus]; void **_userfaults = (void **) userfaults; finished = 0; for (cpu = 0; cpu < nr_cpus; cpu++) { if (pthread_create(&locking_threads[cpu], &attr, locking_thread, (void *)cpu)) return 1; if (bounces & BOUNCE_POLL) { if (pthread_create(&uffd_threads[cpu], &attr, uffd_poll_thread, (void *)cpu)) return 1; } else { if (pthread_create(&uffd_threads[cpu], &attr, uffd_read_thread, &_userfaults[cpu])) return 1; pthread_mutex_lock(&uffd_read_mutex); } if (pthread_create(&background_threads[cpu], &attr, background_thread, (void *)cpu)) return 1; } for (cpu = 0; cpu < nr_cpus; cpu++) if (pthread_join(background_threads[cpu], NULL)) return 1; /* * Be strict and immediately zap area_src, the whole area has * been transferred already by the background treads. The * area_src could then be faulted in in a racy way by still * running uffdio_threads reading zeropages after we zapped * area_src (but they're guaranteed to get -EEXIST from * UFFDIO_COPY without writing zero pages into area_dst * because the background threads already completed). */ if (madvise(area_src, nr_pages * page_size, MADV_DONTNEED)) { perror("madvise"); return 1; } for (cpu = 0; cpu < nr_cpus; cpu++) { char c; if (bounces & BOUNCE_POLL) { if (write(pipefd[cpu*2+1], &c, 1) != 1) { fprintf(stderr, "pipefd write error\n"); return 1; } if (pthread_join(uffd_threads[cpu], &_userfaults[cpu])) return 1; } else { if (pthread_cancel(uffd_threads[cpu])) return 1; if (pthread_join(uffd_threads[cpu], NULL)) return 1; } } finished = 1; for (cpu = 0; cpu < nr_cpus; cpu++) if (pthread_join(locking_threads[cpu], NULL)) return 1; return 0; } static int userfaultfd_stress(void) { void *area; char *tmp_area; unsigned long nr; struct uffdio_register uffdio_register; struct uffdio_api uffdio_api; unsigned long cpu; int uffd_flags; unsigned long userfaults[nr_cpus]; if (posix_memalign(&area, page_size, nr_pages * page_size)) { fprintf(stderr, "out of memory\n"); return 1; } area_src = area; if (posix_memalign(&area, page_size, nr_pages * page_size)) { fprintf(stderr, "out of memory\n"); return 1; } area_dst = area; uffd = syscall(__NR_userfaultfd, O_CLOEXEC | O_NONBLOCK); if (uffd < 0) { fprintf(stderr, "userfaultfd syscall not available in this kernel\n"); return 1; } uffd_flags = fcntl(uffd, F_GETFD, NULL); uffdio_api.api = UFFD_API; uffdio_api.features = 0; if (ioctl(uffd, UFFDIO_API, &uffdio_api)) { fprintf(stderr, "UFFDIO_API\n"); return 1; } if (uffdio_api.api != UFFD_API) { fprintf(stderr, "UFFDIO_API error %Lu\n", uffdio_api.api); return 1; } count_verify = malloc(nr_pages * sizeof(unsigned long long)); if (!count_verify) { perror("count_verify"); return 1; } for (nr = 0; nr < nr_pages; nr++) { *area_mutex(area_src, nr) = (pthread_mutex_t) PTHREAD_MUTEX_INITIALIZER; count_verify[nr] = *area_count(area_src, nr) = 1; } pipefd = malloc(sizeof(int) * nr_cpus * 2); if (!pipefd) { perror("pipefd"); return 1; } for (cpu = 0; cpu < nr_cpus; cpu++) { if (pipe2(&pipefd[cpu*2], O_CLOEXEC | O_NONBLOCK)) { perror("pipe"); return 1; } } if (posix_memalign(&area, page_size, page_size)) { fprintf(stderr, "out of memory\n"); return 1; } zeropage = area; bzero(zeropage, page_size); pthread_mutex_lock(&uffd_read_mutex); pthread_attr_init(&attr); pthread_attr_setstacksize(&attr, 16*1024*1024); while (bounces--) { unsigned long expected_ioctls; printf("bounces: %d, mode:", bounces); if (bounces & BOUNCE_RANDOM) printf(" rnd"); if (bounces & BOUNCE_RACINGFAULTS) printf(" racing"); if (bounces & BOUNCE_VERIFY) printf(" ver"); if (bounces & BOUNCE_POLL) printf(" poll"); printf(", "); fflush(stdout); if (bounces & BOUNCE_POLL) fcntl(uffd, F_SETFL, uffd_flags | O_NONBLOCK); else fcntl(uffd, F_SETFL, uffd_flags & ~O_NONBLOCK); /* register */ uffdio_register.range.start = (unsigned long) area_dst; uffdio_register.range.len = nr_pages * page_size; uffdio_register.mode = UFFDIO_REGISTER_MODE_MISSING; if (ioctl(uffd, UFFDIO_REGISTER, &uffdio_register)) { fprintf(stderr, "register failure\n"); return 1; } expected_ioctls = (1 << _UFFDIO_WAKE) | (1 << _UFFDIO_COPY) | (1 << _UFFDIO_ZEROPAGE); if ((uffdio_register.ioctls & expected_ioctls) != expected_ioctls) { fprintf(stderr, "unexpected missing ioctl for anon memory\n"); return 1; } /* * The madvise done previously isn't enough: some * uffd_thread could have read userfaults (one of * those already resolved by the background thread) * and it may be in the process of calling * UFFDIO_COPY. UFFDIO_COPY will read the zapped * area_src and it would map a zero page in it (of * course such a UFFDIO_COPY is perfectly safe as it'd * return -EEXIST). The problem comes at the next * bounce though: that racing UFFDIO_COPY would * generate zeropages in the area_src, so invalidating * the previous MADV_DONTNEED. Without this additional * MADV_DONTNEED those zeropages leftovers in the * area_src would lead to -EEXIST failure during the * next bounce, effectively leaving a zeropage in the * area_dst. * * Try to comment this out madvise to see the memory * corruption being caught pretty quick. * * khugepaged is also inhibited to collapse THP after * MADV_DONTNEED only after the UFFDIO_REGISTER, so it's * required to MADV_DONTNEED here. */ if (madvise(area_dst, nr_pages * page_size, MADV_DONTNEED)) { perror("madvise 2"); return 1; } /* bounce pass */ if (stress(userfaults)) return 1; /* unregister */ if (ioctl(uffd, UFFDIO_UNREGISTER, &uffdio_register.range)) { fprintf(stderr, "register failure\n"); return 1; } /* verification */ if (bounces & BOUNCE_VERIFY) { for (nr = 0; nr < nr_pages; nr++) { if (my_bcmp(area_dst, area_dst + nr * page_size, sizeof(pthread_mutex_t))) { fprintf(stderr, "error mutex 2 %lu\n", nr); bounces = 0; } if (*area_count(area_dst, nr) != count_verify[nr]) { fprintf(stderr, "error area_count %Lu %Lu %lu\n", *area_count(area_src, nr), count_verify[nr], nr); bounces = 0; } } } /* prepare next bounce */ tmp_area = area_src; area_src = area_dst; area_dst = tmp_area; printf("userfaults:"); for (cpu = 0; cpu < nr_cpus; cpu++) printf(" %lu", userfaults[cpu]); printf("\n"); } return 0; } int main(int argc, char **argv) { if (argc < 3) fprintf(stderr, "Usage: \n"), exit(1); nr_cpus = sysconf(_SC_NPROCESSORS_ONLN); page_size = sysconf(_SC_PAGE_SIZE); if ((unsigned long) area_count(NULL, 0) + sizeof(unsigned long long) > page_size) fprintf(stderr, "Impossible to run this test\n"), exit(2); nr_pages_per_cpu = atol(argv[1]) * 1024*1024 / page_size / nr_cpus; if (!nr_pages_per_cpu) { fprintf(stderr, "invalid MiB\n"); fprintf(stderr, "Usage: \n"), exit(1); } bounces = atoi(argv[2]); if (bounces <= 0) { fprintf(stderr, "invalid bounces\n"); fprintf(stderr, "Usage: \n"), exit(1); } nr_pages = nr_pages_per_cpu * nr_cpus; printf("nr_pages: %lu, nr_pages_per_cpu: %lu\n", nr_pages, nr_pages_per_cpu); return userfaultfd_stress(); }