// SPDX-License-Identifier: GPL-2.0-only /* * Stress userfaultfd syscall. * * Copyright (C) 2015 Red Hat, Inc. * * This test allocates two virtual areas and bounces the physical * memory across the two virtual areas (from area_src to area_dst) * using userfaultfd. * * There are three threads running per CPU: * * 1) one per-CPU thread takes a per-page pthread_mutex in a random * page of the area_dst (while the physical page may still be in * area_src), and increments a per-page counter in the same page, * and checks its value against a verification region. * * 2) another per-CPU thread handles the userfaults generated by * thread 1 above. userfaultfd blocking reads or poll() modes are * exercised interleaved. * * 3) one last per-CPU thread transfers the memory in the background * at maximum bandwidth (if not already transferred by thread * 2). Each cpu thread takes cares of transferring a portion of the * area. * * When all threads of type 3 completed the transfer, one bounce is * complete. area_src and area_dst are then swapped. All threads are * respawned and so the bounce is immediately restarted in the * opposite direction. * * per-CPU threads 1 by triggering userfaults inside * pthread_mutex_lock will also verify the atomicity of the memory * transfer (UFFDIO_COPY). */ #define _GNU_SOURCE #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "../kselftest.h" #ifdef __NR_userfaultfd static unsigned long nr_cpus, nr_pages, nr_pages_per_cpu, page_size; #define BOUNCE_RANDOM (1<<0) #define BOUNCE_RACINGFAULTS (1<<1) #define BOUNCE_VERIFY (1<<2) #define BOUNCE_POLL (1<<3) static int bounces; #define TEST_ANON 1 #define TEST_HUGETLB 2 #define TEST_SHMEM 3 static int test_type; /* exercise the test_uffdio_*_eexist every ALARM_INTERVAL_SECS */ #define ALARM_INTERVAL_SECS 10 static volatile bool test_uffdio_copy_eexist = true; static volatile bool test_uffdio_zeropage_eexist = true; /* Whether to test uffd write-protection */ static bool test_uffdio_wp = false; static bool map_shared; static int huge_fd; static char *huge_fd_off0; static unsigned long long *count_verify; static int uffd, uffd_flags, finished, *pipefd; static char *area_src, *area_src_alias, *area_dst, *area_dst_alias; static char *zeropage; pthread_attr_t attr; /* Userfaultfd test statistics */ struct uffd_stats { int cpu; unsigned long missing_faults; unsigned long wp_faults; }; /* pthread_mutex_t starts at page offset 0 */ #define area_mutex(___area, ___nr) \ ((pthread_mutex_t *) ((___area) + (___nr)*page_size)) /* * count is placed in the page after pthread_mutex_t naturally aligned * to avoid non alignment faults on non-x86 archs. */ #define area_count(___area, ___nr) \ ((volatile unsigned long long *) ((unsigned long) \ ((___area) + (___nr)*page_size + \ sizeof(pthread_mutex_t) + \ sizeof(unsigned long long) - 1) & \ ~(unsigned long)(sizeof(unsigned long long) \ - 1))) const char *examples = "# Run anonymous memory test on 100MiB region with 99999 bounces:\n" "./userfaultfd anon 100 99999\n\n" "# Run share memory test on 1GiB region with 99 bounces:\n" "./userfaultfd shmem 1000 99\n\n" "# Run hugetlb memory test on 256MiB region with 50 bounces (using /dev/hugepages/hugefile):\n" "./userfaultfd hugetlb 256 50 /dev/hugepages/hugefile\n\n" "# Run the same hugetlb test but using shmem:\n" "./userfaultfd hugetlb_shared 256 50 /dev/hugepages/hugefile\n\n" "# 10MiB-~6GiB 999 bounces anonymous test, " "continue forever unless an error triggers\n" "while ./userfaultfd anon $[RANDOM % 6000 + 10] 999; do true; done\n\n"; static void usage(void) { fprintf(stderr, "\nUsage: ./userfaultfd " "[hugetlbfs_file]\n\n"); fprintf(stderr, "Supported : anon, hugetlb, " "hugetlb_shared, shmem\n\n"); fprintf(stderr, "Examples:\n\n"); fprintf(stderr, "%s", examples); exit(1); } static void uffd_stats_reset(struct uffd_stats *uffd_stats, unsigned long n_cpus) { int i; for (i = 0; i < n_cpus; i++) { uffd_stats[i].cpu = i; uffd_stats[i].missing_faults = 0; uffd_stats[i].wp_faults = 0; } } static void uffd_stats_report(struct uffd_stats *stats, int n_cpus) { int i; unsigned long long miss_total = 0, wp_total = 0; for (i = 0; i < n_cpus; i++) { miss_total += stats[i].missing_faults; wp_total += stats[i].wp_faults; } printf("userfaults: %llu missing (", miss_total); for (i = 0; i < n_cpus; i++) printf("%lu+", stats[i].missing_faults); printf("\b), %llu wp (", wp_total); for (i = 0; i < n_cpus; i++) printf("%lu+", stats[i].wp_faults); printf("\b)\n"); } static int anon_release_pages(char *rel_area) { int ret = 0; if (madvise(rel_area, nr_pages * page_size, MADV_DONTNEED)) { perror("madvise"); ret = 1; } return ret; } static void anon_allocate_area(void **alloc_area) { if (posix_memalign(alloc_area, page_size, nr_pages * page_size)) { fprintf(stderr, "out of memory\n"); *alloc_area = NULL; } } static void noop_alias_mapping(__u64 *start, size_t len, unsigned long offset) { } /* HugeTLB memory */ static int hugetlb_release_pages(char *rel_area) { int ret = 0; if (fallocate(huge_fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, rel_area == huge_fd_off0 ? 0 : nr_pages * page_size, nr_pages * page_size)) { perror("fallocate"); ret = 1; } return ret; } static void hugetlb_allocate_area(void **alloc_area) { void *area_alias = NULL; char **alloc_area_alias; *alloc_area = mmap(NULL, nr_pages * page_size, PROT_READ | PROT_WRITE, (map_shared ? MAP_SHARED : MAP_PRIVATE) | MAP_HUGETLB, huge_fd, *alloc_area == area_src ? 0 : nr_pages * page_size); if (*alloc_area == MAP_FAILED) { fprintf(stderr, "mmap of hugetlbfs file failed\n"); *alloc_area = NULL; } if (map_shared) { area_alias = mmap(NULL, nr_pages * page_size, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_HUGETLB, huge_fd, *alloc_area == area_src ? 0 : nr_pages * page_size); if (area_alias == MAP_FAILED) { if (munmap(*alloc_area, nr_pages * page_size) < 0) { perror("hugetlb munmap"); exit(1); } *alloc_area = NULL; return; } } if (*alloc_area == area_src) { huge_fd_off0 = *alloc_area; alloc_area_alias = &area_src_alias; } else { alloc_area_alias = &area_dst_alias; } if (area_alias) *alloc_area_alias = area_alias; } static void hugetlb_alias_mapping(__u64 *start, size_t len, unsigned long offset) { if (!map_shared) return; /* * We can't zap just the pagetable with hugetlbfs because * MADV_DONTEED won't work. So exercise -EEXIST on a alias * mapping where the pagetables are not established initially, * this way we'll exercise the -EEXEC at the fs level. */ *start = (unsigned long) area_dst_alias + offset; } /* Shared memory */ static int shmem_release_pages(char *rel_area) { int ret = 0; if (madvise(rel_area, nr_pages * page_size, MADV_REMOVE)) { perror("madvise"); ret = 1; } return ret; } static void shmem_allocate_area(void **alloc_area) { *alloc_area = mmap(NULL, nr_pages * page_size, PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_SHARED, -1, 0); if (*alloc_area == MAP_FAILED) { fprintf(stderr, "shared memory mmap failed\n"); *alloc_area = NULL; } } struct uffd_test_ops { unsigned long expected_ioctls; void (*allocate_area)(void **alloc_area); int (*release_pages)(char *rel_area); void (*alias_mapping)(__u64 *start, size_t len, unsigned long offset); }; #define SHMEM_EXPECTED_IOCTLS ((1 << _UFFDIO_WAKE) | \ (1 << _UFFDIO_COPY) | \ (1 << _UFFDIO_ZEROPAGE)) #define ANON_EXPECTED_IOCTLS ((1 << _UFFDIO_WAKE) | \ (1 << _UFFDIO_COPY) | \ (1 << _UFFDIO_ZEROPAGE) | \ (1 << _UFFDIO_WRITEPROTECT)) static struct uffd_test_ops anon_uffd_test_ops = { .expected_ioctls = ANON_EXPECTED_IOCTLS, .allocate_area = anon_allocate_area, .release_pages = anon_release_pages, .alias_mapping = noop_alias_mapping, }; static struct uffd_test_ops shmem_uffd_test_ops = { .expected_ioctls = SHMEM_EXPECTED_IOCTLS, .allocate_area = shmem_allocate_area, .release_pages = shmem_release_pages, .alias_mapping = noop_alias_mapping, }; static struct uffd_test_ops hugetlb_uffd_test_ops = { .expected_ioctls = UFFD_API_RANGE_IOCTLS_BASIC, .allocate_area = hugetlb_allocate_area, .release_pages = hugetlb_release_pages, .alias_mapping = hugetlb_alias_mapping, }; static struct uffd_test_ops *uffd_test_ops; static int my_bcmp(char *str1, char *str2, size_t n) { unsigned long i; for (i = 0; i < n; i++) if (str1[i] != str2[i]) return 1; return 0; } static void wp_range(int ufd, __u64 start, __u64 len, bool wp) { struct uffdio_writeprotect prms = { 0 }; /* Write protection page faults */ prms.range.start = start; prms.range.len = len; /* Undo write-protect, do wakeup after that */ prms.mode = wp ? UFFDIO_WRITEPROTECT_MODE_WP : 0; if (ioctl(ufd, UFFDIO_WRITEPROTECT, &prms)) { fprintf(stderr, "clear WP failed for address 0x%Lx\n", start); exit(1); } } static void *locking_thread(void *arg) { unsigned long cpu = (unsigned long) arg; struct random_data rand; unsigned long page_nr = *(&(page_nr)); /* uninitialized warning */ int32_t rand_nr; unsigned long long count; char randstate[64]; unsigned int seed; time_t start; if (bounces & BOUNCE_RANDOM) { seed = (unsigned int) time(NULL) - bounces; if (!(bounces & BOUNCE_RACINGFAULTS)) seed += cpu; bzero(&rand, sizeof(rand)); bzero(&randstate, sizeof(randstate)); if (initstate_r(seed, randstate, sizeof(randstate), &rand)) { fprintf(stderr, "srandom_r error\n"); exit(1); } } else { page_nr = -bounces; if (!(bounces & BOUNCE_RACINGFAULTS)) page_nr += cpu * nr_pages_per_cpu; } while (!finished) { if (bounces & BOUNCE_RANDOM) { if (random_r(&rand, &rand_nr)) { fprintf(stderr, "random_r 1 error\n"); exit(1); } page_nr = rand_nr; if (sizeof(page_nr) > sizeof(rand_nr)) { if (random_r(&rand, &rand_nr)) { fprintf(stderr, "random_r 2 error\n"); exit(1); } page_nr |= (((unsigned long) rand_nr) << 16) << 16; } } else page_nr += 1; page_nr %= nr_pages; start = time(NULL); if (bounces & BOUNCE_VERIFY) { count = *area_count(area_dst, page_nr); if (!count) { fprintf(stderr, "page_nr %lu wrong count %Lu %Lu\n", page_nr, count, count_verify[page_nr]); exit(1); } /* * We can't use bcmp (or memcmp) because that * returns 0 erroneously if the memory is * changing under it (even if the end of the * page is never changing and always * different). */ #if 1 if (!my_bcmp(area_dst + page_nr * page_size, zeropage, page_size)) { fprintf(stderr, "my_bcmp page_nr %lu wrong count %Lu %Lu\n", page_nr, count, count_verify[page_nr]); exit(1); } #else unsigned long loops; loops = 0; /* uncomment the below line to test with mutex */ /* pthread_mutex_lock(area_mutex(area_dst, page_nr)); */ while (!bcmp(area_dst + page_nr * page_size, zeropage, page_size)) { loops += 1; if (loops > 10) break; } /* uncomment below line to test with mutex */ /* pthread_mutex_unlock(area_mutex(area_dst, page_nr)); */ if (loops) { fprintf(stderr, "page_nr %lu all zero thread %lu %p %lu\n", page_nr, cpu, area_dst + page_nr * page_size, loops); if (loops > 10) exit(1); } #endif } pthread_mutex_lock(area_mutex(area_dst, page_nr)); count = *area_count(area_dst, page_nr); if (count != count_verify[page_nr]) { fprintf(stderr, "page_nr %lu memory corruption %Lu %Lu\n", page_nr, count, count_verify[page_nr]); exit(1); } count++; *area_count(area_dst, page_nr) = count_verify[page_nr] = count; pthread_mutex_unlock(area_mutex(area_dst, page_nr)); if (time(NULL) - start > 1) fprintf(stderr, "userfault too slow %ld " "possible false positive with overcommit\n", time(NULL) - start); } return NULL; } static void retry_copy_page(int ufd, struct uffdio_copy *uffdio_copy, unsigned long offset) { uffd_test_ops->alias_mapping(&uffdio_copy->dst, uffdio_copy->len, offset); if (ioctl(ufd, UFFDIO_COPY, uffdio_copy)) { /* real retval in ufdio_copy.copy */ if (uffdio_copy->copy != -EEXIST) { fprintf(stderr, "UFFDIO_COPY retry error %Ld\n", uffdio_copy->copy); exit(1); } } else { fprintf(stderr, "UFFDIO_COPY retry unexpected %Ld\n", uffdio_copy->copy); exit(1); } } static int __copy_page(int ufd, unsigned long offset, bool retry) { struct uffdio_copy uffdio_copy; if (offset >= nr_pages * page_size) { fprintf(stderr, "unexpected offset %lu\n", offset); exit(1); } uffdio_copy.dst = (unsigned long) area_dst + offset; uffdio_copy.src = (unsigned long) area_src + offset; uffdio_copy.len = page_size; if (test_uffdio_wp) uffdio_copy.mode = UFFDIO_COPY_MODE_WP; else uffdio_copy.mode = 0; uffdio_copy.copy = 0; if (ioctl(ufd, UFFDIO_COPY, &uffdio_copy)) { /* real retval in ufdio_copy.copy */ if (uffdio_copy.copy != -EEXIST) { fprintf(stderr, "UFFDIO_COPY error %Ld\n", uffdio_copy.copy); exit(1); } } else if (uffdio_copy.copy != page_size) { fprintf(stderr, "UFFDIO_COPY unexpected copy %Ld\n", uffdio_copy.copy); exit(1); } else { if (test_uffdio_copy_eexist && retry) { test_uffdio_copy_eexist = false; retry_copy_page(ufd, &uffdio_copy, offset); } return 1; } return 0; } static int copy_page_retry(int ufd, unsigned long offset) { return __copy_page(ufd, offset, true); } static int copy_page(int ufd, unsigned long offset) { return __copy_page(ufd, offset, false); } static int uffd_read_msg(int ufd, struct uffd_msg *msg) { int ret = read(uffd, msg, sizeof(*msg)); if (ret != sizeof(*msg)) { if (ret < 0) { if (errno == EAGAIN) return 1; perror("blocking read error"); } else { fprintf(stderr, "short read\n"); } exit(1); } return 0; } static void uffd_handle_page_fault(struct uffd_msg *msg, struct uffd_stats *stats) { unsigned long offset; if (msg->event != UFFD_EVENT_PAGEFAULT) { fprintf(stderr, "unexpected msg event %u\n", msg->event); exit(1); } if (msg->arg.pagefault.flags & UFFD_PAGEFAULT_FLAG_WP) { wp_range(uffd, msg->arg.pagefault.address, page_size, false); stats->wp_faults++; } else { /* Missing page faults */ if (bounces & BOUNCE_VERIFY && msg->arg.pagefault.flags & UFFD_PAGEFAULT_FLAG_WRITE) { fprintf(stderr, "unexpected write fault\n"); exit(1); } offset = (char *)(unsigned long)msg->arg.pagefault.address - area_dst; offset &= ~(page_size-1); if (copy_page(uffd, offset)) stats->missing_faults++; } } static void *uffd_poll_thread(void *arg) { struct uffd_stats *stats = (struct uffd_stats *)arg; unsigned long cpu = stats->cpu; struct pollfd pollfd[2]; struct uffd_msg msg; struct uffdio_register uffd_reg; int ret; char tmp_chr; pollfd[0].fd = uffd; pollfd[0].events = POLLIN; pollfd[1].fd = pipefd[cpu*2]; pollfd[1].events = POLLIN; for (;;) { ret = poll(pollfd, 2, -1); if (!ret) { fprintf(stderr, "poll error %d\n", ret); exit(1); } if (ret < 0) { perror("poll"); exit(1); } if (pollfd[1].revents & POLLIN) { if (read(pollfd[1].fd, &tmp_chr, 1) != 1) { fprintf(stderr, "read pipefd error\n"); exit(1); } break; } if (!(pollfd[0].revents & POLLIN)) { fprintf(stderr, "pollfd[0].revents %d\n", pollfd[0].revents); exit(1); } if (uffd_read_msg(uffd, &msg)) continue; switch (msg.event) { default: fprintf(stderr, "unexpected msg event %u\n", msg.event); exit(1); break; case UFFD_EVENT_PAGEFAULT: uffd_handle_page_fault(&msg, stats); break; case UFFD_EVENT_FORK: close(uffd); uffd = msg.arg.fork.ufd; pollfd[0].fd = uffd; break; case UFFD_EVENT_REMOVE: uffd_reg.range.start = msg.arg.remove.start; uffd_reg.range.len = msg.arg.remove.end - msg.arg.remove.start; if (ioctl(uffd, UFFDIO_UNREGISTER, &uffd_reg.range)) { fprintf(stderr, "remove failure\n"); exit(1); } break; case UFFD_EVENT_REMAP: area_dst = (char *)(unsigned long)msg.arg.remap.to; break; } } return NULL; } pthread_mutex_t uffd_read_mutex = PTHREAD_MUTEX_INITIALIZER; static void *uffd_read_thread(void *arg) { struct uffd_stats *stats = (struct uffd_stats *)arg; struct uffd_msg msg; pthread_mutex_unlock(&uffd_read_mutex); /* from here cancellation is ok */ for (;;) { if (uffd_read_msg(uffd, &msg)) continue; uffd_handle_page_fault(&msg, stats); } return NULL; } static void *background_thread(void *arg) { unsigned long cpu = (unsigned long) arg; unsigned long page_nr, start_nr, mid_nr, end_nr; start_nr = cpu * nr_pages_per_cpu; end_nr = (cpu+1) * nr_pages_per_cpu; mid_nr = (start_nr + end_nr) / 2; /* Copy the first half of the pages */ for (page_nr = start_nr; page_nr < mid_nr; page_nr++) copy_page_retry(uffd, page_nr * page_size); /* * If we need to test uffd-wp, set it up now. Then we'll have * at least the first half of the pages mapped already which * can be write-protected for testing */ if (test_uffdio_wp) wp_range(uffd, (unsigned long)area_dst + start_nr * page_size, nr_pages_per_cpu * page_size, true); /* * Continue the 2nd half of the page copying, handling write * protection faults if any */ for (page_nr = mid_nr; page_nr < end_nr; page_nr++) copy_page_retry(uffd, page_nr * page_size); return NULL; } static int stress(struct uffd_stats *uffd_stats) { unsigned long cpu; pthread_t locking_threads[nr_cpus]; pthread_t uffd_threads[nr_cpus]; pthread_t background_threads[nr_cpus]; finished = 0; for (cpu = 0; cpu < nr_cpus; cpu++) { if (pthread_create(&locking_threads[cpu], &attr, locking_thread, (void *)cpu)) return 1; if (bounces & BOUNCE_POLL) { if (pthread_create(&uffd_threads[cpu], &attr, uffd_poll_thread, (void *)&uffd_stats[cpu])) return 1; } else { if (pthread_create(&uffd_threads[cpu], &attr, uffd_read_thread, (void *)&uffd_stats[cpu])) return 1; pthread_mutex_lock(&uffd_read_mutex); } if (pthread_create(&background_threads[cpu], &attr, background_thread, (void *)cpu)) return 1; } for (cpu = 0; cpu < nr_cpus; cpu++) if (pthread_join(background_threads[cpu], NULL)) return 1; /* * Be strict and immediately zap area_src, the whole area has * been transferred already by the background treads. The * area_src could then be faulted in in a racy way by still * running uffdio_threads reading zeropages after we zapped * area_src (but they're guaranteed to get -EEXIST from * UFFDIO_COPY without writing zero pages into area_dst * because the background threads already completed). */ if (uffd_test_ops->release_pages(area_src)) return 1; finished = 1; for (cpu = 0; cpu < nr_cpus; cpu++) if (pthread_join(locking_threads[cpu], NULL)) return 1; for (cpu = 0; cpu < nr_cpus; cpu++) { char c; if (bounces & BOUNCE_POLL) { if (write(pipefd[cpu*2+1], &c, 1) != 1) { fprintf(stderr, "pipefd write error\n"); return 1; } if (pthread_join(uffd_threads[cpu], (void *)&uffd_stats[cpu])) return 1; } else { if (pthread_cancel(uffd_threads[cpu])) return 1; if (pthread_join(uffd_threads[cpu], NULL)) return 1; } } return 0; } static int userfaultfd_open(int features) { struct uffdio_api uffdio_api; uffd = syscall(__NR_userfaultfd, O_CLOEXEC | O_NONBLOCK); if (uffd < 0) { fprintf(stderr, "userfaultfd syscall not available in this kernel\n"); return 1; } uffd_flags = fcntl(uffd, F_GETFD, NULL); uffdio_api.api = UFFD_API; uffdio_api.features = features; if (ioctl(uffd, UFFDIO_API, &uffdio_api)) { fprintf(stderr, "UFFDIO_API\n"); return 1; } if (uffdio_api.api != UFFD_API) { fprintf(stderr, "UFFDIO_API error %Lu\n", uffdio_api.api); return 1; } return 0; } sigjmp_buf jbuf, *sigbuf; static void sighndl(int sig, siginfo_t *siginfo, void *ptr) { if (sig == SIGBUS) { if (sigbuf) siglongjmp(*sigbuf, 1); abort(); } } /* * For non-cooperative userfaultfd test we fork() a process that will * generate pagefaults, will mremap the area monitored by the * userfaultfd and at last this process will release the monitored * area. * For the anonymous and shared memory the area is divided into two * parts, the first part is accessed before mremap, and the second * part is accessed after mremap. Since hugetlbfs does not support * mremap, the entire monitored area is accessed in a single pass for * HUGETLB_TEST. * The release of the pages currently generates event for shmem and * anonymous memory (UFFD_EVENT_REMOVE), hence it is not checked * for hugetlb. * For signal test(UFFD_FEATURE_SIGBUS), signal_test = 1, we register * monitored area, generate pagefaults and test that signal is delivered. * Use UFFDIO_COPY to allocate missing page and retry. For signal_test = 2 * test robustness use case - we release monitored area, fork a process * that will generate pagefaults and verify signal is generated. * This also tests UFFD_FEATURE_EVENT_FORK event along with the signal * feature. Using monitor thread, verify no userfault events are generated. */ static int faulting_process(int signal_test) { unsigned long nr; unsigned long long count; unsigned long split_nr_pages; unsigned long lastnr; struct sigaction act; unsigned long signalled = 0; if (test_type != TEST_HUGETLB) split_nr_pages = (nr_pages + 1) / 2; else split_nr_pages = nr_pages; if (signal_test) { sigbuf = &jbuf; memset(&act, 0, sizeof(act)); act.sa_sigaction = sighndl; act.sa_flags = SA_SIGINFO; if (sigaction(SIGBUS, &act, 0)) { perror("sigaction"); return 1; } lastnr = (unsigned long)-1; } for (nr = 0; nr < split_nr_pages; nr++) { int steps = 1; unsigned long offset = nr * page_size; if (signal_test) { if (sigsetjmp(*sigbuf, 1) != 0) { if (steps == 1 && nr == lastnr) { fprintf(stderr, "Signal repeated\n"); return 1; } lastnr = nr; if (signal_test == 1) { if (steps == 1) { /* This is a MISSING request */ steps++; if (copy_page(uffd, offset)) signalled++; } else { /* This is a WP request */ assert(steps == 2); wp_range(uffd, (__u64)area_dst + offset, page_size, false); } } else { signalled++; continue; } } } count = *area_count(area_dst, nr); if (count != count_verify[nr]) { fprintf(stderr, "nr %lu memory corruption %Lu %Lu\n", nr, count, count_verify[nr]); } /* * Trigger write protection if there is by writing * the same value back. */ *area_count(area_dst, nr) = count; } if (signal_test) return signalled != split_nr_pages; if (test_type == TEST_HUGETLB) return 0; area_dst = mremap(area_dst, nr_pages * page_size, nr_pages * page_size, MREMAP_MAYMOVE | MREMAP_FIXED, area_src); if (area_dst == MAP_FAILED) { perror("mremap"); exit(1); } for (; nr < nr_pages; nr++) { count = *area_count(area_dst, nr); if (count != count_verify[nr]) { fprintf(stderr, "nr %lu memory corruption %Lu %Lu\n", nr, count, count_verify[nr]); exit(1); } /* * Trigger write protection if there is by writing * the same value back. */ *area_count(area_dst, nr) = count; } if (uffd_test_ops->release_pages(area_dst)) return 1; for (nr = 0; nr < nr_pages; nr++) { if (my_bcmp(area_dst + nr * page_size, zeropage, page_size)) { fprintf(stderr, "nr %lu is not zero\n", nr); exit(1); } } return 0; } static void retry_uffdio_zeropage(int ufd, struct uffdio_zeropage *uffdio_zeropage, unsigned long offset) { uffd_test_ops->alias_mapping(&uffdio_zeropage->range.start, uffdio_zeropage->range.len, offset); if (ioctl(ufd, UFFDIO_ZEROPAGE, uffdio_zeropage)) { if (uffdio_zeropage->zeropage != -EEXIST) { fprintf(stderr, "UFFDIO_ZEROPAGE retry error %Ld\n", uffdio_zeropage->zeropage); exit(1); } } else { fprintf(stderr, "UFFDIO_ZEROPAGE retry unexpected %Ld\n", uffdio_zeropage->zeropage); exit(1); } } static int __uffdio_zeropage(int ufd, unsigned long offset, bool retry) { struct uffdio_zeropage uffdio_zeropage; int ret; unsigned long has_zeropage; has_zeropage = uffd_test_ops->expected_ioctls & (1 << _UFFDIO_ZEROPAGE); if (offset >= nr_pages * page_size) { fprintf(stderr, "unexpected offset %lu\n", offset); exit(1); } uffdio_zeropage.range.start = (unsigned long) area_dst + offset; uffdio_zeropage.range.len = page_size; uffdio_zeropage.mode = 0; ret = ioctl(ufd, UFFDIO_ZEROPAGE, &uffdio_zeropage); if (ret) { /* real retval in ufdio_zeropage.zeropage */ if (has_zeropage) { if (uffdio_zeropage.zeropage == -EEXIST) { fprintf(stderr, "UFFDIO_ZEROPAGE -EEXIST\n"); exit(1); } else { fprintf(stderr, "UFFDIO_ZEROPAGE error %Ld\n", uffdio_zeropage.zeropage); exit(1); } } else { if (uffdio_zeropage.zeropage != -EINVAL) { fprintf(stderr, "UFFDIO_ZEROPAGE not -EINVAL %Ld\n", uffdio_zeropage.zeropage); exit(1); } } } else if (has_zeropage) { if (uffdio_zeropage.zeropage != page_size) { fprintf(stderr, "UFFDIO_ZEROPAGE unexpected %Ld\n", uffdio_zeropage.zeropage); exit(1); } else { if (test_uffdio_zeropage_eexist && retry) { test_uffdio_zeropage_eexist = false; retry_uffdio_zeropage(ufd, &uffdio_zeropage, offset); } return 1; } } else { fprintf(stderr, "UFFDIO_ZEROPAGE succeeded %Ld\n", uffdio_zeropage.zeropage); exit(1); } return 0; } static int uffdio_zeropage(int ufd, unsigned long offset) { return __uffdio_zeropage(ufd, offset, false); } /* exercise UFFDIO_ZEROPAGE */ static int userfaultfd_zeropage_test(void) { struct uffdio_register uffdio_register; unsigned long expected_ioctls; printf("testing UFFDIO_ZEROPAGE: "); fflush(stdout); if (uffd_test_ops->release_pages(area_dst)) return 1; if (userfaultfd_open(0) < 0) return 1; uffdio_register.range.start = (unsigned long) area_dst; uffdio_register.range.len = nr_pages * page_size; uffdio_register.mode = UFFDIO_REGISTER_MODE_MISSING; if (test_uffdio_wp) uffdio_register.mode |= UFFDIO_REGISTER_MODE_WP; if (ioctl(uffd, UFFDIO_REGISTER, &uffdio_register)) { fprintf(stderr, "register failure\n"); exit(1); } expected_ioctls = uffd_test_ops->expected_ioctls; if ((uffdio_register.ioctls & expected_ioctls) != expected_ioctls) { fprintf(stderr, "unexpected missing ioctl for anon memory\n"); exit(1); } if (uffdio_zeropage(uffd, 0)) { if (my_bcmp(area_dst, zeropage, page_size)) { fprintf(stderr, "zeropage is not zero\n"); exit(1); } } close(uffd); printf("done.\n"); return 0; } static int userfaultfd_events_test(void) { struct uffdio_register uffdio_register; unsigned long expected_ioctls; pthread_t uffd_mon; int err, features; pid_t pid; char c; struct uffd_stats stats = { 0 }; printf("testing events (fork, remap, remove): "); fflush(stdout); if (uffd_test_ops->release_pages(area_dst)) return 1; features = UFFD_FEATURE_EVENT_FORK | UFFD_FEATURE_EVENT_REMAP | UFFD_FEATURE_EVENT_REMOVE; if (userfaultfd_open(features) < 0) return 1; fcntl(uffd, F_SETFL, uffd_flags | O_NONBLOCK); uffdio_register.range.start = (unsigned long) area_dst; uffdio_register.range.len = nr_pages * page_size; uffdio_register.mode = UFFDIO_REGISTER_MODE_MISSING; if (test_uffdio_wp) uffdio_register.mode |= UFFDIO_REGISTER_MODE_WP; if (ioctl(uffd, UFFDIO_REGISTER, &uffdio_register)) { fprintf(stderr, "register failure\n"); exit(1); } expected_ioctls = uffd_test_ops->expected_ioctls; if ((uffdio_register.ioctls & expected_ioctls) != expected_ioctls) { fprintf(stderr, "unexpected missing ioctl for anon memory\n"); exit(1); } if (pthread_create(&uffd_mon, &attr, uffd_poll_thread, &stats)) { perror("uffd_poll_thread create"); exit(1); } pid = fork(); if (pid < 0) { perror("fork"); exit(1); } if (!pid) return faulting_process(0); waitpid(pid, &err, 0); if (err) { fprintf(stderr, "faulting process failed\n"); exit(1); } if (write(pipefd[1], &c, sizeof(c)) != sizeof(c)) { perror("pipe write"); exit(1); } if (pthread_join(uffd_mon, NULL)) return 1; close(uffd); uffd_stats_report(&stats, 1); return stats.missing_faults != nr_pages; } static int userfaultfd_sig_test(void) { struct uffdio_register uffdio_register; unsigned long expected_ioctls; unsigned long userfaults; pthread_t uffd_mon; int err, features; pid_t pid; char c; struct uffd_stats stats = { 0 }; printf("testing signal delivery: "); fflush(stdout); if (uffd_test_ops->release_pages(area_dst)) return 1; features = UFFD_FEATURE_EVENT_FORK|UFFD_FEATURE_SIGBUS; if (userfaultfd_open(features) < 0) return 1; fcntl(uffd, F_SETFL, uffd_flags | O_NONBLOCK); uffdio_register.range.start = (unsigned long) area_dst; uffdio_register.range.len = nr_pages * page_size; uffdio_register.mode = UFFDIO_REGISTER_MODE_MISSING; if (test_uffdio_wp) uffdio_register.mode |= UFFDIO_REGISTER_MODE_WP; if (ioctl(uffd, UFFDIO_REGISTER, &uffdio_register)) { fprintf(stderr, "register failure\n"); exit(1); } expected_ioctls = uffd_test_ops->expected_ioctls; if ((uffdio_register.ioctls & expected_ioctls) != expected_ioctls) { fprintf(stderr, "unexpected missing ioctl for anon memory\n"); exit(1); } if (faulting_process(1)) { fprintf(stderr, "faulting process failed\n"); exit(1); } if (uffd_test_ops->release_pages(area_dst)) return 1; if (pthread_create(&uffd_mon, &attr, uffd_poll_thread, &stats)) { perror("uffd_poll_thread create"); exit(1); } pid = fork(); if (pid < 0) { perror("fork"); exit(1); } if (!pid) exit(faulting_process(2)); waitpid(pid, &err, 0); if (err) { fprintf(stderr, "faulting process failed\n"); exit(1); } if (write(pipefd[1], &c, sizeof(c)) != sizeof(c)) { perror("pipe write"); exit(1); } if (pthread_join(uffd_mon, (void **)&userfaults)) return 1; printf("done.\n"); if (userfaults) fprintf(stderr, "Signal test failed, userfaults: %ld\n", userfaults); close(uffd); return userfaults != 0; } static int userfaultfd_stress(void) { void *area; char *tmp_area; unsigned long nr; struct uffdio_register uffdio_register; unsigned long cpu; int err; struct uffd_stats uffd_stats[nr_cpus]; uffd_test_ops->allocate_area((void **)&area_src); if (!area_src) return 1; uffd_test_ops->allocate_area((void **)&area_dst); if (!area_dst) return 1; if (userfaultfd_open(0) < 0) return 1; count_verify = malloc(nr_pages * sizeof(unsigned long long)); if (!count_verify) { perror("count_verify"); return 1; } for (nr = 0; nr < nr_pages; nr++) { *area_mutex(area_src, nr) = (pthread_mutex_t) PTHREAD_MUTEX_INITIALIZER; count_verify[nr] = *area_count(area_src, nr) = 1; /* * In the transition between 255 to 256, powerpc will * read out of order in my_bcmp and see both bytes as * zero, so leave a placeholder below always non-zero * after the count, to avoid my_bcmp to trigger false * positives. */ *(area_count(area_src, nr) + 1) = 1; } pipefd = malloc(sizeof(int) * nr_cpus * 2); if (!pipefd) { perror("pipefd"); return 1; } for (cpu = 0; cpu < nr_cpus; cpu++) { if (pipe2(&pipefd[cpu*2], O_CLOEXEC | O_NONBLOCK)) { perror("pipe"); return 1; } } if (posix_memalign(&area, page_size, page_size)) { fprintf(stderr, "out of memory\n"); return 1; } zeropage = area; bzero(zeropage, page_size); pthread_mutex_lock(&uffd_read_mutex); pthread_attr_init(&attr); pthread_attr_setstacksize(&attr, 16*1024*1024); err = 0; while (bounces--) { unsigned long expected_ioctls; printf("bounces: %d, mode:", bounces); if (bounces & BOUNCE_RANDOM) printf(" rnd"); if (bounces & BOUNCE_RACINGFAULTS) printf(" racing"); if (bounces & BOUNCE_VERIFY) printf(" ver"); if (bounces & BOUNCE_POLL) printf(" poll"); printf(", "); fflush(stdout); if (bounces & BOUNCE_POLL) fcntl(uffd, F_SETFL, uffd_flags | O_NONBLOCK); else fcntl(uffd, F_SETFL, uffd_flags & ~O_NONBLOCK); /* register */ uffdio_register.range.start = (unsigned long) area_dst; uffdio_register.range.len = nr_pages * page_size; uffdio_register.mode = UFFDIO_REGISTER_MODE_MISSING; if (test_uffdio_wp) uffdio_register.mode |= UFFDIO_REGISTER_MODE_WP; if (ioctl(uffd, UFFDIO_REGISTER, &uffdio_register)) { fprintf(stderr, "register failure\n"); return 1; } expected_ioctls = uffd_test_ops->expected_ioctls; if ((uffdio_register.ioctls & expected_ioctls) != expected_ioctls) { fprintf(stderr, "unexpected missing ioctl for anon memory\n"); return 1; } if (area_dst_alias) { uffdio_register.range.start = (unsigned long) area_dst_alias; if (ioctl(uffd, UFFDIO_REGISTER, &uffdio_register)) { fprintf(stderr, "register failure alias\n"); return 1; } } /* * The madvise done previously isn't enough: some * uffd_thread could have read userfaults (one of * those already resolved by the background thread) * and it may be in the process of calling * UFFDIO_COPY. UFFDIO_COPY will read the zapped * area_src and it would map a zero page in it (of * course such a UFFDIO_COPY is perfectly safe as it'd * return -EEXIST). The problem comes at the next * bounce though: that racing UFFDIO_COPY would * generate zeropages in the area_src, so invalidating * the previous MADV_DONTNEED. Without this additional * MADV_DONTNEED those zeropages leftovers in the * area_src would lead to -EEXIST failure during the * next bounce, effectively leaving a zeropage in the * area_dst. * * Try to comment this out madvise to see the memory * corruption being caught pretty quick. * * khugepaged is also inhibited to collapse THP after * MADV_DONTNEED only after the UFFDIO_REGISTER, so it's * required to MADV_DONTNEED here. */ if (uffd_test_ops->release_pages(area_dst)) return 1; uffd_stats_reset(uffd_stats, nr_cpus); /* bounce pass */ if (stress(uffd_stats)) return 1; /* Clear all the write protections if there is any */ if (test_uffdio_wp) wp_range(uffd, (unsigned long)area_dst, nr_pages * page_size, false); /* unregister */ if (ioctl(uffd, UFFDIO_UNREGISTER, &uffdio_register.range)) { fprintf(stderr, "unregister failure\n"); return 1; } if (area_dst_alias) { uffdio_register.range.start = (unsigned long) area_dst; if (ioctl(uffd, UFFDIO_UNREGISTER, &uffdio_register.range)) { fprintf(stderr, "unregister failure alias\n"); return 1; } } /* verification */ if (bounces & BOUNCE_VERIFY) { for (nr = 0; nr < nr_pages; nr++) { if (*area_count(area_dst, nr) != count_verify[nr]) { fprintf(stderr, "error area_count %Lu %Lu %lu\n", *area_count(area_src, nr), count_verify[nr], nr); err = 1; bounces = 0; } } } /* prepare next bounce */ tmp_area = area_src; area_src = area_dst; area_dst = tmp_area; tmp_area = area_src_alias; area_src_alias = area_dst_alias; area_dst_alias = tmp_area; uffd_stats_report(uffd_stats, nr_cpus); } if (err) return err; close(uffd); return userfaultfd_zeropage_test() || userfaultfd_sig_test() || userfaultfd_events_test(); } /* * Copied from mlock2-tests.c */ unsigned long default_huge_page_size(void) { unsigned long hps = 0; char *line = NULL; size_t linelen = 0; FILE *f = fopen("/proc/meminfo", "r"); if (!f) return 0; while (getline(&line, &linelen, f) > 0) { if (sscanf(line, "Hugepagesize: %lu kB", &hps) == 1) { hps <<= 10; break; } } free(line); fclose(f); return hps; } static void set_test_type(const char *type) { if (!strcmp(type, "anon")) { test_type = TEST_ANON; uffd_test_ops = &anon_uffd_test_ops; /* Only enable write-protect test for anonymous test */ test_uffdio_wp = true; } else if (!strcmp(type, "hugetlb")) { test_type = TEST_HUGETLB; uffd_test_ops = &hugetlb_uffd_test_ops; } else if (!strcmp(type, "hugetlb_shared")) { map_shared = true; test_type = TEST_HUGETLB; uffd_test_ops = &hugetlb_uffd_test_ops; } else if (!strcmp(type, "shmem")) { map_shared = true; test_type = TEST_SHMEM; uffd_test_ops = &shmem_uffd_test_ops; } else { fprintf(stderr, "Unknown test type: %s\n", type); exit(1); } if (test_type == TEST_HUGETLB) page_size = default_huge_page_size(); else page_size = sysconf(_SC_PAGE_SIZE); if (!page_size) { fprintf(stderr, "Unable to determine page size\n"); exit(2); } if ((unsigned long) area_count(NULL, 0) + sizeof(unsigned long long) * 2 > page_size) { fprintf(stderr, "Impossible to run this test\n"); exit(2); } } static void sigalrm(int sig) { if (sig != SIGALRM) abort(); test_uffdio_copy_eexist = true; test_uffdio_zeropage_eexist = true; alarm(ALARM_INTERVAL_SECS); } int main(int argc, char **argv) { if (argc < 4) usage(); if (signal(SIGALRM, sigalrm) == SIG_ERR) { fprintf(stderr, "failed to arm SIGALRM"); exit(1); } alarm(ALARM_INTERVAL_SECS); set_test_type(argv[1]); nr_cpus = sysconf(_SC_NPROCESSORS_ONLN); nr_pages_per_cpu = atol(argv[2]) * 1024*1024 / page_size / nr_cpus; if (!nr_pages_per_cpu) { fprintf(stderr, "invalid MiB\n"); usage(); } bounces = atoi(argv[3]); if (bounces <= 0) { fprintf(stderr, "invalid bounces\n"); usage(); } nr_pages = nr_pages_per_cpu * nr_cpus; if (test_type == TEST_HUGETLB) { if (argc < 5) usage(); huge_fd = open(argv[4], O_CREAT | O_RDWR, 0755); if (huge_fd < 0) { fprintf(stderr, "Open of %s failed", argv[3]); perror("open"); exit(1); } if (ftruncate(huge_fd, 0)) { fprintf(stderr, "ftruncate %s to size 0 failed", argv[3]); perror("ftruncate"); exit(1); } } printf("nr_pages: %lu, nr_pages_per_cpu: %lu\n", nr_pages, nr_pages_per_cpu); return userfaultfd_stress(); } #else /* __NR_userfaultfd */ #warning "missing __NR_userfaultfd definition" int main(void) { printf("skip: Skipping userfaultfd test (missing __NR_userfaultfd)\n"); return KSFT_SKIP; } #endif /* __NR_userfaultfd */