1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
|
What: /sys/kernel/debug/habanalabs/hl<n>/addr
Date: Jan 2019
KernelVersion: 5.1
Contact: ogabbay@kernel.org
Description: Sets the device address to be used for read or write through
PCI bar, or the device VA of a host mapped memory to be read or
written directly from the host. The latter option is allowed
only when the IOMMU is disabled.
The acceptable value is a string that starts with "0x"
What: /sys/kernel/debug/habanalabs/hl<n>/clk_gate
Date: May 2020
KernelVersion: 5.8
Contact: ogabbay@kernel.org
Description: Allow the root user to disable/enable in runtime the clock
gating mechanism in Gaudi. Due to how Gaudi is built, the
clock gating needs to be disabled in order to access the
registers of the TPC and MME engines. This is sometimes needed
during debug by the user and hence the user needs this option.
The user can supply a bitmask value, each bit represents
a different engine to disable/enable its clock gating feature.
The bitmask is composed of 20 bits:
======= ============
0 - 7 DMA channels
8 - 11 MME engines
12 - 19 TPC engines
======= ============
The bit's location of a specific engine can be determined
using (1 << GAUDI_ENGINE_ID_*). GAUDI_ENGINE_ID_* values
are defined in uapi habanalabs.h file in enum gaudi_engine_id
What: /sys/kernel/debug/habanalabs/hl<n>/command_buffers
Date: Jan 2019
KernelVersion: 5.1
Contact: ogabbay@kernel.org
Description: Displays a list with information about the currently allocated
command buffers
What: /sys/kernel/debug/habanalabs/hl<n>/command_submission
Date: Jan 2019
KernelVersion: 5.1
Contact: ogabbay@kernel.org
Description: Displays a list with information about the currently active
command submissions
What: /sys/kernel/debug/habanalabs/hl<n>/command_submission_jobs
Date: Jan 2019
KernelVersion: 5.1
Contact: ogabbay@kernel.org
Description: Displays a list with detailed information about each JOB (CB) of
each active command submission
What: /sys/kernel/debug/habanalabs/hl<n>/data32
Date: Jan 2019
KernelVersion: 5.1
Contact: ogabbay@kernel.org
Description: Allows the root user to read or write directly through the
device's PCI bar. Writing to this file generates a write
transaction while reading from the file generates a read
transaction. This custom interface is needed (instead of using
the generic Linux user-space PCI mapping) because the DDR bar
is very small compared to the DDR memory and only the driver can
move the bar before and after the transaction.
If the IOMMU is disabled, it also allows the root user to read
or write from the host a device VA of a host mapped memory
What: /sys/kernel/debug/habanalabs/hl<n>/data64
Date: Jan 2020
KernelVersion: 5.6
Contact: ogabbay@kernel.org
Description: Allows the root user to read or write 64 bit data directly
through the device's PCI bar. Writing to this file generates a
write transaction while reading from the file generates a read
transaction. This custom interface is needed (instead of using
the generic Linux user-space PCI mapping) because the DDR bar
is very small compared to the DDR memory and only the driver can
move the bar before and after the transaction.
If the IOMMU is disabled, it also allows the root user to read
or write from the host a device VA of a host mapped memory
What: /sys/kernel/debug/habanalabs/hl<n>/data_dma
Date: Apr 2021
KernelVersion: 5.13
Contact: ogabbay@kernel.org
Description: Allows the root user to read from the device's internal
memory (DRAM/SRAM) through a DMA engine.
This property is a binary blob that contains the result of the
DMA transfer.
This custom interface is needed (instead of using the generic
Linux user-space PCI mapping) because the amount of internal
memory is huge (>32GB) and reading it via the PCI bar will take
a very long time.
This interface doesn't support concurrency in the same device.
In GAUDI and GOYA, this action can cause undefined behavior
in case the it is done while the device is executing user
workloads.
Only supported on GAUDI at this stage.
What: /sys/kernel/debug/habanalabs/hl<n>/device
Date: Jan 2019
KernelVersion: 5.1
Contact: ogabbay@kernel.org
Description: Enables the root user to set the device to specific state.
Valid values are "disable", "enable", "suspend", "resume".
User can read this property to see the valid values
What: /sys/kernel/debug/habanalabs/hl<n>/dma_size
Date: Apr 2021
KernelVersion: 5.13
Contact: ogabbay@kernel.org
Description: Specify the size of the DMA transaction when using DMA to read
from the device's internal memory. The value can not be larger
than 128MB. Writing to this value initiates the DMA transfer.
When the write is finished, the user can read the "data_dma"
blob
What: /sys/kernel/debug/habanalabs/hl<n>/dump_security_violations
Date: Jan 2021
KernelVersion: 5.12
Contact: ogabbay@kernel.org
Description: Dumps all security violations to dmesg. This will also ack
all security violations meanings those violations will not be
dumped next time user calls this API
What: /sys/kernel/debug/habanalabs/hl<n>/engines
Date: Jul 2019
KernelVersion: 5.3
Contact: ogabbay@kernel.org
Description: Displays the status registers values of the device engines and
their derived idle status
What: /sys/kernel/debug/habanalabs/hl<n>/i2c_addr
Date: Jan 2019
KernelVersion: 5.1
Contact: ogabbay@kernel.org
Description: Sets I2C device address for I2C transaction that is generated
by the device's CPU
What: /sys/kernel/debug/habanalabs/hl<n>/i2c_bus
Date: Jan 2019
KernelVersion: 5.1
Contact: ogabbay@kernel.org
Description: Sets I2C bus address for I2C transaction that is generated by
the device's CPU
What: /sys/kernel/debug/habanalabs/hl<n>/i2c_data
Date: Jan 2019
KernelVersion: 5.1
Contact: ogabbay@kernel.org
Description: Triggers an I2C transaction that is generated by the device's
CPU. Writing to this file generates a write transaction while
reading from the file generates a read transaction
What: /sys/kernel/debug/habanalabs/hl<n>/i2c_reg
Date: Jan 2019
KernelVersion: 5.1
Contact: ogabbay@kernel.org
Description: Sets I2C register id for I2C transaction that is generated by
the device's CPU
What: /sys/kernel/debug/habanalabs/hl<n>/led0
Date: Jan 2019
KernelVersion: 5.1
Contact: ogabbay@kernel.org
Description: Sets the state of the first S/W led on the device
What: /sys/kernel/debug/habanalabs/hl<n>/led1
Date: Jan 2019
KernelVersion: 5.1
Contact: ogabbay@kernel.org
Description: Sets the state of the second S/W led on the device
What: /sys/kernel/debug/habanalabs/hl<n>/led2
Date: Jan 2019
KernelVersion: 5.1
Contact: ogabbay@kernel.org
Description: Sets the state of the third S/W led on the device
What: /sys/kernel/debug/habanalabs/hl<n>/mmu
Date: Jan 2019
KernelVersion: 5.1
Contact: ogabbay@kernel.org
Description: Displays the hop values and physical address for a given ASID
and virtual address. The user should write the ASID and VA into
the file and then read the file to get the result.
e.g. to display info about VA 0x1000 for ASID 1 you need to do:
echo "1 0x1000" > /sys/kernel/debug/habanalabs/hl0/mmu
What: /sys/kernel/debug/habanalabs/hl<n>/mmu_error
Date: Mar 2021
KernelVersion: 5.12
Contact: fkassabri@habana.ai
Description: Check and display page fault or access violation mmu errors for
all MMUs specified in mmu_cap_mask.
e.g. to display error info for MMU hw cap bit 9, you need to do:
echo "0x200" > /sys/kernel/debug/habanalabs/hl0/mmu_error
cat /sys/kernel/debug/habanalabs/hl0/mmu_error
What: /sys/kernel/debug/habanalabs/hl<n>/set_power_state
Date: Jan 2019
KernelVersion: 5.1
Contact: ogabbay@kernel.org
Description: Sets the PCI power state. Valid values are "1" for D0 and "2"
for D3Hot
What: /sys/kernel/debug/habanalabs/hl<n>/skip_reset_on_timeout
Date: Jun 2021
KernelVersion: 5.13
Contact: ynudelman@habana.ai
Description: Sets the skip reset on timeout option for the device. Value of
"0" means device will be reset in case some CS has timed out,
otherwise it will not be reset.
What: /sys/kernel/debug/habanalabs/hl<n>/state_dump
Date: Oct 2021
KernelVersion: 5.15
Contact: ynudelman@habana.ai
Description: Gets the state dump occurring on a CS timeout or failure.
State dump is used for debug and is created each time in case of
a problem in a CS execution, before reset.
Reading from the node returns the newest state dump available.
Writing an integer X discards X state dumps, so that the
next read would return X+1-st newest state dump.
What: /sys/kernel/debug/habanalabs/hl<n>/stop_on_err
Date: Mar 2020
KernelVersion: 5.6
Contact: ogabbay@kernel.org
Description: Sets the stop-on_error option for the device engines. Value of
"0" is for disable, otherwise enable.
What: /sys/kernel/debug/habanalabs/hl<n>/userptr
Date: Jan 2019
KernelVersion: 5.1
Contact: ogabbay@kernel.org
Description: Displays a list with information about the currently user
pointers (user virtual addresses) that are pinned and mapped
to DMA addresses
What: /sys/kernel/debug/habanalabs/hl<n>/userptr_lookup
Date: Aug 2021
KernelVersion: 5.15
Contact: ogabbay@kernel.org
Description: Allows to search for specific user pointers (user virtual
addresses) that are pinned and mapped to DMA addresses, and see
their resolution to the specific dma address.
What: /sys/kernel/debug/habanalabs/hl<n>/vm
Date: Jan 2019
KernelVersion: 5.1
Contact: ogabbay@kernel.org
Description: Displays a list with information about all the active virtual
address mappings per ASID and all user mappings of HW blocks
|