summaryrefslogtreecommitdiffstats
path: root/Documentation/bpf/instruction-set.rst
blob: 9e27fbdb2206f7754aadf8db1800c206c3c33814 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
====================
eBPF Instruction Set
====================

Registers and calling convention
================================

eBPF has 10 general purpose registers and a read-only frame pointer register,
all of which are 64-bits wide.

The eBPF calling convention is defined as:

 * R0: return value from function calls, and exit value for eBPF programs
 * R1 - R5: arguments for function calls
 * R6 - R9: callee saved registers that function calls will preserve
 * R10: read-only frame pointer to access stack

R0 - R5 are scratch registers and eBPF programs needs to spill/fill them if
necessary across calls.

Instruction encoding
====================

eBPF has two instruction encodings:

 * the basic instruction encoding, which uses 64 bits to encode an instruction
 * the wide instruction encoding, which appends a second 64-bit immediate value
   (imm64) after the basic instruction for a total of 128 bits.

The basic instruction encoding looks as follows:

 =============  =======  ===============  ====================  ============
 32 bits (MSB)  16 bits  4 bits           4 bits                8 bits (LSB)
 =============  =======  ===============  ====================  ============
 immediate      offset   source register  destination register  opcode
 =============  =======  ===============  ====================  ============

Note that most instructions do not use all of the fields.
Unused fields shall be cleared to zero.

Instruction classes
-------------------

The three LSB bits of the 'opcode' field store the instruction class:

  =========  =====  ===============================
  class      value  description
  =========  =====  ===============================
  BPF_LD     0x00   non-standard load operations
  BPF_LDX    0x01   load into register operations
  BPF_ST     0x02   store from immediate operations
  BPF_STX    0x03   store from register operations
  BPF_ALU    0x04   32-bit arithmetic operations
  BPF_JMP    0x05   64-bit jump operations
  BPF_JMP32  0x06   32-bit jump operations
  BPF_ALU64  0x07   64-bit arithmetic operations
  =========  =====  ===============================

Arithmetic and jump instructions
================================

For arithmetic and jump instructions (BPF_ALU, BPF_ALU64, BPF_JMP and
BPF_JMP32), the 8-bit 'opcode' field is divided into three parts:

  ==============  ======  =================
  4 bits (MSB)    1 bit   3 bits (LSB)
  ==============  ======  =================
  operation code  source  instruction class
  ==============  ======  =================

The 4th bit encodes the source operand:

  ======  =====  ========================================
  source  value  description
  ======  =====  ========================================
  BPF_K   0x00   use 32-bit immediate as source operand
  BPF_X   0x08   use 'src_reg' register as source operand
  ======  =====  ========================================

The four MSB bits store the operation code.


Arithmetic instructions
-----------------------

BPF_ALU uses 32-bit wide operands while BPF_ALU64 uses 64-bit wide operands for
otherwise identical operations.
The code field encodes the operation as below:

  ========  =====  =================================================
  code      value  description
  ========  =====  =================================================
  BPF_ADD   0x00   dst += src
  BPF_SUB   0x10   dst -= src
  BPF_MUL   0x20   dst \*= src
  BPF_DIV   0x30   dst /= src
  BPF_OR    0x40   dst \|= src
  BPF_AND   0x50   dst &= src
  BPF_LSH   0x60   dst <<= src
  BPF_RSH   0x70   dst >>= src
  BPF_NEG   0x80   dst = ~src
  BPF_MOD   0x90   dst %= src
  BPF_XOR   0xa0   dst ^= src
  BPF_MOV   0xb0   dst = src
  BPF_ARSH  0xc0   sign extending shift right
  BPF_END   0xd0   byte swap operations (see separate section below)
  ========  =====  =================================================

BPF_ADD | BPF_X | BPF_ALU means::

  dst_reg = (u32) dst_reg + (u32) src_reg;

BPF_ADD | BPF_X | BPF_ALU64 means::

  dst_reg = dst_reg + src_reg

BPF_XOR | BPF_K | BPF_ALU means::

  src_reg = (u32) src_reg ^ (u32) imm32

BPF_XOR | BPF_K | BPF_ALU64 means::

  src_reg = src_reg ^ imm32


Byte swap instructions
----------------------

The byte swap instructions use an instruction class of ``BPF_ALU`` and a 4-bit
code field of ``BPF_END``.

The byte swap instructions operate on the destination register
only and do not use a separate source register or immediate value.

The 1-bit source operand field in the opcode is used to to select what byte
order the operation convert from or to:

  =========  =====  =================================================
  source     value  description
  =========  =====  =================================================
  BPF_TO_LE  0x00   convert between host byte order and little endian
  BPF_TO_BE  0x08   convert between host byte order and big endian
  =========  =====  =================================================

The imm field encodes the width of the swap operations.  The following widths
are supported: 16, 32 and 64.

Examples:

``BPF_ALU | BPF_TO_LE | BPF_END`` with imm = 16 means::

  dst_reg = htole16(dst_reg)

``BPF_ALU | BPF_TO_BE | BPF_END`` with imm = 64 means::

  dst_reg = htobe64(dst_reg)

``BPF_FROM_LE`` and ``BPF_FROM_BE`` exist as aliases for ``BPF_TO_LE`` and
``BPF_TO_BE`` respectively.


Jump instructions
-----------------

BPF_JMP32 uses 32-bit wide operands while BPF_JMP uses 64-bit wide operands for
otherwise identical operations.
The code field encodes the operation as below:

  ========  =====  =========================  ============
  code      value  description                notes
  ========  =====  =========================  ============
  BPF_JA    0x00   PC += off                  BPF_JMP only
  BPF_JEQ   0x10   PC += off if dst == src
  BPF_JGT   0x20   PC += off if dst > src     unsigned
  BPF_JGE   0x30   PC += off if dst >= src    unsigned
  BPF_JSET  0x40   PC += off if dst & src
  BPF_JNE   0x50   PC += off if dst != src
  BPF_JSGT  0x60   PC += off if dst > src     signed
  BPF_JSGE  0x70   PC += off if dst >= src    signed
  BPF_CALL  0x80   function call
  BPF_EXIT  0x90   function / program return  BPF_JMP only
  BPF_JLT   0xa0   PC += off if dst < src     unsigned
  BPF_JLE   0xb0   PC += off if dst <= src    unsigned
  BPF_JSLT  0xc0   PC += off if dst < src     signed
  BPF_JSLE  0xd0   PC += off if dst <= src    signed
  ========  =====  =========================  ============

The eBPF program needs to store the return value into register R0 before doing a
BPF_EXIT.


Load and store instructions
===========================

For load and store instructions (BPF_LD, BPF_LDX, BPF_ST and BPF_STX), the
8-bit 'opcode' field is divided as:

  ============  ======  =================
  3 bits (MSB)  2 bits  3 bits (LSB)
  ============  ======  =================
  mode          size    instruction class
  ============  ======  =================

The size modifier is one of:

  =============  =====  =====================
  size modifier  value  description
  =============  =====  =====================
  BPF_W          0x00   word        (4 bytes)
  BPF_H          0x08   half word   (2 bytes)
  BPF_B          0x10   byte
  BPF_DW         0x18   double word (8 bytes)
  =============  =====  =====================

The mode modifier is one of:

  =============  =====  ====================================
  mode modifier  value  description
  =============  =====  ====================================
  BPF_IMM        0x00   64-bit immediate instructions
  BPF_ABS        0x20   legacy BPF packet access (absolute)
  BPF_IND        0x40   legacy BPF packet access (indirect)
  BPF_MEM        0x60   regular load and store operations
  BPF_ATOMIC     0xc0   atomic operations
  =============  =====  ====================================


Regular load and store operations
---------------------------------

The ``BPF_MEM`` mode modifier is used to encode regular load and store
instructions that transfer data between a register and memory.

``BPF_MEM | <size> | BPF_STX`` means::

  *(size *) (dst_reg + off) = src_reg

``BPF_MEM | <size> | BPF_ST`` means::

  *(size *) (dst_reg + off) = imm32

``BPF_MEM | <size> | BPF_LDX`` means::

  dst_reg = *(size *) (src_reg + off)

Where size is one of: ``BPF_B``, ``BPF_H``, ``BPF_W``, or ``BPF_DW``.

Atomic operations
-----------------

Atomic operations are operations that operate on memory and can not be
interrupted or corrupted by other access to the same memory region
by other eBPF programs or means outside of this specification.

All atomic operations supported by eBPF are encoded as store operations
that use the ``BPF_ATOMIC`` mode modifier as follows:

  * ``BPF_ATOMIC | BPF_W | BPF_STX`` for 32-bit operations
  * ``BPF_ATOMIC | BPF_DW | BPF_STX`` for 64-bit operations
  * 8-bit and 16-bit wide atomic operations are not supported.

The imm field is used to encode the actual atomic operation.
Simple atomic operation use a subset of the values defined to encode
arithmetic operations in the imm field to encode the atomic operation:

  ========  =====  ===========
  imm       value  description
  ========  =====  ===========
  BPF_ADD   0x00   atomic add
  BPF_OR    0x40   atomic or
  BPF_AND   0x50   atomic and
  BPF_XOR   0xa0   atomic xor
  ========  =====  ===========


``BPF_ATOMIC | BPF_W  | BPF_STX`` with imm = BPF_ADD means::

  *(u32 *)(dst_reg + off16) += src_reg

``BPF_ATOMIC | BPF_DW | BPF_STX`` with imm = BPF ADD means::

  *(u64 *)(dst_reg + off16) += src_reg

``BPF_XADD`` is a deprecated name for ``BPF_ATOMIC | BPF_ADD``.

In addition to the simple atomic operations, there also is a modifier and
two complex atomic operations:

  ===========  ================  ===========================
  imm          value             description
  ===========  ================  ===========================
  BPF_FETCH    0x01              modifier: return old value
  BPF_XCHG     0xe0 | BPF_FETCH  atomic exchange
  BPF_CMPXCHG  0xf0 | BPF_FETCH  atomic compare and exchange
  ===========  ================  ===========================

The ``BPF_FETCH`` modifier is optional for simple atomic operations, and
always set for the complex atomic operations.  If the ``BPF_FETCH`` flag
is set, then the operation also overwrites ``src_reg`` with the value that
was in memory before it was modified.

The ``BPF_XCHG`` operation atomically exchanges ``src_reg`` with the value
addressed by ``dst_reg + off``.

The ``BPF_CMPXCHG`` operation atomically compares the value addressed by
``dst_reg + off`` with ``R0``. If they match, the value addressed by
``dst_reg + off`` is replaced with ``src_reg``. In either case, the
value that was at ``dst_reg + off`` before the operation is zero-extended
and loaded back to ``R0``.

Clang can generate atomic instructions by default when ``-mcpu=v3`` is
enabled. If a lower version for ``-mcpu`` is set, the only atomic instruction
Clang can generate is ``BPF_ADD`` *without* ``BPF_FETCH``. If you need to enable
the atomics features, while keeping a lower ``-mcpu`` version, you can use
``-Xclang -target-feature -Xclang +alu32``.

64-bit immediate instructions
-----------------------------

Instructions with the ``BPF_IMM`` mode modifier use the wide instruction
encoding for an extra imm64 value.

There is currently only one such instruction.

``BPF_LD | BPF_DW | BPF_IMM`` means::

  dst_reg = imm64


Legacy BPF Packet access instructions
-------------------------------------

eBPF has special instructions for access to packet data that have been
carried over from classic BPF to retain the performance of legacy socket
filters running in the eBPF interpreter.

The instructions come in two forms: ``BPF_ABS | <size> | BPF_LD`` and
``BPF_IND | <size> | BPF_LD``.

These instructions are used to access packet data and can only be used when
the program context is a pointer to networking packet.  ``BPF_ABS``
accesses packet data at an absolute offset specified by the immediate data
and ``BPF_IND`` access packet data at an offset that includes the value of
a register in addition to the immediate data.

These instructions have seven implicit operands:

 * Register R6 is an implicit input that must contain pointer to a
   struct sk_buff.
 * Register R0 is an implicit output which contains the data fetched from
   the packet.
 * Registers R1-R5 are scratch registers that are clobbered after a call to
   ``BPF_ABS | BPF_LD`` or ``BPF_IND`` | BPF_LD instructions.

These instructions have an implicit program exit condition as well. When an
eBPF program is trying to access the data beyond the packet boundary, the
program execution will be aborted.

``BPF_ABS | BPF_W | BPF_LD`` means::

  R0 = ntohl(*(u32 *) (((struct sk_buff *) R6)->data + imm32))

``BPF_IND | BPF_W | BPF_LD`` means::

  R0 = ntohl(*(u32 *) (((struct sk_buff *) R6)->data + src_reg + imm32))