summaryrefslogtreecommitdiffstats
path: root/arch/arm/mach-omap2/omap-pm.h
blob: 5ba5df47f91b95272fbb99afae8e62da3f289a90 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
/* SPDX-License-Identifier: GPL-2.0 */
/*
 * omap-pm.h - OMAP power management interface
 *
 * Copyright (C) 2008-2010 Texas Instruments, Inc.
 * Copyright (C) 2008-2010 Nokia Corporation
 * Paul Walmsley
 *
 * Interface developed by (in alphabetical order): Karthik Dasu, Jouni
 * Högander, Tony Lindgren, Rajendra Nayak, Sakari Poussa,
 * Veeramanikandan Raju, Anand Sawant, Igor Stoppa, Paul Walmsley,
 * Richard Woodruff
 */

#ifndef ASM_ARM_ARCH_OMAP_OMAP_PM_H
#define ASM_ARM_ARCH_OMAP_OMAP_PM_H

#include <linux/device.h>
#include <linux/cpufreq.h>
#include <linux/clk.h>
#include <linux/pm_opp.h>

/*
 * agent_id values for use with omap_pm_set_min_bus_tput():
 *
 * OCP_INITIATOR_AGENT is only valid for devices that can act as
 * initiators -- it represents the device's L3 interconnect
 * connection.  OCP_TARGET_AGENT represents the device's L4
 * interconnect connection.
 */
#define OCP_TARGET_AGENT		1
#define OCP_INITIATOR_AGENT		2

/**
 * omap_pm_if_early_init - OMAP PM init code called before clock fw init
 * @mpu_opp_table: array ptr to struct omap_opp for MPU
 * @dsp_opp_table: array ptr to struct omap_opp for DSP
 * @l3_opp_table : array ptr to struct omap_opp for CORE
 *
 * Initialize anything that must be configured before the clock
 * framework starts.  The "_if_" is to avoid name collisions with the
 * PM idle-loop code.
 */
int __init omap_pm_if_early_init(void);

/**
 * omap_pm_if_init - OMAP PM init code called after clock fw init
 *
 * The main initialization code.  OPP tables are passed in here.  The
 * "_if_" is to avoid name collisions with the PM idle-loop code.
 */
int __init omap_pm_if_init(void);

/*
 * Device-driver-originated constraints (via board-*.c files, platform_data)
 */


/**
 * omap_pm_set_max_mpu_wakeup_lat - set the maximum MPU wakeup latency
 * @dev: struct device * requesting the constraint
 * @t: maximum MPU wakeup latency in microseconds
 *
 * Request that the maximum interrupt latency for the MPU to be no
 * greater than @t microseconds. "Interrupt latency" in this case is
 * defined as the elapsed time from the occurrence of a hardware or
 * timer interrupt to the time when the device driver's interrupt
 * service routine has been entered by the MPU.
 *
 * It is intended that underlying PM code will use this information to
 * determine what power state to put the MPU powerdomain into, and
 * possibly the CORE powerdomain as well, since interrupt handling
 * code currently runs from SDRAM.  Advanced PM or board*.c code may
 * also configure interrupt controller priorities, OCP bus priorities,
 * CPU speed(s), etc.
 *
 * This function will not affect device wakeup latency, e.g., time
 * elapsed from when a device driver enables a hardware device with
 * clk_enable(), to when the device is ready for register access or
 * other use.  To control this device wakeup latency, use
 * omap_pm_set_max_dev_wakeup_lat()
 *
 * Multiple calls to omap_pm_set_max_mpu_wakeup_lat() will replace the
 * previous t value.  To remove the latency target for the MPU, call
 * with t = -1.
 *
 * XXX This constraint will be deprecated soon in favor of the more
 * general omap_pm_set_max_dev_wakeup_lat()
 *
 * Returns -EINVAL for an invalid argument, -ERANGE if the constraint
 * is not satisfiable, or 0 upon success.
 */
int omap_pm_set_max_mpu_wakeup_lat(struct device *dev, long t);


/**
 * omap_pm_set_min_bus_tput - set minimum bus throughput needed by device
 * @dev: struct device * requesting the constraint
 * @tbus_id: interconnect to operate on (OCP_{INITIATOR,TARGET}_AGENT)
 * @r: minimum throughput (in KiB/s)
 *
 * Request that the minimum data throughput on the OCP interconnect
 * attached to device @dev interconnect agent @tbus_id be no less
 * than @r KiB/s.
 *
 * It is expected that the OMAP PM or bus code will use this
 * information to set the interconnect clock to run at the lowest
 * possible speed that satisfies all current system users.  The PM or
 * bus code will adjust the estimate based on its model of the bus, so
 * device driver authors should attempt to specify an accurate
 * quantity for their device use case, and let the PM or bus code
 * overestimate the numbers as necessary to handle request/response
 * latency, other competing users on the system, etc.  On OMAP2/3, if
 * a driver requests a minimum L4 interconnect speed constraint, the
 * code will also need to add an minimum L3 interconnect speed
 * constraint,
 *
 * Multiple calls to omap_pm_set_min_bus_tput() will replace the
 * previous rate value for this device.  To remove the interconnect
 * throughput restriction for this device, call with r = 0.
 *
 * Returns -EINVAL for an invalid argument, -ERANGE if the constraint
 * is not satisfiable, or 0 upon success.
 */
int omap_pm_set_min_bus_tput(struct device *dev, u8 agent_id, unsigned long r);


/*
 * CPUFreq-originated constraint
 *
 * In the future, this should be handled by custom OPP clocktype
 * functions.
 */


/*
 * Device context loss tracking
 */

/**
 * omap_pm_get_dev_context_loss_count - return count of times dev has lost ctx
 * @dev: struct device *
 *
 * This function returns the number of times that the device @dev has
 * lost its internal context.  This generally occurs on a powerdomain
 * transition to OFF.  Drivers use this as an optimization to avoid restoring
 * context if the device hasn't lost it.  To use, drivers should initially
 * call this in their context save functions and store the result.  Early in
 * the driver's context restore function, the driver should call this function
 * again, and compare the result to the stored counter.  If they differ, the
 * driver must restore device context.   If the number of context losses
 * exceeds the maximum positive integer, the function will wrap to 0 and
 * continue counting.  Returns the number of context losses for this device,
 * or negative value upon error.
 */
int omap_pm_get_dev_context_loss_count(struct device *dev);

void omap_pm_enable_off_mode(void);
void omap_pm_disable_off_mode(void);

#endif