summaryrefslogtreecommitdiffstats
path: root/arch/arm/mm/cache-b15-rac.c
blob: 3471fc64a3aee35c2f9756a2df34974113b3d9f0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Broadcom Brahma-B15 CPU read-ahead cache management functions
 *
 * Copyright (C) 2015-2016 Broadcom
 */

#include <linux/err.h>
#include <linux/spinlock.h>
#include <linux/io.h>
#include <linux/bitops.h>
#include <linux/of_address.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/syscore_ops.h>
#include <linux/reboot.h>

#include <asm/cacheflush.h>
#include <asm/hardware/cache-b15-rac.h>

extern void v7_flush_kern_cache_all(void);

/* RAC register offsets, relative to the HIF_CPU_BIUCTRL register base */
#define RAC_CONFIG0_REG			(0x78)
#define  RACENPREF_MASK			(0x3)
#define  RACPREFINST_SHIFT		(0)
#define  RACENINST_SHIFT		(2)
#define  RACPREFDATA_SHIFT		(4)
#define  RACENDATA_SHIFT		(6)
#define  RAC_CPU_SHIFT			(8)
#define  RACCFG_MASK			(0xff)
#define RAC_CONFIG1_REG			(0x7c)
/* Brahma-B15 is a quad-core only design */
#define B15_RAC_FLUSH_REG		(0x80)
/* Brahma-B53 is an octo-core design */
#define B53_RAC_FLUSH_REG		(0x84)
#define  FLUSH_RAC			(1 << 0)

/* Bitmask to enable instruction and data prefetching with a 256-bytes stride */
#define RAC_DATA_INST_EN_MASK		(1 << RACPREFINST_SHIFT | \
					 RACENPREF_MASK << RACENINST_SHIFT | \
					 1 << RACPREFDATA_SHIFT | \
					 RACENPREF_MASK << RACENDATA_SHIFT)

#define RAC_ENABLED			0
/* Special state where we want to bypass the spinlock and call directly
 * into the v7 cache maintenance operations during suspend/resume
 */
#define RAC_SUSPENDED			1

static void __iomem *b15_rac_base;
static DEFINE_SPINLOCK(rac_lock);

static u32 rac_config0_reg;
static u32 rac_flush_offset;

/* Initialization flag to avoid checking for b15_rac_base, and to prevent
 * multi-platform kernels from crashing here as well.
 */
static unsigned long b15_rac_flags;

static inline u32 __b15_rac_disable(void)
{
	u32 val = __raw_readl(b15_rac_base + RAC_CONFIG0_REG);
	__raw_writel(0, b15_rac_base + RAC_CONFIG0_REG);
	dmb();
	return val;
}

static inline void __b15_rac_flush(void)
{
	u32 reg;

	__raw_writel(FLUSH_RAC, b15_rac_base + rac_flush_offset);
	do {
		/* This dmb() is required to force the Bus Interface Unit
		 * to clean oustanding writes, and forces an idle cycle
		 * to be inserted.
		 */
		dmb();
		reg = __raw_readl(b15_rac_base + rac_flush_offset);
	} while (reg & FLUSH_RAC);
}

static inline u32 b15_rac_disable_and_flush(void)
{
	u32 reg;

	reg = __b15_rac_disable();
	__b15_rac_flush();
	return reg;
}

static inline void __b15_rac_enable(u32 val)
{
	__raw_writel(val, b15_rac_base + RAC_CONFIG0_REG);
	/* dsb() is required here to be consistent with __flush_icache_all() */
	dsb();
}

#define BUILD_RAC_CACHE_OP(name, bar)				\
void b15_flush_##name(void)					\
{								\
	unsigned int do_flush;					\
	u32 val = 0;						\
								\
	if (test_bit(RAC_SUSPENDED, &b15_rac_flags)) {		\
		v7_flush_##name();				\
		bar;						\
		return;						\
	}							\
								\
	spin_lock(&rac_lock);					\
	do_flush = test_bit(RAC_ENABLED, &b15_rac_flags);	\
	if (do_flush)						\
		val = b15_rac_disable_and_flush();		\
	v7_flush_##name();					\
	if (!do_flush)						\
		bar;						\
	else							\
		__b15_rac_enable(val);				\
	spin_unlock(&rac_lock);					\
}

#define nobarrier

/* The readahead cache present in the Brahma-B15 CPU is a special piece of
 * hardware after the integrated L2 cache of the B15 CPU complex whose purpose
 * is to prefetch instruction and/or data with a line size of either 64 bytes
 * or 256 bytes. The rationale is that the data-bus of the CPU interface is
 * optimized for 256-bytes transactions, and enabling the readahead cache
 * provides a significant performance boost we want it enabled (typically
 * twice the performance for a memcpy benchmark application).
 *
 * The readahead cache is transparent for Modified Virtual Addresses
 * cache maintenance operations: ICIMVAU, DCIMVAC, DCCMVAC, DCCMVAU and
 * DCCIMVAC.
 *
 * It is however not transparent for the following cache maintenance
 * operations: DCISW, DCCSW, DCCISW, ICIALLUIS and ICIALLU which is precisely
 * what we are patching here with our BUILD_RAC_CACHE_OP here.
 */
BUILD_RAC_CACHE_OP(kern_cache_all, nobarrier);

static void b15_rac_enable(void)
{
	unsigned int cpu;
	u32 enable = 0;

	for_each_possible_cpu(cpu)
		enable |= (RAC_DATA_INST_EN_MASK << (cpu * RAC_CPU_SHIFT));

	b15_rac_disable_and_flush();
	__b15_rac_enable(enable);
}

static int b15_rac_reboot_notifier(struct notifier_block *nb,
				   unsigned long action,
				   void *data)
{
	/* During kexec, we are not yet migrated on the boot CPU, so we need to
	 * make sure we are SMP safe here. Once the RAC is disabled, flag it as
	 * suspended such that the hotplug notifier returns early.
	 */
	if (action == SYS_RESTART) {
		spin_lock(&rac_lock);
		b15_rac_disable_and_flush();
		clear_bit(RAC_ENABLED, &b15_rac_flags);
		set_bit(RAC_SUSPENDED, &b15_rac_flags);
		spin_unlock(&rac_lock);
	}

	return NOTIFY_DONE;
}

static struct notifier_block b15_rac_reboot_nb = {
	.notifier_call	= b15_rac_reboot_notifier,
};

/* The CPU hotplug case is the most interesting one, we basically need to make
 * sure that the RAC is disabled for the entire system prior to having a CPU
 * die, in particular prior to this dying CPU having exited the coherency
 * domain.
 *
 * Once this CPU is marked dead, we can safely re-enable the RAC for the
 * remaining CPUs in the system which are still online.
 *
 * Offlining a CPU is the problematic case, onlining a CPU is not much of an
 * issue since the CPU and its cache-level hierarchy will start filling with
 * the RAC disabled, so L1 and L2 only.
 *
 * In this function, we should NOT have to verify any unsafe setting/condition
 * b15_rac_base:
 *
 *   It is protected by the RAC_ENABLED flag which is cleared by default, and
 *   being cleared when initial procedure is done. b15_rac_base had been set at
 *   that time.
 *
 * RAC_ENABLED:
 *   There is a small timing windows, in b15_rac_init(), between
 *      cpuhp_setup_state_*()
 *      ...
 *      set RAC_ENABLED
 *   However, there is no hotplug activity based on the Linux booting procedure.
 *
 * Since we have to disable RAC for all cores, we keep RAC on as long as as
 * possible (disable it as late as possible) to gain the cache benefit.
 *
 * Thus, dying/dead states are chosen here
 *
 * We are choosing not do disable the RAC on a per-CPU basis, here, if we did
 * we would want to consider disabling it as early as possible to benefit the
 * other active CPUs.
 */

/* Running on the dying CPU */
static int b15_rac_dying_cpu(unsigned int cpu)
{
	/* During kexec/reboot, the RAC is disabled via the reboot notifier
	 * return early here.
	 */
	if (test_bit(RAC_SUSPENDED, &b15_rac_flags))
		return 0;

	spin_lock(&rac_lock);

	/* Indicate that we are starting a hotplug procedure */
	__clear_bit(RAC_ENABLED, &b15_rac_flags);

	/* Disable the readahead cache and save its value to a global */
	rac_config0_reg = b15_rac_disable_and_flush();

	spin_unlock(&rac_lock);

	return 0;
}

/* Running on a non-dying CPU */
static int b15_rac_dead_cpu(unsigned int cpu)
{
	/* During kexec/reboot, the RAC is disabled via the reboot notifier
	 * return early here.
	 */
	if (test_bit(RAC_SUSPENDED, &b15_rac_flags))
		return 0;

	spin_lock(&rac_lock);

	/* And enable it */
	__b15_rac_enable(rac_config0_reg);
	__set_bit(RAC_ENABLED, &b15_rac_flags);

	spin_unlock(&rac_lock);

	return 0;
}

static int b15_rac_suspend(void)
{
	/* Suspend the read-ahead cache oeprations, forcing our cache
	 * implementation to fallback to the regular ARMv7 calls.
	 *
	 * We are guaranteed to be running on the boot CPU at this point and
	 * with every other CPU quiesced, so setting RAC_SUSPENDED is not racy
	 * here.
	 */
	rac_config0_reg = b15_rac_disable_and_flush();
	set_bit(RAC_SUSPENDED, &b15_rac_flags);

	return 0;
}

static void b15_rac_resume(void)
{
	/* Coming out of a S3 suspend/resume cycle, the read-ahead cache
	 * register RAC_CONFIG0_REG will be restored to its default value, make
	 * sure we re-enable it and set the enable flag, we are also guaranteed
	 * to run on the boot CPU, so not racy again.
	 */
	__b15_rac_enable(rac_config0_reg);
	clear_bit(RAC_SUSPENDED, &b15_rac_flags);
}

static struct syscore_ops b15_rac_syscore_ops = {
	.suspend	= b15_rac_suspend,
	.resume		= b15_rac_resume,
};

static int __init b15_rac_init(void)
{
	struct device_node *dn, *cpu_dn;
	int ret = 0, cpu;
	u32 reg, en_mask = 0;

	dn = of_find_compatible_node(NULL, NULL, "brcm,brcmstb-cpu-biu-ctrl");
	if (!dn)
		return -ENODEV;

	if (WARN(num_possible_cpus() > 4, "RAC only supports 4 CPUs\n"))
		goto out;

	b15_rac_base = of_iomap(dn, 0);
	if (!b15_rac_base) {
		pr_err("failed to remap BIU control base\n");
		ret = -ENOMEM;
		goto out;
	}

	cpu_dn = of_get_cpu_node(0, NULL);
	if (!cpu_dn) {
		ret = -ENODEV;
		goto out;
	}

	if (of_device_is_compatible(cpu_dn, "brcm,brahma-b15"))
		rac_flush_offset = B15_RAC_FLUSH_REG;
	else if (of_device_is_compatible(cpu_dn, "brcm,brahma-b53"))
		rac_flush_offset = B53_RAC_FLUSH_REG;
	else {
		pr_err("Unsupported CPU\n");
		of_node_put(cpu_dn);
		ret = -EINVAL;
		goto out;
	}
	of_node_put(cpu_dn);

	ret = register_reboot_notifier(&b15_rac_reboot_nb);
	if (ret) {
		pr_err("failed to register reboot notifier\n");
		iounmap(b15_rac_base);
		goto out;
	}

	if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
		ret = cpuhp_setup_state_nocalls(CPUHP_AP_ARM_CACHE_B15_RAC_DEAD,
					"arm/cache-b15-rac:dead",
					NULL, b15_rac_dead_cpu);
		if (ret)
			goto out_unmap;

		ret = cpuhp_setup_state_nocalls(CPUHP_AP_ARM_CACHE_B15_RAC_DYING,
					"arm/cache-b15-rac:dying",
					NULL, b15_rac_dying_cpu);
		if (ret)
			goto out_cpu_dead;
	}

	if (IS_ENABLED(CONFIG_PM_SLEEP))
		register_syscore_ops(&b15_rac_syscore_ops);

	spin_lock(&rac_lock);
	reg = __raw_readl(b15_rac_base + RAC_CONFIG0_REG);
	for_each_possible_cpu(cpu)
		en_mask |= ((1 << RACPREFDATA_SHIFT) << (cpu * RAC_CPU_SHIFT));
	WARN(reg & en_mask, "Read-ahead cache not previously disabled\n");

	b15_rac_enable();
	set_bit(RAC_ENABLED, &b15_rac_flags);
	spin_unlock(&rac_lock);

	pr_info("Broadcom Brahma-B15 readahead cache at: 0x%p\n",
		b15_rac_base + RAC_CONFIG0_REG);

	goto out;

out_cpu_dead:
	cpuhp_remove_state_nocalls(CPUHP_AP_ARM_CACHE_B15_RAC_DYING);
out_unmap:
	unregister_reboot_notifier(&b15_rac_reboot_nb);
	iounmap(b15_rac_base);
out:
	of_node_put(dn);
	return ret;
}
arch_initcall(b15_rac_init);