summaryrefslogtreecommitdiffstats
path: root/arch/arm64/crypto/aes-ce-cipher.c
blob: 6a75cd75ed11c60f828ff96b4ed0f09c4b288c6c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
/*
 * aes-ce-cipher.c - core AES cipher using ARMv8 Crypto Extensions
 *
 * Copyright (C) 2013 - 2017 Linaro Ltd <ard.biesheuvel@linaro.org>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <asm/neon.h>
#include <asm/simd.h>
#include <asm/unaligned.h>
#include <crypto/aes.h>
#include <linux/cpufeature.h>
#include <linux/crypto.h>
#include <linux/module.h>

#include "aes-ce-setkey.h"

MODULE_DESCRIPTION("Synchronous AES cipher using ARMv8 Crypto Extensions");
MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>");
MODULE_LICENSE("GPL v2");

asmlinkage void __aes_arm64_encrypt(u32 *rk, u8 *out, const u8 *in, int rounds);
asmlinkage void __aes_arm64_decrypt(u32 *rk, u8 *out, const u8 *in, int rounds);

struct aes_block {
	u8 b[AES_BLOCK_SIZE];
};

static int num_rounds(struct crypto_aes_ctx *ctx)
{
	/*
	 * # of rounds specified by AES:
	 * 128 bit key		10 rounds
	 * 192 bit key		12 rounds
	 * 256 bit key		14 rounds
	 * => n byte key	=> 6 + (n/4) rounds
	 */
	return 6 + ctx->key_length / 4;
}

static void aes_cipher_encrypt(struct crypto_tfm *tfm, u8 dst[], u8 const src[])
{
	struct crypto_aes_ctx *ctx = crypto_tfm_ctx(tfm);
	struct aes_block *out = (struct aes_block *)dst;
	struct aes_block const *in = (struct aes_block *)src;
	void *dummy0;
	int dummy1;

	if (!may_use_simd()) {
		__aes_arm64_encrypt(ctx->key_enc, dst, src, num_rounds(ctx));
		return;
	}

	kernel_neon_begin();

	__asm__("	ld1	{v0.16b}, %[in]			;"
		"	ld1	{v1.4s}, [%[key]], #16		;"
		"	cmp	%w[rounds], #10			;"
		"	bmi	0f				;"
		"	bne	3f				;"
		"	mov	v3.16b, v1.16b			;"
		"	b	2f				;"
		"0:	mov	v2.16b, v1.16b			;"
		"	ld1	{v3.4s}, [%[key]], #16		;"
		"1:	aese	v0.16b, v2.16b			;"
		"	aesmc	v0.16b, v0.16b			;"
		"2:	ld1	{v1.4s}, [%[key]], #16		;"
		"	aese	v0.16b, v3.16b			;"
		"	aesmc	v0.16b, v0.16b			;"
		"3:	ld1	{v2.4s}, [%[key]], #16		;"
		"	subs	%w[rounds], %w[rounds], #3	;"
		"	aese	v0.16b, v1.16b			;"
		"	aesmc	v0.16b, v0.16b			;"
		"	ld1	{v3.4s}, [%[key]], #16		;"
		"	bpl	1b				;"
		"	aese	v0.16b, v2.16b			;"
		"	eor	v0.16b, v0.16b, v3.16b		;"
		"	st1	{v0.16b}, %[out]		;"

	:	[out]		"=Q"(*out),
		[key]		"=r"(dummy0),
		[rounds]	"=r"(dummy1)
	:	[in]		"Q"(*in),
				"1"(ctx->key_enc),
				"2"(num_rounds(ctx) - 2)
	:	"cc");

	kernel_neon_end();
}

static void aes_cipher_decrypt(struct crypto_tfm *tfm, u8 dst[], u8 const src[])
{
	struct crypto_aes_ctx *ctx = crypto_tfm_ctx(tfm);
	struct aes_block *out = (struct aes_block *)dst;
	struct aes_block const *in = (struct aes_block *)src;
	void *dummy0;
	int dummy1;

	if (!may_use_simd()) {
		__aes_arm64_decrypt(ctx->key_dec, dst, src, num_rounds(ctx));
		return;
	}

	kernel_neon_begin();

	__asm__("	ld1	{v0.16b}, %[in]			;"
		"	ld1	{v1.4s}, [%[key]], #16		;"
		"	cmp	%w[rounds], #10			;"
		"	bmi	0f				;"
		"	bne	3f				;"
		"	mov	v3.16b, v1.16b			;"
		"	b	2f				;"
		"0:	mov	v2.16b, v1.16b			;"
		"	ld1	{v3.4s}, [%[key]], #16		;"
		"1:	aesd	v0.16b, v2.16b			;"
		"	aesimc	v0.16b, v0.16b			;"
		"2:	ld1	{v1.4s}, [%[key]], #16		;"
		"	aesd	v0.16b, v3.16b			;"
		"	aesimc	v0.16b, v0.16b			;"
		"3:	ld1	{v2.4s}, [%[key]], #16		;"
		"	subs	%w[rounds], %w[rounds], #3	;"
		"	aesd	v0.16b, v1.16b			;"
		"	aesimc	v0.16b, v0.16b			;"
		"	ld1	{v3.4s}, [%[key]], #16		;"
		"	bpl	1b				;"
		"	aesd	v0.16b, v2.16b			;"
		"	eor	v0.16b, v0.16b, v3.16b		;"
		"	st1	{v0.16b}, %[out]		;"

	:	[out]		"=Q"(*out),
		[key]		"=r"(dummy0),
		[rounds]	"=r"(dummy1)
	:	[in]		"Q"(*in),
				"1"(ctx->key_dec),
				"2"(num_rounds(ctx) - 2)
	:	"cc");

	kernel_neon_end();
}

/*
 * aes_sub() - use the aese instruction to perform the AES sbox substitution
 *             on each byte in 'input'
 */
static u32 aes_sub(u32 input)
{
	u32 ret;

	__asm__("dup	v1.4s, %w[in]		;"
		"movi	v0.16b, #0		;"
		"aese	v0.16b, v1.16b		;"
		"umov	%w[out], v0.4s[0]	;"

	:	[out]	"=r"(ret)
	:	[in]	"r"(input)
	:		"v0","v1");

	return ret;
}

int ce_aes_expandkey(struct crypto_aes_ctx *ctx, const u8 *in_key,
		     unsigned int key_len)
{
	/*
	 * The AES key schedule round constants
	 */
	static u8 const rcon[] = {
		0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36,
	};

	u32 kwords = key_len / sizeof(u32);
	struct aes_block *key_enc, *key_dec;
	int i, j;

	if (key_len != AES_KEYSIZE_128 &&
	    key_len != AES_KEYSIZE_192 &&
	    key_len != AES_KEYSIZE_256)
		return -EINVAL;

	ctx->key_length = key_len;
	for (i = 0; i < kwords; i++)
		ctx->key_enc[i] = get_unaligned_le32(in_key + i * sizeof(u32));

	kernel_neon_begin();
	for (i = 0; i < sizeof(rcon); i++) {
		u32 *rki = ctx->key_enc + (i * kwords);
		u32 *rko = rki + kwords;

		rko[0] = ror32(aes_sub(rki[kwords - 1]), 8) ^ rcon[i] ^ rki[0];
		rko[1] = rko[0] ^ rki[1];
		rko[2] = rko[1] ^ rki[2];
		rko[3] = rko[2] ^ rki[3];

		if (key_len == AES_KEYSIZE_192) {
			if (i >= 7)
				break;
			rko[4] = rko[3] ^ rki[4];
			rko[5] = rko[4] ^ rki[5];
		} else if (key_len == AES_KEYSIZE_256) {
			if (i >= 6)
				break;
			rko[4] = aes_sub(rko[3]) ^ rki[4];
			rko[5] = rko[4] ^ rki[5];
			rko[6] = rko[5] ^ rki[6];
			rko[7] = rko[6] ^ rki[7];
		}
	}

	/*
	 * Generate the decryption keys for the Equivalent Inverse Cipher.
	 * This involves reversing the order of the round keys, and applying
	 * the Inverse Mix Columns transformation on all but the first and
	 * the last one.
	 */
	key_enc = (struct aes_block *)ctx->key_enc;
	key_dec = (struct aes_block *)ctx->key_dec;
	j = num_rounds(ctx);

	key_dec[0] = key_enc[j];
	for (i = 1, j--; j > 0; i++, j--)
		__asm__("ld1	{v0.4s}, %[in]		;"
			"aesimc	v1.16b, v0.16b		;"
			"st1	{v1.4s}, %[out]	;"

		:	[out]	"=Q"(key_dec[i])
		:	[in]	"Q"(key_enc[j])
		:		"v0","v1");
	key_dec[i] = key_enc[0];

	kernel_neon_end();
	return 0;
}
EXPORT_SYMBOL(ce_aes_expandkey);

int ce_aes_setkey(struct crypto_tfm *tfm, const u8 *in_key,
		  unsigned int key_len)
{
	struct crypto_aes_ctx *ctx = crypto_tfm_ctx(tfm);
	int ret;

	ret = ce_aes_expandkey(ctx, in_key, key_len);
	if (!ret)
		return 0;

	tfm->crt_flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
	return -EINVAL;
}
EXPORT_SYMBOL(ce_aes_setkey);

static struct crypto_alg aes_alg = {
	.cra_name		= "aes",
	.cra_driver_name	= "aes-ce",
	.cra_priority		= 250,
	.cra_flags		= CRYPTO_ALG_TYPE_CIPHER,
	.cra_blocksize		= AES_BLOCK_SIZE,
	.cra_ctxsize		= sizeof(struct crypto_aes_ctx),
	.cra_module		= THIS_MODULE,
	.cra_cipher = {
		.cia_min_keysize	= AES_MIN_KEY_SIZE,
		.cia_max_keysize	= AES_MAX_KEY_SIZE,
		.cia_setkey		= ce_aes_setkey,
		.cia_encrypt		= aes_cipher_encrypt,
		.cia_decrypt		= aes_cipher_decrypt
	}
};

static int __init aes_mod_init(void)
{
	return crypto_register_alg(&aes_alg);
}

static void __exit aes_mod_exit(void)
{
	crypto_unregister_alg(&aes_alg);
}

module_cpu_feature_match(AES, aes_mod_init);
module_exit(aes_mod_exit);