1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
|
/* SPDX-License-Identifier: GPL-2.0-only */
/*
* Copyright (C) 2014 Linaro Ltd. <ard.biesheuvel@linaro.org>
*/
#ifndef __ASM_CPUFEATURE_H
#define __ASM_CPUFEATURE_H
#include <asm/cpucaps.h>
#include <asm/cputype.h>
#include <asm/hwcap.h>
#include <asm/sysreg.h>
#define MAX_CPU_FEATURES 64
#define cpu_feature(x) KERNEL_HWCAP_ ## x
#ifndef __ASSEMBLY__
#include <linux/bug.h>
#include <linux/jump_label.h>
#include <linux/kernel.h>
/*
* CPU feature register tracking
*
* The safe value of a CPUID feature field is dependent on the implications
* of the values assigned to it by the architecture. Based on the relationship
* between the values, the features are classified into 3 types - LOWER_SAFE,
* HIGHER_SAFE and EXACT.
*
* The lowest value of all the CPUs is chosen for LOWER_SAFE and highest
* for HIGHER_SAFE. It is expected that all CPUs have the same value for
* a field when EXACT is specified, failing which, the safe value specified
* in the table is chosen.
*/
enum ftr_type {
FTR_EXACT, /* Use a predefined safe value */
FTR_LOWER_SAFE, /* Smaller value is safe */
FTR_HIGHER_SAFE, /* Bigger value is safe */
FTR_HIGHER_OR_ZERO_SAFE, /* Bigger value is safe, but 0 is biggest */
};
#define FTR_STRICT true /* SANITY check strict matching required */
#define FTR_NONSTRICT false /* SANITY check ignored */
#define FTR_SIGNED true /* Value should be treated as signed */
#define FTR_UNSIGNED false /* Value should be treated as unsigned */
#define FTR_VISIBLE true /* Feature visible to the user space */
#define FTR_HIDDEN false /* Feature is hidden from the user */
#define FTR_VISIBLE_IF_IS_ENABLED(config) \
(IS_ENABLED(config) ? FTR_VISIBLE : FTR_HIDDEN)
struct arm64_ftr_bits {
bool sign; /* Value is signed ? */
bool visible;
bool strict; /* CPU Sanity check: strict matching required ? */
enum ftr_type type;
u8 shift;
u8 width;
s64 safe_val; /* safe value for FTR_EXACT features */
};
/*
* @arm64_ftr_reg - Feature register
* @strict_mask Bits which should match across all CPUs for sanity.
* @sys_val Safe value across the CPUs (system view)
*/
struct arm64_ftr_reg {
const char *name;
u64 strict_mask;
u64 user_mask;
u64 sys_val;
u64 user_val;
const struct arm64_ftr_bits *ftr_bits;
};
extern struct arm64_ftr_reg arm64_ftr_reg_ctrel0;
/*
* CPU capabilities:
*
* We use arm64_cpu_capabilities to represent system features, errata work
* arounds (both used internally by kernel and tracked in cpu_hwcaps) and
* ELF HWCAPs (which are exposed to user).
*
* To support systems with heterogeneous CPUs, we need to make sure that we
* detect the capabilities correctly on the system and take appropriate
* measures to ensure there are no incompatibilities.
*
* This comment tries to explain how we treat the capabilities.
* Each capability has the following list of attributes :
*
* 1) Scope of Detection : The system detects a given capability by
* performing some checks at runtime. This could be, e.g, checking the
* value of a field in CPU ID feature register or checking the cpu
* model. The capability provides a call back ( @matches() ) to
* perform the check. Scope defines how the checks should be performed.
* There are three cases:
*
* a) SCOPE_LOCAL_CPU: check all the CPUs and "detect" if at least one
* matches. This implies, we have to run the check on all the
* booting CPUs, until the system decides that state of the
* capability is finalised. (See section 2 below)
* Or
* b) SCOPE_SYSTEM: check all the CPUs and "detect" if all the CPUs
* matches. This implies, we run the check only once, when the
* system decides to finalise the state of the capability. If the
* capability relies on a field in one of the CPU ID feature
* registers, we use the sanitised value of the register from the
* CPU feature infrastructure to make the decision.
* Or
* c) SCOPE_BOOT_CPU: Check only on the primary boot CPU to detect the
* feature. This category is for features that are "finalised"
* (or used) by the kernel very early even before the SMP cpus
* are brought up.
*
* The process of detection is usually denoted by "update" capability
* state in the code.
*
* 2) Finalise the state : The kernel should finalise the state of a
* capability at some point during its execution and take necessary
* actions if any. Usually, this is done, after all the boot-time
* enabled CPUs are brought up by the kernel, so that it can make
* better decision based on the available set of CPUs. However, there
* are some special cases, where the action is taken during the early
* boot by the primary boot CPU. (e.g, running the kernel at EL2 with
* Virtualisation Host Extensions). The kernel usually disallows any
* changes to the state of a capability once it finalises the capability
* and takes any action, as it may be impossible to execute the actions
* safely. A CPU brought up after a capability is "finalised" is
* referred to as "Late CPU" w.r.t the capability. e.g, all secondary
* CPUs are treated "late CPUs" for capabilities determined by the boot
* CPU.
*
* At the moment there are two passes of finalising the capabilities.
* a) Boot CPU scope capabilities - Finalised by primary boot CPU via
* setup_boot_cpu_capabilities().
* b) Everything except (a) - Run via setup_system_capabilities().
*
* 3) Verification: When a CPU is brought online (e.g, by user or by the
* kernel), the kernel should make sure that it is safe to use the CPU,
* by verifying that the CPU is compliant with the state of the
* capabilities finalised already. This happens via :
*
* secondary_start_kernel()-> check_local_cpu_capabilities()
*
* As explained in (2) above, capabilities could be finalised at
* different points in the execution. Each newly booted CPU is verified
* against the capabilities that have been finalised by the time it
* boots.
*
* a) SCOPE_BOOT_CPU : All CPUs are verified against the capability
* except for the primary boot CPU.
*
* b) SCOPE_LOCAL_CPU, SCOPE_SYSTEM: All CPUs hotplugged on by the
* user after the kernel boot are verified against the capability.
*
* If there is a conflict, the kernel takes an action, based on the
* severity (e.g, a CPU could be prevented from booting or cause a
* kernel panic). The CPU is allowed to "affect" the state of the
* capability, if it has not been finalised already. See section 5
* for more details on conflicts.
*
* 4) Action: As mentioned in (2), the kernel can take an action for each
* detected capability, on all CPUs on the system. Appropriate actions
* include, turning on an architectural feature, modifying the control
* registers (e.g, SCTLR, TCR etc.) or patching the kernel via
* alternatives. The kernel patching is batched and performed at later
* point. The actions are always initiated only after the capability
* is finalised. This is usally denoted by "enabling" the capability.
* The actions are initiated as follows :
* a) Action is triggered on all online CPUs, after the capability is
* finalised, invoked within the stop_machine() context from
* enable_cpu_capabilitie().
*
* b) Any late CPU, brought up after (1), the action is triggered via:
*
* check_local_cpu_capabilities() -> verify_local_cpu_capabilities()
*
* 5) Conflicts: Based on the state of the capability on a late CPU vs.
* the system state, we could have the following combinations :
*
* x-----------------------------x
* | Type | System | Late CPU |
* |-----------------------------|
* | a | y | n |
* |-----------------------------|
* | b | n | y |
* x-----------------------------x
*
* Two separate flag bits are defined to indicate whether each kind of
* conflict can be allowed:
* ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU - Case(a) is allowed
* ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU - Case(b) is allowed
*
* Case (a) is not permitted for a capability that the system requires
* all CPUs to have in order for the capability to be enabled. This is
* typical for capabilities that represent enhanced functionality.
*
* Case (b) is not permitted for a capability that must be enabled
* during boot if any CPU in the system requires it in order to run
* safely. This is typical for erratum work arounds that cannot be
* enabled after the corresponding capability is finalised.
*
* In some non-typical cases either both (a) and (b), or neither,
* should be permitted. This can be described by including neither
* or both flags in the capability's type field.
*
* In case of a conflict, the CPU is prevented from booting. If the
* ARM64_CPUCAP_PANIC_ON_CONFLICT flag is specified for the capability,
* then a kernel panic is triggered.
*/
/*
* Decide how the capability is detected.
* On any local CPU vs System wide vs the primary boot CPU
*/
#define ARM64_CPUCAP_SCOPE_LOCAL_CPU ((u16)BIT(0))
#define ARM64_CPUCAP_SCOPE_SYSTEM ((u16)BIT(1))
/*
* The capabilitiy is detected on the Boot CPU and is used by kernel
* during early boot. i.e, the capability should be "detected" and
* "enabled" as early as possibly on all booting CPUs.
*/
#define ARM64_CPUCAP_SCOPE_BOOT_CPU ((u16)BIT(2))
#define ARM64_CPUCAP_SCOPE_MASK \
(ARM64_CPUCAP_SCOPE_SYSTEM | \
ARM64_CPUCAP_SCOPE_LOCAL_CPU | \
ARM64_CPUCAP_SCOPE_BOOT_CPU)
#define SCOPE_SYSTEM ARM64_CPUCAP_SCOPE_SYSTEM
#define SCOPE_LOCAL_CPU ARM64_CPUCAP_SCOPE_LOCAL_CPU
#define SCOPE_BOOT_CPU ARM64_CPUCAP_SCOPE_BOOT_CPU
#define SCOPE_ALL ARM64_CPUCAP_SCOPE_MASK
/*
* Is it permitted for a late CPU to have this capability when system
* hasn't already enabled it ?
*/
#define ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU ((u16)BIT(4))
/* Is it safe for a late CPU to miss this capability when system has it */
#define ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU ((u16)BIT(5))
/* Panic when a conflict is detected */
#define ARM64_CPUCAP_PANIC_ON_CONFLICT ((u16)BIT(6))
/*
* CPU errata workarounds that need to be enabled at boot time if one or
* more CPUs in the system requires it. When one of these capabilities
* has been enabled, it is safe to allow any CPU to boot that doesn't
* require the workaround. However, it is not safe if a "late" CPU
* requires a workaround and the system hasn't enabled it already.
*/
#define ARM64_CPUCAP_LOCAL_CPU_ERRATUM \
(ARM64_CPUCAP_SCOPE_LOCAL_CPU | ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU)
/*
* CPU feature detected at boot time based on system-wide value of a
* feature. It is safe for a late CPU to have this feature even though
* the system hasn't enabled it, although the feature will not be used
* by Linux in this case. If the system has enabled this feature already,
* then every late CPU must have it.
*/
#define ARM64_CPUCAP_SYSTEM_FEATURE \
(ARM64_CPUCAP_SCOPE_SYSTEM | ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU)
/*
* CPU feature detected at boot time based on feature of one or more CPUs.
* All possible conflicts for a late CPU are ignored.
* NOTE: this means that a late CPU with the feature will *not* cause the
* capability to be advertised by cpus_have_*cap()!
*/
#define ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE \
(ARM64_CPUCAP_SCOPE_LOCAL_CPU | \
ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU | \
ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU)
/*
* CPU feature detected at boot time, on one or more CPUs. A late CPU
* is not allowed to have the capability when the system doesn't have it.
* It is Ok for a late CPU to miss the feature.
*/
#define ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE \
(ARM64_CPUCAP_SCOPE_LOCAL_CPU | \
ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU)
/*
* CPU feature used early in the boot based on the boot CPU. All secondary
* CPUs must match the state of the capability as detected by the boot CPU. In
* case of a conflict, a kernel panic is triggered.
*/
#define ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE \
(ARM64_CPUCAP_SCOPE_BOOT_CPU | ARM64_CPUCAP_PANIC_ON_CONFLICT)
/*
* CPU feature used early in the boot based on the boot CPU. It is safe for a
* late CPU to have this feature even though the boot CPU hasn't enabled it,
* although the feature will not be used by Linux in this case. If the boot CPU
* has enabled this feature already, then every late CPU must have it.
*/
#define ARM64_CPUCAP_BOOT_CPU_FEATURE \
(ARM64_CPUCAP_SCOPE_BOOT_CPU | ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU)
struct arm64_cpu_capabilities {
const char *desc;
u16 capability;
u16 type;
bool (*matches)(const struct arm64_cpu_capabilities *caps, int scope);
/*
* Take the appropriate actions to configure this capability
* for this CPU. If the capability is detected by the kernel
* this will be called on all the CPUs in the system,
* including the hotplugged CPUs, regardless of whether the
* capability is available on that specific CPU. This is
* useful for some capabilities (e.g, working around CPU
* errata), where all the CPUs must take some action (e.g,
* changing system control/configuration). Thus, if an action
* is required only if the CPU has the capability, then the
* routine must check it before taking any action.
*/
void (*cpu_enable)(const struct arm64_cpu_capabilities *cap);
union {
struct { /* To be used for erratum handling only */
struct midr_range midr_range;
const struct arm64_midr_revidr {
u32 midr_rv; /* revision/variant */
u32 revidr_mask;
} * const fixed_revs;
};
const struct midr_range *midr_range_list;
struct { /* Feature register checking */
u32 sys_reg;
u8 field_pos;
u8 min_field_value;
u8 hwcap_type;
bool sign;
unsigned long hwcap;
};
};
/*
* An optional list of "matches/cpu_enable" pair for the same
* "capability" of the same "type" as described by the parent.
* Only matches(), cpu_enable() and fields relevant to these
* methods are significant in the list. The cpu_enable is
* invoked only if the corresponding entry "matches()".
* However, if a cpu_enable() method is associated
* with multiple matches(), care should be taken that either
* the match criteria are mutually exclusive, or that the
* method is robust against being called multiple times.
*/
const struct arm64_cpu_capabilities *match_list;
};
static inline int cpucap_default_scope(const struct arm64_cpu_capabilities *cap)
{
return cap->type & ARM64_CPUCAP_SCOPE_MASK;
}
/*
* Generic helper for handling capabilities with multiple (match,enable) pairs
* of call backs, sharing the same capability bit.
* Iterate over each entry to see if at least one matches.
*/
static inline bool
cpucap_multi_entry_cap_matches(const struct arm64_cpu_capabilities *entry,
int scope)
{
const struct arm64_cpu_capabilities *caps;
for (caps = entry->match_list; caps->matches; caps++)
if (caps->matches(caps, scope))
return true;
return false;
}
static __always_inline bool is_vhe_hyp_code(void)
{
/* Only defined for code run in VHE hyp context */
return __is_defined(__KVM_VHE_HYPERVISOR__);
}
static __always_inline bool is_nvhe_hyp_code(void)
{
/* Only defined for code run in NVHE hyp context */
return __is_defined(__KVM_NVHE_HYPERVISOR__);
}
static __always_inline bool is_hyp_code(void)
{
return is_vhe_hyp_code() || is_nvhe_hyp_code();
}
extern DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
extern struct static_key_false cpu_hwcap_keys[ARM64_NCAPS];
extern struct static_key_false arm64_const_caps_ready;
/* ARM64 CAPS + alternative_cb */
#define ARM64_NPATCHABLE (ARM64_NCAPS + 1)
extern DECLARE_BITMAP(boot_capabilities, ARM64_NPATCHABLE);
#define for_each_available_cap(cap) \
for_each_set_bit(cap, cpu_hwcaps, ARM64_NCAPS)
bool this_cpu_has_cap(unsigned int cap);
void cpu_set_feature(unsigned int num);
bool cpu_have_feature(unsigned int num);
unsigned long cpu_get_elf_hwcap(void);
unsigned long cpu_get_elf_hwcap2(void);
#define cpu_set_named_feature(name) cpu_set_feature(cpu_feature(name))
#define cpu_have_named_feature(name) cpu_have_feature(cpu_feature(name))
static __always_inline bool system_capabilities_finalized(void)
{
return static_branch_likely(&arm64_const_caps_ready);
}
/*
* Test for a capability with a runtime check.
*
* Before the capability is detected, this returns false.
*/
static inline bool cpus_have_cap(unsigned int num)
{
if (num >= ARM64_NCAPS)
return false;
return test_bit(num, cpu_hwcaps);
}
/*
* Test for a capability without a runtime check.
*
* Before capabilities are finalized, this returns false.
* After capabilities are finalized, this is patched to avoid a runtime check.
*
* @num must be a compile-time constant.
*/
static __always_inline bool __cpus_have_const_cap(int num)
{
if (num >= ARM64_NCAPS)
return false;
return static_branch_unlikely(&cpu_hwcap_keys[num]);
}
/*
* Test for a capability without a runtime check.
*
* Before capabilities are finalized, this will BUG().
* After capabilities are finalized, this is patched to avoid a runtime check.
*
* @num must be a compile-time constant.
*/
static __always_inline bool cpus_have_final_cap(int num)
{
if (system_capabilities_finalized())
return __cpus_have_const_cap(num);
else
BUG();
}
/*
* Test for a capability, possibly with a runtime check for non-hyp code.
*
* For hyp code, this behaves the same as cpus_have_final_cap().
*
* For non-hyp code:
* Before capabilities are finalized, this behaves as cpus_have_cap().
* After capabilities are finalized, this is patched to avoid a runtime check.
*
* @num must be a compile-time constant.
*/
static __always_inline bool cpus_have_const_cap(int num)
{
if (is_hyp_code())
return cpus_have_final_cap(num);
else if (system_capabilities_finalized())
return __cpus_have_const_cap(num);
else
return cpus_have_cap(num);
}
static inline void cpus_set_cap(unsigned int num)
{
if (num >= ARM64_NCAPS) {
pr_warn("Attempt to set an illegal CPU capability (%d >= %d)\n",
num, ARM64_NCAPS);
} else {
__set_bit(num, cpu_hwcaps);
}
}
static inline int __attribute_const__
cpuid_feature_extract_signed_field_width(u64 features, int field, int width)
{
return (s64)(features << (64 - width - field)) >> (64 - width);
}
static inline int __attribute_const__
cpuid_feature_extract_signed_field(u64 features, int field)
{
return cpuid_feature_extract_signed_field_width(features, field, 4);
}
static __always_inline unsigned int __attribute_const__
cpuid_feature_extract_unsigned_field_width(u64 features, int field, int width)
{
return (u64)(features << (64 - width - field)) >> (64 - width);
}
static __always_inline unsigned int __attribute_const__
cpuid_feature_extract_unsigned_field(u64 features, int field)
{
return cpuid_feature_extract_unsigned_field_width(features, field, 4);
}
/*
* Fields that identify the version of the Performance Monitors Extension do
* not follow the standard ID scheme. See ARM DDI 0487E.a page D13-2825,
* "Alternative ID scheme used for the Performance Monitors Extension version".
*/
static inline u64 __attribute_const__
cpuid_feature_cap_perfmon_field(u64 features, int field, u64 cap)
{
u64 val = cpuid_feature_extract_unsigned_field(features, field);
u64 mask = GENMASK_ULL(field + 3, field);
/* Treat IMPLEMENTATION DEFINED functionality as unimplemented */
if (val == 0xf)
val = 0;
if (val > cap) {
features &= ~mask;
features |= (cap << field) & mask;
}
return features;
}
static inline u64 arm64_ftr_mask(const struct arm64_ftr_bits *ftrp)
{
return (u64)GENMASK(ftrp->shift + ftrp->width - 1, ftrp->shift);
}
static inline u64 arm64_ftr_reg_user_value(const struct arm64_ftr_reg *reg)
{
return (reg->user_val | (reg->sys_val & reg->user_mask));
}
static inline int __attribute_const__
cpuid_feature_extract_field_width(u64 features, int field, int width, bool sign)
{
return (sign) ?
cpuid_feature_extract_signed_field_width(features, field, width) :
cpuid_feature_extract_unsigned_field_width(features, field, width);
}
static inline int __attribute_const__
cpuid_feature_extract_field(u64 features, int field, bool sign)
{
return cpuid_feature_extract_field_width(features, field, 4, sign);
}
static inline s64 arm64_ftr_value(const struct arm64_ftr_bits *ftrp, u64 val)
{
return (s64)cpuid_feature_extract_field_width(val, ftrp->shift, ftrp->width, ftrp->sign);
}
static inline bool id_aa64mmfr0_mixed_endian_el0(u64 mmfr0)
{
return cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_BIGENDEL_SHIFT) == 0x1 ||
cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_BIGENDEL0_SHIFT) == 0x1;
}
static inline bool id_aa64pfr0_32bit_el1(u64 pfr0)
{
u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_EL1_SHIFT);
return val == ID_AA64PFR0_EL1_32BIT_64BIT;
}
static inline bool id_aa64pfr0_32bit_el0(u64 pfr0)
{
u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_EL0_SHIFT);
return val == ID_AA64PFR0_EL0_32BIT_64BIT;
}
static inline bool id_aa64pfr0_sve(u64 pfr0)
{
u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_SVE_SHIFT);
return val > 0;
}
void __init setup_cpu_features(void);
void check_local_cpu_capabilities(void);
u64 read_sanitised_ftr_reg(u32 id);
static inline bool cpu_supports_mixed_endian_el0(void)
{
return id_aa64mmfr0_mixed_endian_el0(read_cpuid(ID_AA64MMFR0_EL1));
}
static inline bool system_supports_32bit_el0(void)
{
return cpus_have_const_cap(ARM64_HAS_32BIT_EL0);
}
static inline bool system_supports_4kb_granule(void)
{
u64 mmfr0;
u32 val;
mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
val = cpuid_feature_extract_unsigned_field(mmfr0,
ID_AA64MMFR0_TGRAN4_SHIFT);
return val == ID_AA64MMFR0_TGRAN4_SUPPORTED;
}
static inline bool system_supports_64kb_granule(void)
{
u64 mmfr0;
u32 val;
mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
val = cpuid_feature_extract_unsigned_field(mmfr0,
ID_AA64MMFR0_TGRAN64_SHIFT);
return val == ID_AA64MMFR0_TGRAN64_SUPPORTED;
}
static inline bool system_supports_16kb_granule(void)
{
u64 mmfr0;
u32 val;
mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
val = cpuid_feature_extract_unsigned_field(mmfr0,
ID_AA64MMFR0_TGRAN16_SHIFT);
return val == ID_AA64MMFR0_TGRAN16_SUPPORTED;
}
static inline bool system_supports_mixed_endian_el0(void)
{
return id_aa64mmfr0_mixed_endian_el0(read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1));
}
static inline bool system_supports_mixed_endian(void)
{
u64 mmfr0;
u32 val;
mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
val = cpuid_feature_extract_unsigned_field(mmfr0,
ID_AA64MMFR0_BIGENDEL_SHIFT);
return val == 0x1;
}
static __always_inline bool system_supports_fpsimd(void)
{
return !cpus_have_const_cap(ARM64_HAS_NO_FPSIMD);
}
static inline bool system_uses_hw_pan(void)
{
return IS_ENABLED(CONFIG_ARM64_PAN) &&
cpus_have_const_cap(ARM64_HAS_PAN);
}
static inline bool system_uses_ttbr0_pan(void)
{
return IS_ENABLED(CONFIG_ARM64_SW_TTBR0_PAN) &&
!system_uses_hw_pan();
}
static __always_inline bool system_supports_sve(void)
{
return IS_ENABLED(CONFIG_ARM64_SVE) &&
cpus_have_const_cap(ARM64_SVE);
}
static __always_inline bool system_supports_cnp(void)
{
return IS_ENABLED(CONFIG_ARM64_CNP) &&
cpus_have_const_cap(ARM64_HAS_CNP);
}
static inline bool system_supports_address_auth(void)
{
return IS_ENABLED(CONFIG_ARM64_PTR_AUTH) &&
cpus_have_const_cap(ARM64_HAS_ADDRESS_AUTH);
}
static inline bool system_supports_generic_auth(void)
{
return IS_ENABLED(CONFIG_ARM64_PTR_AUTH) &&
cpus_have_const_cap(ARM64_HAS_GENERIC_AUTH);
}
static inline bool system_has_full_ptr_auth(void)
{
return system_supports_address_auth() && system_supports_generic_auth();
}
static __always_inline bool system_uses_irq_prio_masking(void)
{
return IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) &&
cpus_have_const_cap(ARM64_HAS_IRQ_PRIO_MASKING);
}
static inline bool system_supports_mte(void)
{
return IS_ENABLED(CONFIG_ARM64_MTE) &&
cpus_have_const_cap(ARM64_MTE);
}
static inline bool system_has_prio_mask_debugging(void)
{
return IS_ENABLED(CONFIG_ARM64_DEBUG_PRIORITY_MASKING) &&
system_uses_irq_prio_masking();
}
static inline bool system_supports_bti(void)
{
return IS_ENABLED(CONFIG_ARM64_BTI) && cpus_have_const_cap(ARM64_BTI);
}
static inline bool system_supports_tlb_range(void)
{
return IS_ENABLED(CONFIG_ARM64_TLB_RANGE) &&
cpus_have_const_cap(ARM64_HAS_TLB_RANGE);
}
extern int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt);
static inline u32 id_aa64mmfr0_parange_to_phys_shift(int parange)
{
switch (parange) {
case 0: return 32;
case 1: return 36;
case 2: return 40;
case 3: return 42;
case 4: return 44;
case 5: return 48;
case 6: return 52;
/*
* A future PE could use a value unknown to the kernel.
* However, by the "D10.1.4 Principles of the ID scheme
* for fields in ID registers", ARM DDI 0487C.a, any new
* value is guaranteed to be higher than what we know already.
* As a safe limit, we return the limit supported by the kernel.
*/
default: return CONFIG_ARM64_PA_BITS;
}
}
/* Check whether hardware update of the Access flag is supported */
static inline bool cpu_has_hw_af(void)
{
u64 mmfr1;
if (!IS_ENABLED(CONFIG_ARM64_HW_AFDBM))
return false;
mmfr1 = read_cpuid(ID_AA64MMFR1_EL1);
return cpuid_feature_extract_unsigned_field(mmfr1,
ID_AA64MMFR1_HADBS_SHIFT);
}
static inline bool cpu_has_pan(void)
{
u64 mmfr1 = read_cpuid(ID_AA64MMFR1_EL1);
return cpuid_feature_extract_unsigned_field(mmfr1,
ID_AA64MMFR1_PAN_SHIFT);
}
#ifdef CONFIG_ARM64_AMU_EXTN
/* Check whether the cpu supports the Activity Monitors Unit (AMU) */
extern bool cpu_has_amu_feat(int cpu);
#else
static inline bool cpu_has_amu_feat(int cpu)
{
return false;
}
#endif
/* Get a cpu that supports the Activity Monitors Unit (AMU) */
extern int get_cpu_with_amu_feat(void);
static inline unsigned int get_vmid_bits(u64 mmfr1)
{
int vmid_bits;
vmid_bits = cpuid_feature_extract_unsigned_field(mmfr1,
ID_AA64MMFR1_VMIDBITS_SHIFT);
if (vmid_bits == ID_AA64MMFR1_VMIDBITS_16)
return 16;
/*
* Return the default here even if any reserved
* value is fetched from the system register.
*/
return 8;
}
u32 get_kvm_ipa_limit(void);
void dump_cpu_features(void);
#endif /* __ASSEMBLY__ */
#endif
|