summaryrefslogtreecommitdiffstats
path: root/arch/arm64/kernel/head.S
blob: f2eb206920a2ecf7b3fdbebf30c5096b398bbc64 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
/* SPDX-License-Identifier: GPL-2.0-only */
/*
 * Low-level CPU initialisation
 * Based on arch/arm/kernel/head.S
 *
 * Copyright (C) 1994-2002 Russell King
 * Copyright (C) 2003-2012 ARM Ltd.
 * Authors:	Catalin Marinas <catalin.marinas@arm.com>
 *		Will Deacon <will.deacon@arm.com>
 */

#include <linux/linkage.h>
#include <linux/init.h>
#include <linux/irqchip/arm-gic-v3.h>
#include <linux/pgtable.h>

#include <asm/asm_pointer_auth.h>
#include <asm/assembler.h>
#include <asm/boot.h>
#include <asm/ptrace.h>
#include <asm/asm-offsets.h>
#include <asm/cache.h>
#include <asm/cputype.h>
#include <asm/elf.h>
#include <asm/image.h>
#include <asm/kernel-pgtable.h>
#include <asm/kvm_arm.h>
#include <asm/memory.h>
#include <asm/pgtable-hwdef.h>
#include <asm/page.h>
#include <asm/scs.h>
#include <asm/smp.h>
#include <asm/sysreg.h>
#include <asm/thread_info.h>
#include <asm/virt.h>

#include "efi-header.S"

#define __PHYS_OFFSET	KERNEL_START

#if (PAGE_OFFSET & 0x1fffff) != 0
#error PAGE_OFFSET must be at least 2MB aligned
#endif

/*
 * Kernel startup entry point.
 * ---------------------------
 *
 * The requirements are:
 *   MMU = off, D-cache = off, I-cache = on or off,
 *   x0 = physical address to the FDT blob.
 *
 * This code is mostly position independent so you call this at
 * __pa(PAGE_OFFSET).
 *
 * Note that the callee-saved registers are used for storing variables
 * that are useful before the MMU is enabled. The allocations are described
 * in the entry routines.
 */
	__HEAD
	/*
	 * DO NOT MODIFY. Image header expected by Linux boot-loaders.
	 */
	efi_signature_nop			// special NOP to identity as PE/COFF executable
	b	primary_entry			// branch to kernel start, magic
	.quad	0				// Image load offset from start of RAM, little-endian
	le64sym	_kernel_size_le			// Effective size of kernel image, little-endian
	le64sym	_kernel_flags_le		// Informative flags, little-endian
	.quad	0				// reserved
	.quad	0				// reserved
	.quad	0				// reserved
	.ascii	ARM64_IMAGE_MAGIC		// Magic number
	.long	.Lpe_header_offset		// Offset to the PE header.

	__EFI_PE_HEADER

	__INIT

	/*
	 * The following callee saved general purpose registers are used on the
	 * primary lowlevel boot path:
	 *
	 *  Register   Scope                      Purpose
	 *  x21        primary_entry() .. start_kernel()        FDT pointer passed at boot in x0
	 *  x23        primary_entry() .. start_kernel()        physical misalignment/KASLR offset
	 *  x28        __create_page_tables()                   callee preserved temp register
	 *  x19/x20    __primary_switch()                       callee preserved temp registers
	 *  x24        __primary_switch() .. relocate_kernel()  current RELR displacement
	 */
SYM_CODE_START(primary_entry)
	bl	preserve_boot_args
	bl	init_kernel_el			// w0=cpu_boot_mode
	adrp	x23, __PHYS_OFFSET
	and	x23, x23, MIN_KIMG_ALIGN - 1	// KASLR offset, defaults to 0
	bl	set_cpu_boot_mode_flag
	bl	__create_page_tables
	/*
	 * The following calls CPU setup code, see arch/arm64/mm/proc.S for
	 * details.
	 * On return, the CPU will be ready for the MMU to be turned on and
	 * the TCR will have been set.
	 */
	bl	__cpu_setup			// initialise processor
	b	__primary_switch
SYM_CODE_END(primary_entry)

/*
 * Preserve the arguments passed by the bootloader in x0 .. x3
 */
SYM_CODE_START_LOCAL(preserve_boot_args)
	mov	x21, x0				// x21=FDT

	adr_l	x0, boot_args			// record the contents of
	stp	x21, x1, [x0]			// x0 .. x3 at kernel entry
	stp	x2, x3, [x0, #16]

	dmb	sy				// needed before dc ivac with
						// MMU off

	mov	x1, #0x20			// 4 x 8 bytes
	b	__inval_dcache_area		// tail call
SYM_CODE_END(preserve_boot_args)

/*
 * Macro to create a table entry to the next page.
 *
 *	tbl:	page table address
 *	virt:	virtual address
 *	shift:	#imm page table shift
 *	ptrs:	#imm pointers per table page
 *
 * Preserves:	virt
 * Corrupts:	ptrs, tmp1, tmp2
 * Returns:	tbl -> next level table page address
 */
	.macro	create_table_entry, tbl, virt, shift, ptrs, tmp1, tmp2
	add	\tmp1, \tbl, #PAGE_SIZE
	phys_to_pte \tmp2, \tmp1
	orr	\tmp2, \tmp2, #PMD_TYPE_TABLE	// address of next table and entry type
	lsr	\tmp1, \virt, #\shift
	sub	\ptrs, \ptrs, #1
	and	\tmp1, \tmp1, \ptrs		// table index
	str	\tmp2, [\tbl, \tmp1, lsl #3]
	add	\tbl, \tbl, #PAGE_SIZE		// next level table page
	.endm

/*
 * Macro to populate page table entries, these entries can be pointers to the next level
 * or last level entries pointing to physical memory.
 *
 *	tbl:	page table address
 *	rtbl:	pointer to page table or physical memory
 *	index:	start index to write
 *	eindex:	end index to write - [index, eindex] written to
 *	flags:	flags for pagetable entry to or in
 *	inc:	increment to rtbl between each entry
 *	tmp1:	temporary variable
 *
 * Preserves:	tbl, eindex, flags, inc
 * Corrupts:	index, tmp1
 * Returns:	rtbl
 */
	.macro populate_entries, tbl, rtbl, index, eindex, flags, inc, tmp1
.Lpe\@:	phys_to_pte \tmp1, \rtbl
	orr	\tmp1, \tmp1, \flags	// tmp1 = table entry
	str	\tmp1, [\tbl, \index, lsl #3]
	add	\rtbl, \rtbl, \inc	// rtbl = pa next level
	add	\index, \index, #1
	cmp	\index, \eindex
	b.ls	.Lpe\@
	.endm

/*
 * Compute indices of table entries from virtual address range. If multiple entries
 * were needed in the previous page table level then the next page table level is assumed
 * to be composed of multiple pages. (This effectively scales the end index).
 *
 *	vstart:	virtual address of start of range
 *	vend:	virtual address of end of range
 *	shift:	shift used to transform virtual address into index
 *	ptrs:	number of entries in page table
 *	istart:	index in table corresponding to vstart
 *	iend:	index in table corresponding to vend
 *	count:	On entry: how many extra entries were required in previous level, scales
 *			  our end index.
 *		On exit: returns how many extra entries required for next page table level
 *
 * Preserves:	vstart, vend, shift, ptrs
 * Returns:	istart, iend, count
 */
	.macro compute_indices, vstart, vend, shift, ptrs, istart, iend, count
	lsr	\iend, \vend, \shift
	mov	\istart, \ptrs
	sub	\istart, \istart, #1
	and	\iend, \iend, \istart	// iend = (vend >> shift) & (ptrs - 1)
	mov	\istart, \ptrs
	mul	\istart, \istart, \count
	add	\iend, \iend, \istart	// iend += (count - 1) * ptrs
					// our entries span multiple tables

	lsr	\istart, \vstart, \shift
	mov	\count, \ptrs
	sub	\count, \count, #1
	and	\istart, \istart, \count

	sub	\count, \iend, \istart
	.endm

/*
 * Map memory for specified virtual address range. Each level of page table needed supports
 * multiple entries. If a level requires n entries the next page table level is assumed to be
 * formed from n pages.
 *
 *	tbl:	location of page table
 *	rtbl:	address to be used for first level page table entry (typically tbl + PAGE_SIZE)
 *	vstart:	start address to map
 *	vend:	end address to map - we map [vstart, vend]
 *	flags:	flags to use to map last level entries
 *	phys:	physical address corresponding to vstart - physical memory is contiguous
 *	pgds:	the number of pgd entries
 *
 * Temporaries:	istart, iend, tmp, count, sv - these need to be different registers
 * Preserves:	vstart, vend, flags
 * Corrupts:	tbl, rtbl, istart, iend, tmp, count, sv
 */
	.macro map_memory, tbl, rtbl, vstart, vend, flags, phys, pgds, istart, iend, tmp, count, sv
	add \rtbl, \tbl, #PAGE_SIZE
	mov \sv, \rtbl
	mov \count, #0
	compute_indices \vstart, \vend, #PGDIR_SHIFT, \pgds, \istart, \iend, \count
	populate_entries \tbl, \rtbl, \istart, \iend, #PMD_TYPE_TABLE, #PAGE_SIZE, \tmp
	mov \tbl, \sv
	mov \sv, \rtbl

#if SWAPPER_PGTABLE_LEVELS > 3
	compute_indices \vstart, \vend, #PUD_SHIFT, #PTRS_PER_PUD, \istart, \iend, \count
	populate_entries \tbl, \rtbl, \istart, \iend, #PMD_TYPE_TABLE, #PAGE_SIZE, \tmp
	mov \tbl, \sv
	mov \sv, \rtbl
#endif

#if SWAPPER_PGTABLE_LEVELS > 2
	compute_indices \vstart, \vend, #SWAPPER_TABLE_SHIFT, #PTRS_PER_PMD, \istart, \iend, \count
	populate_entries \tbl, \rtbl, \istart, \iend, #PMD_TYPE_TABLE, #PAGE_SIZE, \tmp
	mov \tbl, \sv
#endif

	compute_indices \vstart, \vend, #SWAPPER_BLOCK_SHIFT, #PTRS_PER_PTE, \istart, \iend, \count
	bic \count, \phys, #SWAPPER_BLOCK_SIZE - 1
	populate_entries \tbl, \count, \istart, \iend, \flags, #SWAPPER_BLOCK_SIZE, \tmp
	.endm

/*
 * Setup the initial page tables. We only setup the barest amount which is
 * required to get the kernel running. The following sections are required:
 *   - identity mapping to enable the MMU (low address, TTBR0)
 *   - first few MB of the kernel linear mapping to jump to once the MMU has
 *     been enabled
 */
SYM_FUNC_START_LOCAL(__create_page_tables)
	mov	x28, lr

	/*
	 * Invalidate the init page tables to avoid potential dirty cache lines
	 * being evicted. Other page tables are allocated in rodata as part of
	 * the kernel image, and thus are clean to the PoC per the boot
	 * protocol.
	 */
	adrp	x0, init_pg_dir
	adrp	x1, init_pg_end
	sub	x1, x1, x0
	bl	__inval_dcache_area

	/*
	 * Clear the init page tables.
	 */
	adrp	x0, init_pg_dir
	adrp	x1, init_pg_end
	sub	x1, x1, x0
1:	stp	xzr, xzr, [x0], #16
	stp	xzr, xzr, [x0], #16
	stp	xzr, xzr, [x0], #16
	stp	xzr, xzr, [x0], #16
	subs	x1, x1, #64
	b.ne	1b

	mov	x7, SWAPPER_MM_MMUFLAGS

	/*
	 * Create the identity mapping.
	 */
	adrp	x0, idmap_pg_dir
	adrp	x3, __idmap_text_start		// __pa(__idmap_text_start)

#ifdef CONFIG_ARM64_VA_BITS_52
	mrs_s	x6, SYS_ID_AA64MMFR2_EL1
	and	x6, x6, #(0xf << ID_AA64MMFR2_LVA_SHIFT)
	mov	x5, #52
	cbnz	x6, 1f
#endif
	mov	x5, #VA_BITS_MIN
1:
	adr_l	x6, vabits_actual
	str	x5, [x6]
	dmb	sy
	dc	ivac, x6		// Invalidate potentially stale cache line

	/*
	 * VA_BITS may be too small to allow for an ID mapping to be created
	 * that covers system RAM if that is located sufficiently high in the
	 * physical address space. So for the ID map, use an extended virtual
	 * range in that case, and configure an additional translation level
	 * if needed.
	 *
	 * Calculate the maximum allowed value for TCR_EL1.T0SZ so that the
	 * entire ID map region can be mapped. As T0SZ == (64 - #bits used),
	 * this number conveniently equals the number of leading zeroes in
	 * the physical address of __idmap_text_end.
	 */
	adrp	x5, __idmap_text_end
	clz	x5, x5
	cmp	x5, TCR_T0SZ(VA_BITS)	// default T0SZ small enough?
	b.ge	1f			// .. then skip VA range extension

	adr_l	x6, idmap_t0sz
	str	x5, [x6]
	dmb	sy
	dc	ivac, x6		// Invalidate potentially stale cache line

#if (VA_BITS < 48)
#define EXTRA_SHIFT	(PGDIR_SHIFT + PAGE_SHIFT - 3)
#define EXTRA_PTRS	(1 << (PHYS_MASK_SHIFT - EXTRA_SHIFT))

	/*
	 * If VA_BITS < 48, we have to configure an additional table level.
	 * First, we have to verify our assumption that the current value of
	 * VA_BITS was chosen such that all translation levels are fully
	 * utilised, and that lowering T0SZ will always result in an additional
	 * translation level to be configured.
	 */
#if VA_BITS != EXTRA_SHIFT
#error "Mismatch between VA_BITS and page size/number of translation levels"
#endif

	mov	x4, EXTRA_PTRS
	create_table_entry x0, x3, EXTRA_SHIFT, x4, x5, x6
#else
	/*
	 * If VA_BITS == 48, we don't have to configure an additional
	 * translation level, but the top-level table has more entries.
	 */
	mov	x4, #1 << (PHYS_MASK_SHIFT - PGDIR_SHIFT)
	str_l	x4, idmap_ptrs_per_pgd, x5
#endif
1:
	ldr_l	x4, idmap_ptrs_per_pgd
	mov	x5, x3				// __pa(__idmap_text_start)
	adr_l	x6, __idmap_text_end		// __pa(__idmap_text_end)

	map_memory x0, x1, x3, x6, x7, x3, x4, x10, x11, x12, x13, x14

	/*
	 * Map the kernel image (starting with PHYS_OFFSET).
	 */
	adrp	x0, init_pg_dir
	mov_q	x5, KIMAGE_VADDR		// compile time __va(_text)
	add	x5, x5, x23			// add KASLR displacement
	mov	x4, PTRS_PER_PGD
	adrp	x6, _end			// runtime __pa(_end)
	adrp	x3, _text			// runtime __pa(_text)
	sub	x6, x6, x3			// _end - _text
	add	x6, x6, x5			// runtime __va(_end)

	map_memory x0, x1, x5, x6, x7, x3, x4, x10, x11, x12, x13, x14

	/*
	 * Since the page tables have been populated with non-cacheable
	 * accesses (MMU disabled), invalidate those tables again to
	 * remove any speculatively loaded cache lines.
	 */
	dmb	sy

	adrp	x0, idmap_pg_dir
	adrp	x1, idmap_pg_end
	sub	x1, x1, x0
	bl	__inval_dcache_area

	adrp	x0, init_pg_dir
	adrp	x1, init_pg_end
	sub	x1, x1, x0
	bl	__inval_dcache_area

	ret	x28
SYM_FUNC_END(__create_page_tables)

/*
 * The following fragment of code is executed with the MMU enabled.
 *
 *   x0 = __PHYS_OFFSET
 */
SYM_FUNC_START_LOCAL(__primary_switched)
	adrp	x4, init_thread_union
	add	sp, x4, #THREAD_SIZE
	adr_l	x5, init_task
	msr	sp_el0, x5			// Save thread_info

#ifdef CONFIG_ARM64_PTR_AUTH
	__ptrauth_keys_init_cpu	x5, x6, x7, x8
#endif

	adr_l	x8, vectors			// load VBAR_EL1 with virtual
	msr	vbar_el1, x8			// vector table address
	isb

	stp	xzr, x30, [sp, #-16]!
	mov	x29, sp

#ifdef CONFIG_SHADOW_CALL_STACK
	adr_l	scs_sp, init_shadow_call_stack	// Set shadow call stack
#endif

	str_l	x21, __fdt_pointer, x5		// Save FDT pointer

	ldr_l	x4, kimage_vaddr		// Save the offset between
	sub	x4, x4, x0			// the kernel virtual and
	str_l	x4, kimage_voffset, x5		// physical mappings

	// Clear BSS
	adr_l	x0, __bss_start
	mov	x1, xzr
	adr_l	x2, __bss_stop
	sub	x2, x2, x0
	bl	__pi_memset
	dsb	ishst				// Make zero page visible to PTW

#ifdef CONFIG_KASAN
	bl	kasan_early_init
#endif
#ifdef CONFIG_RANDOMIZE_BASE
	tst	x23, ~(MIN_KIMG_ALIGN - 1)	// already running randomized?
	b.ne	0f
	mov	x0, x21				// pass FDT address in x0
	bl	kaslr_early_init		// parse FDT for KASLR options
	cbz	x0, 0f				// KASLR disabled? just proceed
	orr	x23, x23, x0			// record KASLR offset
	ldp	x29, x30, [sp], #16		// we must enable KASLR, return
	ret					// to __primary_switch()
0:
#endif
	add	sp, sp, #16
	mov	x29, #0
	mov	x30, #0
	b	start_kernel
SYM_FUNC_END(__primary_switched)

	.pushsection ".rodata", "a"
SYM_DATA_START(kimage_vaddr)
	.quad		_text
SYM_DATA_END(kimage_vaddr)
EXPORT_SYMBOL(kimage_vaddr)
	.popsection

/*
 * end early head section, begin head code that is also used for
 * hotplug and needs to have the same protections as the text region
 */
	.section ".idmap.text","awx"

/*
 * Starting from EL2 or EL1, configure the CPU to execute at the highest
 * reachable EL supported by the kernel in a chosen default state. If dropping
 * from EL2 to EL1, configure EL2 before configuring EL1.
 *
 * Since we cannot always rely on ERET synchronizing writes to sysregs (e.g. if
 * SCTLR_ELx.EOS is clear), we place an ISB prior to ERET.
 *
 * Returns either BOOT_CPU_MODE_EL1 or BOOT_CPU_MODE_EL2 in w0 if
 * booted in EL1 or EL2 respectively.
 */
SYM_FUNC_START(init_kernel_el)
	mrs	x0, CurrentEL
	cmp	x0, #CurrentEL_EL2
	b.eq	init_el2

SYM_INNER_LABEL(init_el1, SYM_L_LOCAL)
	mov_q	x0, INIT_SCTLR_EL1_MMU_OFF
	msr	sctlr_el1, x0
	isb
	mov_q	x0, INIT_PSTATE_EL1
	msr	spsr_el1, x0
	msr	elr_el1, lr
	mov	w0, #BOOT_CPU_MODE_EL1
	eret

SYM_INNER_LABEL(init_el2, SYM_L_LOCAL)
	mov_q	x0, INIT_SCTLR_EL2_MMU_OFF
	msr	sctlr_el2, x0

#ifdef CONFIG_ARM64_VHE
	/*
	 * Check for VHE being present. For the rest of the EL2 setup,
	 * x2 being non-zero indicates that we do have VHE, and that the
	 * kernel is intended to run at EL2.
	 */
	mrs	x2, id_aa64mmfr1_el1
	ubfx	x2, x2, #ID_AA64MMFR1_VHE_SHIFT, #4
#else
	mov	x2, xzr
#endif

	/* Hyp configuration. */
	mov_q	x0, HCR_HOST_NVHE_FLAGS
	cbz	x2, set_hcr
	mov_q	x0, HCR_HOST_VHE_FLAGS
set_hcr:
	msr	hcr_el2, x0
	isb

	/*
	 * Allow Non-secure EL1 and EL0 to access physical timer and counter.
	 * This is not necessary for VHE, since the host kernel runs in EL2,
	 * and EL0 accesses are configured in the later stage of boot process.
	 * Note that when HCR_EL2.E2H == 1, CNTHCTL_EL2 has the same bit layout
	 * as CNTKCTL_EL1, and CNTKCTL_EL1 accessing instructions are redefined
	 * to access CNTHCTL_EL2. This allows the kernel designed to run at EL1
	 * to transparently mess with the EL0 bits via CNTKCTL_EL1 access in
	 * EL2.
	 */
	cbnz	x2, 1f
	mrs	x0, cnthctl_el2
	orr	x0, x0, #3			// Enable EL1 physical timers
	msr	cnthctl_el2, x0
1:
	msr	cntvoff_el2, xzr		// Clear virtual offset

#ifdef CONFIG_ARM_GIC_V3
	/* GICv3 system register access */
	mrs	x0, id_aa64pfr0_el1
	ubfx	x0, x0, #ID_AA64PFR0_GIC_SHIFT, #4
	cbz	x0, 3f

	mrs_s	x0, SYS_ICC_SRE_EL2
	orr	x0, x0, #ICC_SRE_EL2_SRE	// Set ICC_SRE_EL2.SRE==1
	orr	x0, x0, #ICC_SRE_EL2_ENABLE	// Set ICC_SRE_EL2.Enable==1
	msr_s	SYS_ICC_SRE_EL2, x0
	isb					// Make sure SRE is now set
	mrs_s	x0, SYS_ICC_SRE_EL2		// Read SRE back,
	tbz	x0, #0, 3f			// and check that it sticks
	msr_s	SYS_ICH_HCR_EL2, xzr		// Reset ICC_HCR_EL2 to defaults

3:
#endif

	/* Populate ID registers. */
	mrs	x0, midr_el1
	mrs	x1, mpidr_el1
	msr	vpidr_el2, x0
	msr	vmpidr_el2, x1

#ifdef CONFIG_COMPAT
	msr	hstr_el2, xzr			// Disable CP15 traps to EL2
#endif

	/* EL2 debug */
	mrs	x1, id_aa64dfr0_el1
	sbfx	x0, x1, #ID_AA64DFR0_PMUVER_SHIFT, #4
	cmp	x0, #1
	b.lt	4f				// Skip if no PMU present
	mrs	x0, pmcr_el0			// Disable debug access traps
	ubfx	x0, x0, #11, #5			// to EL2 and allow access to
4:
	csel	x3, xzr, x0, lt			// all PMU counters from EL1

	/* Statistical profiling */
	ubfx	x0, x1, #ID_AA64DFR0_PMSVER_SHIFT, #4
	cbz	x0, 7f				// Skip if SPE not present
	cbnz	x2, 6f				// VHE?
	mrs_s	x4, SYS_PMBIDR_EL1		// If SPE available at EL2,
	and	x4, x4, #(1 << SYS_PMBIDR_EL1_P_SHIFT)
	cbnz	x4, 5f				// then permit sampling of physical
	mov	x4, #(1 << SYS_PMSCR_EL2_PCT_SHIFT | \
		      1 << SYS_PMSCR_EL2_PA_SHIFT)
	msr_s	SYS_PMSCR_EL2, x4		// addresses and physical counter
5:
	mov	x1, #(MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT)
	orr	x3, x3, x1			// If we don't have VHE, then
	b	7f				// use EL1&0 translation.
6:						// For VHE, use EL2 translation
	orr	x3, x3, #MDCR_EL2_TPMS		// and disable access from EL1
7:
	msr	mdcr_el2, x3			// Configure debug traps

	/* LORegions */
	mrs	x1, id_aa64mmfr1_el1
	ubfx	x0, x1, #ID_AA64MMFR1_LOR_SHIFT, 4
	cbz	x0, 1f
	msr_s	SYS_LORC_EL1, xzr
1:

	/* Stage-2 translation */
	msr	vttbr_el2, xzr

	cbz	x2, install_el2_stub

	isb
	mov_q	x0, INIT_PSTATE_EL2
	msr	spsr_el2, x0
	msr	elr_el2, lr
	mov	w0, #BOOT_CPU_MODE_EL2
	eret

SYM_INNER_LABEL(install_el2_stub, SYM_L_LOCAL)
	/*
	 * When VHE is not in use, early init of EL2 and EL1 needs to be
	 * done here.
	 * When VHE _is_ in use, EL1 will not be used in the host and
	 * requires no configuration, and all non-hyp-specific EL2 setup
	 * will be done via the _EL1 system register aliases in __cpu_setup.
	 */
	mov_q	x0, INIT_SCTLR_EL1_MMU_OFF
	msr	sctlr_el1, x0

	/* Coprocessor traps. */
	mov	x0, #0x33ff
	msr	cptr_el2, x0			// Disable copro. traps to EL2

	/* SVE register access */
	mrs	x1, id_aa64pfr0_el1
	ubfx	x1, x1, #ID_AA64PFR0_SVE_SHIFT, #4
	cbz	x1, 7f

	bic	x0, x0, #CPTR_EL2_TZ		// Also disable SVE traps
	msr	cptr_el2, x0			// Disable copro. traps to EL2
	isb
	mov	x1, #ZCR_ELx_LEN_MASK		// SVE: Enable full vector
	msr_s	SYS_ZCR_EL2, x1			// length for EL1.

	/* Hypervisor stub */
7:	adr_l	x0, __hyp_stub_vectors
	msr	vbar_el2, x0

	isb
	mov	x0, #INIT_PSTATE_EL1
	msr	spsr_el2, x0
	msr	elr_el2, lr
	mov	w0, #BOOT_CPU_MODE_EL2
	eret
SYM_FUNC_END(init_kernel_el)

/*
 * Sets the __boot_cpu_mode flag depending on the CPU boot mode passed
 * in w0. See arch/arm64/include/asm/virt.h for more info.
 */
SYM_FUNC_START_LOCAL(set_cpu_boot_mode_flag)
	adr_l	x1, __boot_cpu_mode
	cmp	w0, #BOOT_CPU_MODE_EL2
	b.ne	1f
	add	x1, x1, #4
1:	str	w0, [x1]			// This CPU has booted in EL1
	dmb	sy
	dc	ivac, x1			// Invalidate potentially stale cache line
	ret
SYM_FUNC_END(set_cpu_boot_mode_flag)

/*
 * These values are written with the MMU off, but read with the MMU on.
 * Writers will invalidate the corresponding address, discarding up to a
 * 'Cache Writeback Granule' (CWG) worth of data. The linker script ensures
 * sufficient alignment that the CWG doesn't overlap another section.
 */
	.pushsection ".mmuoff.data.write", "aw"
/*
 * We need to find out the CPU boot mode long after boot, so we need to
 * store it in a writable variable.
 *
 * This is not in .bss, because we set it sufficiently early that the boot-time
 * zeroing of .bss would clobber it.
 */
SYM_DATA_START(__boot_cpu_mode)
	.long	BOOT_CPU_MODE_EL2
	.long	BOOT_CPU_MODE_EL1
SYM_DATA_END(__boot_cpu_mode)
/*
 * The booting CPU updates the failed status @__early_cpu_boot_status,
 * with MMU turned off.
 */
SYM_DATA_START(__early_cpu_boot_status)
	.quad 	0
SYM_DATA_END(__early_cpu_boot_status)

	.popsection

	/*
	 * This provides a "holding pen" for platforms to hold all secondary
	 * cores are held until we're ready for them to initialise.
	 */
SYM_FUNC_START(secondary_holding_pen)
	bl	init_kernel_el			// w0=cpu_boot_mode
	bl	set_cpu_boot_mode_flag
	mrs	x0, mpidr_el1
	mov_q	x1, MPIDR_HWID_BITMASK
	and	x0, x0, x1
	adr_l	x3, secondary_holding_pen_release
pen:	ldr	x4, [x3]
	cmp	x4, x0
	b.eq	secondary_startup
	wfe
	b	pen
SYM_FUNC_END(secondary_holding_pen)

	/*
	 * Secondary entry point that jumps straight into the kernel. Only to
	 * be used where CPUs are brought online dynamically by the kernel.
	 */
SYM_FUNC_START(secondary_entry)
	bl	init_kernel_el			// w0=cpu_boot_mode
	bl	set_cpu_boot_mode_flag
	b	secondary_startup
SYM_FUNC_END(secondary_entry)

SYM_FUNC_START_LOCAL(secondary_startup)
	/*
	 * Common entry point for secondary CPUs.
	 */
	bl	__cpu_secondary_check52bitva
	bl	__cpu_setup			// initialise processor
	adrp	x1, swapper_pg_dir
	bl	__enable_mmu
	ldr	x8, =__secondary_switched
	br	x8
SYM_FUNC_END(secondary_startup)

SYM_FUNC_START_LOCAL(__secondary_switched)
	adr_l	x5, vectors
	msr	vbar_el1, x5
	isb

	adr_l	x0, secondary_data
	ldr	x1, [x0, #CPU_BOOT_STACK]	// get secondary_data.stack
	cbz	x1, __secondary_too_slow
	mov	sp, x1
	ldr	x2, [x0, #CPU_BOOT_TASK]
	cbz	x2, __secondary_too_slow
	msr	sp_el0, x2
	scs_load x2, x3
	mov	x29, #0
	mov	x30, #0

#ifdef CONFIG_ARM64_PTR_AUTH
	ptrauth_keys_init_cpu x2, x3, x4, x5
#endif

	b	secondary_start_kernel
SYM_FUNC_END(__secondary_switched)

SYM_FUNC_START_LOCAL(__secondary_too_slow)
	wfe
	wfi
	b	__secondary_too_slow
SYM_FUNC_END(__secondary_too_slow)

/*
 * The booting CPU updates the failed status @__early_cpu_boot_status,
 * with MMU turned off.
 *
 * update_early_cpu_boot_status tmp, status
 *  - Corrupts tmp1, tmp2
 *  - Writes 'status' to __early_cpu_boot_status and makes sure
 *    it is committed to memory.
 */

	.macro	update_early_cpu_boot_status status, tmp1, tmp2
	mov	\tmp2, #\status
	adr_l	\tmp1, __early_cpu_boot_status
	str	\tmp2, [\tmp1]
	dmb	sy
	dc	ivac, \tmp1			// Invalidate potentially stale cache line
	.endm

/*
 * Enable the MMU.
 *
 *  x0  = SCTLR_EL1 value for turning on the MMU.
 *  x1  = TTBR1_EL1 value
 *
 * Returns to the caller via x30/lr. This requires the caller to be covered
 * by the .idmap.text section.
 *
 * Checks if the selected granule size is supported by the CPU.
 * If it isn't, park the CPU
 */
SYM_FUNC_START(__enable_mmu)
	mrs	x2, ID_AA64MMFR0_EL1
	ubfx	x2, x2, #ID_AA64MMFR0_TGRAN_SHIFT, 4
	cmp	x2, #ID_AA64MMFR0_TGRAN_SUPPORTED
	b.ne	__no_granule_support
	update_early_cpu_boot_status 0, x2, x3
	adrp	x2, idmap_pg_dir
	phys_to_ttbr x1, x1
	phys_to_ttbr x2, x2
	msr	ttbr0_el1, x2			// load TTBR0
	offset_ttbr1 x1, x3
	msr	ttbr1_el1, x1			// load TTBR1
	isb
	msr	sctlr_el1, x0
	isb
	/*
	 * Invalidate the local I-cache so that any instructions fetched
	 * speculatively from the PoC are discarded, since they may have
	 * been dynamically patched at the PoU.
	 */
	ic	iallu
	dsb	nsh
	isb
	ret
SYM_FUNC_END(__enable_mmu)

SYM_FUNC_START(__cpu_secondary_check52bitva)
#ifdef CONFIG_ARM64_VA_BITS_52
	ldr_l	x0, vabits_actual
	cmp	x0, #52
	b.ne	2f

	mrs_s	x0, SYS_ID_AA64MMFR2_EL1
	and	x0, x0, #(0xf << ID_AA64MMFR2_LVA_SHIFT)
	cbnz	x0, 2f

	update_early_cpu_boot_status \
		CPU_STUCK_IN_KERNEL | CPU_STUCK_REASON_52_BIT_VA, x0, x1
1:	wfe
	wfi
	b	1b

#endif
2:	ret
SYM_FUNC_END(__cpu_secondary_check52bitva)

SYM_FUNC_START_LOCAL(__no_granule_support)
	/* Indicate that this CPU can't boot and is stuck in the kernel */
	update_early_cpu_boot_status \
		CPU_STUCK_IN_KERNEL | CPU_STUCK_REASON_NO_GRAN, x1, x2
1:
	wfe
	wfi
	b	1b
SYM_FUNC_END(__no_granule_support)

#ifdef CONFIG_RELOCATABLE
SYM_FUNC_START_LOCAL(__relocate_kernel)
	/*
	 * Iterate over each entry in the relocation table, and apply the
	 * relocations in place.
	 */
	ldr	w9, =__rela_offset		// offset to reloc table
	ldr	w10, =__rela_size		// size of reloc table

	mov_q	x11, KIMAGE_VADDR		// default virtual offset
	add	x11, x11, x23			// actual virtual offset
	add	x9, x9, x11			// __va(.rela)
	add	x10, x9, x10			// __va(.rela) + sizeof(.rela)

0:	cmp	x9, x10
	b.hs	1f
	ldp	x12, x13, [x9], #24
	ldr	x14, [x9, #-8]
	cmp	w13, #R_AARCH64_RELATIVE
	b.ne	0b
	add	x14, x14, x23			// relocate
	str	x14, [x12, x23]
	b	0b

1:
#ifdef CONFIG_RELR
	/*
	 * Apply RELR relocations.
	 *
	 * RELR is a compressed format for storing relative relocations. The
	 * encoded sequence of entries looks like:
	 * [ AAAAAAAA BBBBBBB1 BBBBBBB1 ... AAAAAAAA BBBBBB1 ... ]
	 *
	 * i.e. start with an address, followed by any number of bitmaps. The
	 * address entry encodes 1 relocation. The subsequent bitmap entries
	 * encode up to 63 relocations each, at subsequent offsets following
	 * the last address entry.
	 *
	 * The bitmap entries must have 1 in the least significant bit. The
	 * assumption here is that an address cannot have 1 in lsb. Odd
	 * addresses are not supported. Any odd addresses are stored in the RELA
	 * section, which is handled above.
	 *
	 * Excluding the least significant bit in the bitmap, each non-zero
	 * bit in the bitmap represents a relocation to be applied to
	 * a corresponding machine word that follows the base address
	 * word. The second least significant bit represents the machine
	 * word immediately following the initial address, and each bit
	 * that follows represents the next word, in linear order. As such,
	 * a single bitmap can encode up to 63 relocations in a 64-bit object.
	 *
	 * In this implementation we store the address of the next RELR table
	 * entry in x9, the address being relocated by the current address or
	 * bitmap entry in x13 and the address being relocated by the current
	 * bit in x14.
	 *
	 * Because addends are stored in place in the binary, RELR relocations
	 * cannot be applied idempotently. We use x24 to keep track of the
	 * currently applied displacement so that we can correctly relocate if
	 * __relocate_kernel is called twice with non-zero displacements (i.e.
	 * if there is both a physical misalignment and a KASLR displacement).
	 */
	ldr	w9, =__relr_offset		// offset to reloc table
	ldr	w10, =__relr_size		// size of reloc table
	add	x9, x9, x11			// __va(.relr)
	add	x10, x9, x10			// __va(.relr) + sizeof(.relr)

	sub	x15, x23, x24			// delta from previous offset
	cbz	x15, 7f				// nothing to do if unchanged
	mov	x24, x23			// save new offset

2:	cmp	x9, x10
	b.hs	7f
	ldr	x11, [x9], #8
	tbnz	x11, #0, 3f			// branch to handle bitmaps
	add	x13, x11, x23
	ldr	x12, [x13]			// relocate address entry
	add	x12, x12, x15
	str	x12, [x13], #8			// adjust to start of bitmap
	b	2b

3:	mov	x14, x13
4:	lsr	x11, x11, #1
	cbz	x11, 6f
	tbz	x11, #0, 5f			// skip bit if not set
	ldr	x12, [x14]			// relocate bit
	add	x12, x12, x15
	str	x12, [x14]

5:	add	x14, x14, #8			// move to next bit's address
	b	4b

6:	/*
	 * Move to the next bitmap's address. 8 is the word size, and 63 is the
	 * number of significant bits in a bitmap entry.
	 */
	add	x13, x13, #(8 * 63)
	b	2b

7:
#endif
	ret

SYM_FUNC_END(__relocate_kernel)
#endif

SYM_FUNC_START_LOCAL(__primary_switch)
#ifdef CONFIG_RANDOMIZE_BASE
	mov	x19, x0				// preserve new SCTLR_EL1 value
	mrs	x20, sctlr_el1			// preserve old SCTLR_EL1 value
#endif

	adrp	x1, init_pg_dir
	bl	__enable_mmu
#ifdef CONFIG_RELOCATABLE
#ifdef CONFIG_RELR
	mov	x24, #0				// no RELR displacement yet
#endif
	bl	__relocate_kernel
#ifdef CONFIG_RANDOMIZE_BASE
	ldr	x8, =__primary_switched
	adrp	x0, __PHYS_OFFSET
	blr	x8

	/*
	 * If we return here, we have a KASLR displacement in x23 which we need
	 * to take into account by discarding the current kernel mapping and
	 * creating a new one.
	 */
	pre_disable_mmu_workaround
	msr	sctlr_el1, x20			// disable the MMU
	isb
	bl	__create_page_tables		// recreate kernel mapping

	tlbi	vmalle1				// Remove any stale TLB entries
	dsb	nsh

	msr	sctlr_el1, x19			// re-enable the MMU
	isb
	ic	iallu				// flush instructions fetched
	dsb	nsh				// via old mapping
	isb

	bl	__relocate_kernel
#endif
#endif
	ldr	x8, =__primary_switched
	adrp	x0, __PHYS_OFFSET
	br	x8
SYM_FUNC_END(__primary_switch)