summaryrefslogtreecommitdiffstats
path: root/arch/arm64/kvm/debug.c
blob: d439eb8f3239ecaab16abc29a30d23f03cc9bc01 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
/*
 * Debug and Guest Debug support
 *
 * Copyright (C) 2015 - Linaro Ltd
 * Author: Alex Bennée <alex.bennee@linaro.org>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#include <linux/kvm_host.h>

#include <asm/debug-monitors.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_emulate.h>

/* These are the bits of MDSCR_EL1 we may manipulate */
#define MDSCR_EL1_DEBUG_MASK	(DBG_MDSCR_SS | \
				DBG_MDSCR_KDE | \
				DBG_MDSCR_MDE)

static DEFINE_PER_CPU(u32, mdcr_el2);

/**
 * save/restore_guest_debug_regs
 *
 * For some debug operations we need to tweak some guest registers. As
 * a result we need to save the state of those registers before we
 * make those modifications.
 *
 * Guest access to MDSCR_EL1 is trapped by the hypervisor and handled
 * after we have restored the preserved value to the main context.
 */
static void save_guest_debug_regs(struct kvm_vcpu *vcpu)
{
	vcpu->arch.guest_debug_preserved.mdscr_el1 = vcpu_sys_reg(vcpu, MDSCR_EL1);
}

static void restore_guest_debug_regs(struct kvm_vcpu *vcpu)
{
	vcpu_sys_reg(vcpu, MDSCR_EL1) = vcpu->arch.guest_debug_preserved.mdscr_el1;
}

/**
 * kvm_arm_init_debug - grab what we need for debug
 *
 * Currently the sole task of this function is to retrieve the initial
 * value of mdcr_el2 so we can preserve MDCR_EL2.HPMN which has
 * presumably been set-up by some knowledgeable bootcode.
 *
 * It is called once per-cpu during CPU hyp initialisation.
 */

void kvm_arm_init_debug(void)
{
	__this_cpu_write(mdcr_el2, kvm_call_hyp(__kvm_get_mdcr_el2));
}

/**
 * kvm_arm_setup_debug - set up debug related stuff
 *
 * @vcpu:	the vcpu pointer
 *
 * This is called before each entry into the hypervisor to setup any
 * debug related registers. Currently this just ensures we will trap
 * access to:
 *  - Performance monitors (MDCR_EL2_TPM/MDCR_EL2_TPMCR)
 *  - Debug ROM Address (MDCR_EL2_TDRA)
 *  - OS related registers (MDCR_EL2_TDOSA)
 *
 * Additionally, KVM only traps guest accesses to the debug registers if
 * the guest is not actively using them (see the KVM_ARM64_DEBUG_DIRTY
 * flag on vcpu->arch.debug_flags).  Since the guest must not interfere
 * with the hardware state when debugging the guest, we must ensure that
 * trapping is enabled whenever we are debugging the guest using the
 * debug registers.
 */

void kvm_arm_setup_debug(struct kvm_vcpu *vcpu)
{
	bool trap_debug = !(vcpu->arch.debug_flags & KVM_ARM64_DEBUG_DIRTY);

	vcpu->arch.mdcr_el2 = __this_cpu_read(mdcr_el2) & MDCR_EL2_HPMN_MASK;
	vcpu->arch.mdcr_el2 |= (MDCR_EL2_TPM |
				MDCR_EL2_TPMCR |
				MDCR_EL2_TDRA |
				MDCR_EL2_TDOSA);

	/* Trap on access to debug registers? */
	if (trap_debug)
		vcpu->arch.mdcr_el2 |= MDCR_EL2_TDA;

	/* Is Guest debugging in effect? */
	if (vcpu->guest_debug) {
		/* Route all software debug exceptions to EL2 */
		vcpu->arch.mdcr_el2 |= MDCR_EL2_TDE;

		/* Save guest debug state */
		save_guest_debug_regs(vcpu);

		/*
		 * Single Step (ARM ARM D2.12.3 The software step state
		 * machine)
		 *
		 * If we are doing Single Step we need to manipulate
		 * the guest's MDSCR_EL1.SS and PSTATE.SS. Once the
		 * step has occurred the hypervisor will trap the
		 * debug exception and we return to userspace.
		 *
		 * If the guest attempts to single step its userspace
		 * we would have to deal with a trapped exception
		 * while in the guest kernel. Because this would be
		 * hard to unwind we suppress the guest's ability to
		 * do so by masking MDSCR_EL.SS.
		 *
		 * This confuses guest debuggers which use
		 * single-step behind the scenes but everything
		 * returns to normal once the host is no longer
		 * debugging the system.
		 */
		if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
			*vcpu_cpsr(vcpu) |=  DBG_SPSR_SS;
			vcpu_sys_reg(vcpu, MDSCR_EL1) |= DBG_MDSCR_SS;
		} else {
			vcpu_sys_reg(vcpu, MDSCR_EL1) &= ~DBG_MDSCR_SS;
		}
	}
}

void kvm_arm_clear_debug(struct kvm_vcpu *vcpu)
{
	if (vcpu->guest_debug)
		restore_guest_debug_regs(vcpu);
}