summaryrefslogtreecommitdiffstats
path: root/arch/arm64/kvm/hyp/tlb.c
blob: ceaddbe4279f9717b85195c5828b61fb67b38bfd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Copyright (C) 2015 - ARM Ltd
 * Author: Marc Zyngier <marc.zyngier@arm.com>
 */

#include <linux/irqflags.h>

#include <asm/kvm_hyp.h>
#include <asm/kvm_mmu.h>
#include <asm/tlbflush.h>

struct tlb_inv_context {
	unsigned long	flags;
	u64		tcr;
	u64		sctlr;
};

static void __hyp_text __tlb_switch_to_guest_vhe(struct kvm *kvm,
						 struct tlb_inv_context *cxt)
{
	u64 val;

	local_irq_save(cxt->flags);

	if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT_VHE)) {
		/*
		 * For CPUs that are affected by ARM errata 1165522 or 1530923,
		 * we cannot trust stage-1 to be in a correct state at that
		 * point. Since we do not want to force a full load of the
		 * vcpu state, we prevent the EL1 page-table walker to
		 * allocate new TLBs. This is done by setting the EPD bits
		 * in the TCR_EL1 register. We also need to prevent it to
		 * allocate IPA->PA walks, so we enable the S1 MMU...
		 */
		val = cxt->tcr = read_sysreg_el1(SYS_TCR);
		val |= TCR_EPD1_MASK | TCR_EPD0_MASK;
		write_sysreg_el1(val, SYS_TCR);
		val = cxt->sctlr = read_sysreg_el1(SYS_SCTLR);
		val |= SCTLR_ELx_M;
		write_sysreg_el1(val, SYS_SCTLR);
	}

	/*
	 * With VHE enabled, we have HCR_EL2.{E2H,TGE} = {1,1}, and
	 * most TLB operations target EL2/EL0. In order to affect the
	 * guest TLBs (EL1/EL0), we need to change one of these two
	 * bits. Changing E2H is impossible (goodbye TTBR1_EL2), so
	 * let's flip TGE before executing the TLB operation.
	 *
	 * ARM erratum 1165522 requires some special handling (again),
	 * as we need to make sure both stages of translation are in
	 * place before clearing TGE. __load_guest_stage2() already
	 * has an ISB in order to deal with this.
	 */
	__load_guest_stage2(kvm);
	val = read_sysreg(hcr_el2);
	val &= ~HCR_TGE;
	write_sysreg(val, hcr_el2);
	isb();
}

static void __hyp_text __tlb_switch_to_guest_nvhe(struct kvm *kvm,
						  struct tlb_inv_context *cxt)
{
	if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT_NVHE)) {
		u64 val;

		/*
		 * For CPUs that are affected by ARM 1319367, we need to
		 * avoid a host Stage-1 walk while we have the guest's
		 * VMID set in the VTTBR in order to invalidate TLBs.
		 * We're guaranteed that the S1 MMU is enabled, so we can
		 * simply set the EPD bits to avoid any further TLB fill.
		 */
		val = cxt->tcr = read_sysreg_el1(SYS_TCR);
		val |= TCR_EPD1_MASK | TCR_EPD0_MASK;
		write_sysreg_el1(val, SYS_TCR);
		isb();
	}

	__load_guest_stage2(kvm);
	isb();
}

static void __hyp_text __tlb_switch_to_guest(struct kvm *kvm,
					     struct tlb_inv_context *cxt)
{
	if (has_vhe())
		__tlb_switch_to_guest_vhe(kvm, cxt);
	else
		__tlb_switch_to_guest_nvhe(kvm, cxt);
}

static void __hyp_text __tlb_switch_to_host_vhe(struct kvm *kvm,
						struct tlb_inv_context *cxt)
{
	/*
	 * We're done with the TLB operation, let's restore the host's
	 * view of HCR_EL2.
	 */
	write_sysreg(0, vttbr_el2);
	write_sysreg(HCR_HOST_VHE_FLAGS, hcr_el2);
	isb();

	if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT_VHE)) {
		/* Restore the registers to what they were */
		write_sysreg_el1(cxt->tcr, SYS_TCR);
		write_sysreg_el1(cxt->sctlr, SYS_SCTLR);
	}

	local_irq_restore(cxt->flags);
}

static void __hyp_text __tlb_switch_to_host_nvhe(struct kvm *kvm,
						 struct tlb_inv_context *cxt)
{
	write_sysreg(0, vttbr_el2);

	if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT_NVHE)) {
		/* Ensure write of the host VMID */
		isb();
		/* Restore the host's TCR_EL1 */
		write_sysreg_el1(cxt->tcr, SYS_TCR);
	}
}

static void __hyp_text __tlb_switch_to_host(struct kvm *kvm,
					    struct tlb_inv_context *cxt)
{
	if (has_vhe())
		__tlb_switch_to_host_vhe(kvm, cxt);
	else
		__tlb_switch_to_host_nvhe(kvm, cxt);
}

void __hyp_text __kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
{
	struct tlb_inv_context cxt;

	dsb(ishst);

	/* Switch to requested VMID */
	kvm = kern_hyp_va(kvm);
	__tlb_switch_to_guest(kvm, &cxt);

	/*
	 * We could do so much better if we had the VA as well.
	 * Instead, we invalidate Stage-2 for this IPA, and the
	 * whole of Stage-1. Weep...
	 */
	ipa >>= 12;
	__tlbi(ipas2e1is, ipa);

	/*
	 * We have to ensure completion of the invalidation at Stage-2,
	 * since a table walk on another CPU could refill a TLB with a
	 * complete (S1 + S2) walk based on the old Stage-2 mapping if
	 * the Stage-1 invalidation happened first.
	 */
	dsb(ish);
	__tlbi(vmalle1is);
	dsb(ish);
	isb();

	/*
	 * If the host is running at EL1 and we have a VPIPT I-cache,
	 * then we must perform I-cache maintenance at EL2 in order for
	 * it to have an effect on the guest. Since the guest cannot hit
	 * I-cache lines allocated with a different VMID, we don't need
	 * to worry about junk out of guest reset (we nuke the I-cache on
	 * VMID rollover), but we do need to be careful when remapping
	 * executable pages for the same guest. This can happen when KSM
	 * takes a CoW fault on an executable page, copies the page into
	 * a page that was previously mapped in the guest and then needs
	 * to invalidate the guest view of the I-cache for that page
	 * from EL1. To solve this, we invalidate the entire I-cache when
	 * unmapping a page from a guest if we have a VPIPT I-cache but
	 * the host is running at EL1. As above, we could do better if
	 * we had the VA.
	 *
	 * The moral of this story is: if you have a VPIPT I-cache, then
	 * you should be running with VHE enabled.
	 */
	if (!has_vhe() && icache_is_vpipt())
		__flush_icache_all();

	__tlb_switch_to_host(kvm, &cxt);
}

void __hyp_text __kvm_tlb_flush_vmid(struct kvm *kvm)
{
	struct tlb_inv_context cxt;

	dsb(ishst);

	/* Switch to requested VMID */
	kvm = kern_hyp_va(kvm);
	__tlb_switch_to_guest(kvm, &cxt);

	__tlbi(vmalls12e1is);
	dsb(ish);
	isb();

	__tlb_switch_to_host(kvm, &cxt);
}

void __hyp_text __kvm_tlb_flush_local_vmid(struct kvm_vcpu *vcpu)
{
	struct kvm *kvm = kern_hyp_va(kern_hyp_va(vcpu)->kvm);
	struct tlb_inv_context cxt;

	/* Switch to requested VMID */
	__tlb_switch_to_guest(kvm, &cxt);

	__tlbi(vmalle1);
	dsb(nsh);
	isb();

	__tlb_switch_to_host(kvm, &cxt);
}

void __hyp_text __kvm_flush_vm_context(void)
{
	dsb(ishst);
	__tlbi(alle1is);

	/*
	 * VIPT and PIPT caches are not affected by VMID, so no maintenance
	 * is necessary across a VMID rollover.
	 *
	 * VPIPT caches constrain lookup and maintenance to the active VMID,
	 * so we need to invalidate lines with a stale VMID to avoid an ABA
	 * race after multiple rollovers.
	 *
	 */
	if (icache_is_vpipt())
		asm volatile("ic ialluis");

	dsb(ish);
}