summaryrefslogtreecommitdiffstats
path: root/arch/ia64/kernel/smpboot.c
blob: 328fd2fd5f44173e10959791ac4a007b1b9564ff (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
/*
 * SMP boot-related support
 *
 * Copyright (C) 1998-2003, 2005 Hewlett-Packard Co
 *	David Mosberger-Tang <davidm@hpl.hp.com>
 * Copyright (C) 2001, 2004-2005 Intel Corp
 * 	Rohit Seth <rohit.seth@intel.com>
 * 	Suresh Siddha <suresh.b.siddha@intel.com>
 * 	Gordon Jin <gordon.jin@intel.com>
 *	Ashok Raj  <ashok.raj@intel.com>
 *
 * 01/05/16 Rohit Seth <rohit.seth@intel.com>	Moved SMP booting functions from smp.c to here.
 * 01/04/27 David Mosberger <davidm@hpl.hp.com>	Added ITC synching code.
 * 02/07/31 David Mosberger <davidm@hpl.hp.com>	Switch over to hotplug-CPU boot-sequence.
 *						smp_boot_cpus()/smp_commence() is replaced by
 *						smp_prepare_cpus()/__cpu_up()/smp_cpus_done().
 * 04/06/21 Ashok Raj		<ashok.raj@intel.com> Added CPU Hotplug Support
 * 04/12/26 Jin Gordon <gordon.jin@intel.com>
 * 04/12/26 Rohit Seth <rohit.seth@intel.com>
 *						Add multi-threading and multi-core detection
 * 05/01/30 Suresh Siddha <suresh.b.siddha@intel.com>
 *						Setup cpu_sibling_map and cpu_core_map
 */

#include <linux/module.h>
#include <linux/acpi.h>
#include <linux/bootmem.h>
#include <linux/cpu.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/mm.h>
#include <linux/notifier.h>
#include <linux/smp.h>
#include <linux/spinlock.h>
#include <linux/efi.h>
#include <linux/percpu.h>
#include <linux/bitops.h>

#include <asm/atomic.h>
#include <asm/cache.h>
#include <asm/current.h>
#include <asm/delay.h>
#include <asm/ia32.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/machvec.h>
#include <asm/mca.h>
#include <asm/page.h>
#include <asm/pgalloc.h>
#include <asm/pgtable.h>
#include <asm/processor.h>
#include <asm/ptrace.h>
#include <asm/sal.h>
#include <asm/system.h>
#include <asm/tlbflush.h>
#include <asm/unistd.h>
#include <asm/sn/arch.h>

#define SMP_DEBUG 0

#if SMP_DEBUG
#define Dprintk(x...)  printk(x)
#else
#define Dprintk(x...)
#endif

#ifdef CONFIG_HOTPLUG_CPU
#ifdef CONFIG_PERMIT_BSP_REMOVE
#define bsp_remove_ok	1
#else
#define bsp_remove_ok	0
#endif

/*
 * Store all idle threads, this can be reused instead of creating
 * a new thread. Also avoids complicated thread destroy functionality
 * for idle threads.
 */
struct task_struct *idle_thread_array[NR_CPUS];

/*
 * Global array allocated for NR_CPUS at boot time
 */
struct sal_to_os_boot sal_boot_rendez_state[NR_CPUS];

/*
 * start_ap in head.S uses this to store current booting cpu
 * info.
 */
struct sal_to_os_boot *sal_state_for_booting_cpu = &sal_boot_rendez_state[0];

#define set_brendez_area(x) (sal_state_for_booting_cpu = &sal_boot_rendez_state[(x)]);

#define get_idle_for_cpu(x)		(idle_thread_array[(x)])
#define set_idle_for_cpu(x,p)	(idle_thread_array[(x)] = (p))

#else

#define get_idle_for_cpu(x)		(NULL)
#define set_idle_for_cpu(x,p)
#define set_brendez_area(x)
#endif


/*
 * ITC synchronization related stuff:
 */
#define MASTER	(0)
#define SLAVE	(SMP_CACHE_BYTES/8)

#define NUM_ROUNDS	64	/* magic value */
#define NUM_ITERS	5	/* likewise */

static DEFINE_SPINLOCK(itc_sync_lock);
static volatile unsigned long go[SLAVE + 1];

#define DEBUG_ITC_SYNC	0

extern void start_ap (void);
extern unsigned long ia64_iobase;

struct task_struct *task_for_booting_cpu;

/*
 * State for each CPU
 */
DEFINE_PER_CPU(int, cpu_state);

/* Bitmasks of currently online, and possible CPUs */
cpumask_t cpu_online_map;
EXPORT_SYMBOL(cpu_online_map);
cpumask_t cpu_possible_map = CPU_MASK_NONE;
EXPORT_SYMBOL(cpu_possible_map);

cpumask_t cpu_core_map[NR_CPUS] __cacheline_aligned;
DEFINE_PER_CPU_SHARED_ALIGNED(cpumask_t, cpu_sibling_map);
EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);

int smp_num_siblings = 1;

/* which logical CPU number maps to which CPU (physical APIC ID) */
volatile int ia64_cpu_to_sapicid[NR_CPUS];
EXPORT_SYMBOL(ia64_cpu_to_sapicid);

static volatile cpumask_t cpu_callin_map;

struct smp_boot_data smp_boot_data __initdata;

unsigned long ap_wakeup_vector = -1; /* External Int use to wakeup APs */

char __initdata no_int_routing;

unsigned char smp_int_redirect; /* are INT and IPI redirectable by the chipset? */

#ifdef CONFIG_FORCE_CPEI_RETARGET
#define CPEI_OVERRIDE_DEFAULT	(1)
#else
#define CPEI_OVERRIDE_DEFAULT	(0)
#endif

unsigned int force_cpei_retarget = CPEI_OVERRIDE_DEFAULT;

static int __init
cmdl_force_cpei(char *str)
{
	int value=0;

	get_option (&str, &value);
	force_cpei_retarget = value;

	return 1;
}

__setup("force_cpei=", cmdl_force_cpei);

static int __init
nointroute (char *str)
{
	no_int_routing = 1;
	printk ("no_int_routing on\n");
	return 1;
}

__setup("nointroute", nointroute);

static void fix_b0_for_bsp(void)
{
#ifdef CONFIG_HOTPLUG_CPU
	int cpuid;
	static int fix_bsp_b0 = 1;

	cpuid = smp_processor_id();

	/*
	 * Cache the b0 value on the first AP that comes up
	 */
	if (!(fix_bsp_b0 && cpuid))
		return;

	sal_boot_rendez_state[0].br[0] = sal_boot_rendez_state[cpuid].br[0];
	printk ("Fixed BSP b0 value from CPU %d\n", cpuid);

	fix_bsp_b0 = 0;
#endif
}

void
sync_master (void *arg)
{
	unsigned long flags, i;

	go[MASTER] = 0;

	local_irq_save(flags);
	{
		for (i = 0; i < NUM_ROUNDS*NUM_ITERS; ++i) {
			while (!go[MASTER])
				cpu_relax();
			go[MASTER] = 0;
			go[SLAVE] = ia64_get_itc();
		}
	}
	local_irq_restore(flags);
}

/*
 * Return the number of cycles by which our itc differs from the itc on the master
 * (time-keeper) CPU.  A positive number indicates our itc is ahead of the master,
 * negative that it is behind.
 */
static inline long
get_delta (long *rt, long *master)
{
	unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
	unsigned long tcenter, t0, t1, tm;
	long i;

	for (i = 0; i < NUM_ITERS; ++i) {
		t0 = ia64_get_itc();
		go[MASTER] = 1;
		while (!(tm = go[SLAVE]))
			cpu_relax();
		go[SLAVE] = 0;
		t1 = ia64_get_itc();

		if (t1 - t0 < best_t1 - best_t0)
			best_t0 = t0, best_t1 = t1, best_tm = tm;
	}

	*rt = best_t1 - best_t0;
	*master = best_tm - best_t0;

	/* average best_t0 and best_t1 without overflow: */
	tcenter = (best_t0/2 + best_t1/2);
	if (best_t0 % 2 + best_t1 % 2 == 2)
		++tcenter;
	return tcenter - best_tm;
}

/*
 * Synchronize ar.itc of the current (slave) CPU with the ar.itc of the MASTER CPU
 * (normally the time-keeper CPU).  We use a closed loop to eliminate the possibility of
 * unaccounted-for errors (such as getting a machine check in the middle of a calibration
 * step).  The basic idea is for the slave to ask the master what itc value it has and to
 * read its own itc before and after the master responds.  Each iteration gives us three
 * timestamps:
 *
 *	slave		master
 *
 *	t0 ---\
 *             ---\
 *		   --->
 *			tm
 *		   /---
 *	       /---
 *	t1 <---
 *
 *
 * The goal is to adjust the slave's ar.itc such that tm falls exactly half-way between t0
 * and t1.  If we achieve this, the clocks are synchronized provided the interconnect
 * between the slave and the master is symmetric.  Even if the interconnect were
 * asymmetric, we would still know that the synchronization error is smaller than the
 * roundtrip latency (t0 - t1).
 *
 * When the interconnect is quiet and symmetric, this lets us synchronize the itc to
 * within one or two cycles.  However, we can only *guarantee* that the synchronization is
 * accurate to within a round-trip time, which is typically in the range of several
 * hundred cycles (e.g., ~500 cycles).  In practice, this means that the itc's are usually
 * almost perfectly synchronized, but we shouldn't assume that the accuracy is much better
 * than half a micro second or so.
 */
void
ia64_sync_itc (unsigned int master)
{
	long i, delta, adj, adjust_latency = 0, done = 0;
	unsigned long flags, rt, master_time_stamp, bound;
#if DEBUG_ITC_SYNC
	struct {
		long rt;	/* roundtrip time */
		long master;	/* master's timestamp */
		long diff;	/* difference between midpoint and master's timestamp */
		long lat;	/* estimate of itc adjustment latency */
	} t[NUM_ROUNDS];
#endif

	/*
	 * Make sure local timer ticks are disabled while we sync.  If
	 * they were enabled, we'd have to worry about nasty issues
	 * like setting the ITC ahead of (or a long time before) the
	 * next scheduled tick.
	 */
	BUG_ON((ia64_get_itv() & (1 << 16)) == 0);

	go[MASTER] = 1;

	if (smp_call_function_single(master, sync_master, NULL, 1, 0) < 0) {
		printk(KERN_ERR "sync_itc: failed to get attention of CPU %u!\n", master);
		return;
	}

	while (go[MASTER])
		cpu_relax();	/* wait for master to be ready */

	spin_lock_irqsave(&itc_sync_lock, flags);
	{
		for (i = 0; i < NUM_ROUNDS; ++i) {
			delta = get_delta(&rt, &master_time_stamp);
			if (delta == 0) {
				done = 1;	/* let's lock on to this... */
				bound = rt;
			}

			if (!done) {
				if (i > 0) {
					adjust_latency += -delta;
					adj = -delta + adjust_latency/4;
				} else
					adj = -delta;

				ia64_set_itc(ia64_get_itc() + adj);
			}
#if DEBUG_ITC_SYNC
			t[i].rt = rt;
			t[i].master = master_time_stamp;
			t[i].diff = delta;
			t[i].lat = adjust_latency/4;
#endif
		}
	}
	spin_unlock_irqrestore(&itc_sync_lock, flags);

#if DEBUG_ITC_SYNC
	for (i = 0; i < NUM_ROUNDS; ++i)
		printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
		       t[i].rt, t[i].master, t[i].diff, t[i].lat);
#endif

	printk(KERN_INFO "CPU %d: synchronized ITC with CPU %u (last diff %ld cycles, "
	       "maxerr %lu cycles)\n", smp_processor_id(), master, delta, rt);
}

/*
 * Ideally sets up per-cpu profiling hooks.  Doesn't do much now...
 */
static inline void __devinit
smp_setup_percpu_timer (void)
{
}

static void __cpuinit
smp_callin (void)
{
	int cpuid, phys_id, itc_master;
	struct cpuinfo_ia64 *last_cpuinfo, *this_cpuinfo;
	extern void ia64_init_itm(void);
	extern volatile int time_keeper_id;

#ifdef CONFIG_PERFMON
	extern void pfm_init_percpu(void);
#endif

	cpuid = smp_processor_id();
	phys_id = hard_smp_processor_id();
	itc_master = time_keeper_id;

	if (cpu_online(cpuid)) {
		printk(KERN_ERR "huh, phys CPU#0x%x, CPU#0x%x already present??\n",
		       phys_id, cpuid);
		BUG();
	}

	fix_b0_for_bsp();

	lock_ipi_calllock();
	spin_lock(&vector_lock);
	/* Setup the per cpu irq handling data structures */
	__setup_vector_irq(cpuid);
	cpu_set(cpuid, cpu_online_map);
	unlock_ipi_calllock();
	per_cpu(cpu_state, cpuid) = CPU_ONLINE;
	spin_unlock(&vector_lock);

	smp_setup_percpu_timer();

	ia64_mca_cmc_vector_setup();	/* Setup vector on AP */

#ifdef CONFIG_PERFMON
	pfm_init_percpu();
#endif

	local_irq_enable();

	if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
		/*
		 * Synchronize the ITC with the BP.  Need to do this after irqs are
		 * enabled because ia64_sync_itc() calls smp_call_function_single(), which
		 * calls spin_unlock_bh(), which calls spin_unlock_bh(), which calls
		 * local_bh_enable(), which bugs out if irqs are not enabled...
		 */
		Dprintk("Going to syncup ITC with ITC Master.\n");
		ia64_sync_itc(itc_master);
	}

	/*
	 * Get our bogomips.
	 */
	ia64_init_itm();

	/*
	 * Delay calibration can be skipped if new processor is identical to the
	 * previous processor.
	 */
	last_cpuinfo = cpu_data(cpuid - 1);
	this_cpuinfo = local_cpu_data;
	if (last_cpuinfo->itc_freq != this_cpuinfo->itc_freq ||
	    last_cpuinfo->proc_freq != this_cpuinfo->proc_freq ||
	    last_cpuinfo->features != this_cpuinfo->features ||
	    last_cpuinfo->revision != this_cpuinfo->revision ||
	    last_cpuinfo->family != this_cpuinfo->family ||
	    last_cpuinfo->archrev != this_cpuinfo->archrev ||
	    last_cpuinfo->model != this_cpuinfo->model)
		calibrate_delay();
	local_cpu_data->loops_per_jiffy = loops_per_jiffy;

#ifdef CONFIG_IA32_SUPPORT
	ia32_gdt_init();
#endif

	/*
	 * Allow the master to continue.
	 */
	cpu_set(cpuid, cpu_callin_map);
	Dprintk("Stack on CPU %d at about %p\n",cpuid, &cpuid);
}


/*
 * Activate a secondary processor.  head.S calls this.
 */
int __cpuinit
start_secondary (void *unused)
{
	/* Early console may use I/O ports */
	ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
	Dprintk("start_secondary: starting CPU 0x%x\n", hard_smp_processor_id());
	efi_map_pal_code();
	cpu_init();
	preempt_disable();
	smp_callin();

	cpu_idle();
	return 0;
}

struct pt_regs * __devinit idle_regs(struct pt_regs *regs)
{
	return NULL;
}

struct create_idle {
	struct work_struct work;
	struct task_struct *idle;
	struct completion done;
	int cpu;
};

void __cpuinit
do_fork_idle(struct work_struct *work)
{
	struct create_idle *c_idle =
		container_of(work, struct create_idle, work);

	c_idle->idle = fork_idle(c_idle->cpu);
	complete(&c_idle->done);
}

static int __cpuinit
do_boot_cpu (int sapicid, int cpu)
{
	int timeout;
	struct create_idle c_idle = {
		.work = __WORK_INITIALIZER(c_idle.work, do_fork_idle),
		.cpu	= cpu,
		.done	= COMPLETION_INITIALIZER(c_idle.done),
	};

 	c_idle.idle = get_idle_for_cpu(cpu);
 	if (c_idle.idle) {
		init_idle(c_idle.idle, cpu);
 		goto do_rest;
	}

	/*
	 * We can't use kernel_thread since we must avoid to reschedule the child.
	 */
	if (!keventd_up() || current_is_keventd())
		c_idle.work.func(&c_idle.work);
	else {
		schedule_work(&c_idle.work);
		wait_for_completion(&c_idle.done);
	}

	if (IS_ERR(c_idle.idle))
		panic("failed fork for CPU %d", cpu);

	set_idle_for_cpu(cpu, c_idle.idle);

do_rest:
	task_for_booting_cpu = c_idle.idle;

	Dprintk("Sending wakeup vector %lu to AP 0x%x/0x%x.\n", ap_wakeup_vector, cpu, sapicid);

	set_brendez_area(cpu);
	platform_send_ipi(cpu, ap_wakeup_vector, IA64_IPI_DM_INT, 0);

	/*
	 * Wait 10s total for the AP to start
	 */
	Dprintk("Waiting on callin_map ...");
	for (timeout = 0; timeout < 100000; timeout++) {
		if (cpu_isset(cpu, cpu_callin_map))
			break;  /* It has booted */
		udelay(100);
	}
	Dprintk("\n");

	if (!cpu_isset(cpu, cpu_callin_map)) {
		printk(KERN_ERR "Processor 0x%x/0x%x is stuck.\n", cpu, sapicid);
		ia64_cpu_to_sapicid[cpu] = -1;
		cpu_clear(cpu, cpu_online_map);  /* was set in smp_callin() */
		return -EINVAL;
	}
	return 0;
}

static int __init
decay (char *str)
{
	int ticks;
	get_option (&str, &ticks);
	return 1;
}

__setup("decay=", decay);

/*
 * Initialize the logical CPU number to SAPICID mapping
 */
void __init
smp_build_cpu_map (void)
{
	int sapicid, cpu, i;
	int boot_cpu_id = hard_smp_processor_id();

	for (cpu = 0; cpu < NR_CPUS; cpu++) {
		ia64_cpu_to_sapicid[cpu] = -1;
	}

	ia64_cpu_to_sapicid[0] = boot_cpu_id;
	cpus_clear(cpu_present_map);
	cpu_set(0, cpu_present_map);
	cpu_set(0, cpu_possible_map);
	for (cpu = 1, i = 0; i < smp_boot_data.cpu_count; i++) {
		sapicid = smp_boot_data.cpu_phys_id[i];
		if (sapicid == boot_cpu_id)
			continue;
		cpu_set(cpu, cpu_present_map);
		cpu_set(cpu, cpu_possible_map);
		ia64_cpu_to_sapicid[cpu] = sapicid;
		cpu++;
	}
}

/*
 * Cycle through the APs sending Wakeup IPIs to boot each.
 */
void __init
smp_prepare_cpus (unsigned int max_cpus)
{
	int boot_cpu_id = hard_smp_processor_id();

	/*
	 * Initialize the per-CPU profiling counter/multiplier
	 */

	smp_setup_percpu_timer();

	/*
	 * We have the boot CPU online for sure.
	 */
	cpu_set(0, cpu_online_map);
	cpu_set(0, cpu_callin_map);

	local_cpu_data->loops_per_jiffy = loops_per_jiffy;
	ia64_cpu_to_sapicid[0] = boot_cpu_id;

	printk(KERN_INFO "Boot processor id 0x%x/0x%x\n", 0, boot_cpu_id);

	current_thread_info()->cpu = 0;

	/*
	 * If SMP should be disabled, then really disable it!
	 */
	if (!max_cpus) {
		printk(KERN_INFO "SMP mode deactivated.\n");
		cpus_clear(cpu_online_map);
		cpus_clear(cpu_present_map);
		cpus_clear(cpu_possible_map);
		cpu_set(0, cpu_online_map);
		cpu_set(0, cpu_present_map);
		cpu_set(0, cpu_possible_map);
		return;
	}
}

void __devinit smp_prepare_boot_cpu(void)
{
	cpu_set(smp_processor_id(), cpu_online_map);
	cpu_set(smp_processor_id(), cpu_callin_map);
	per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
}

#ifdef CONFIG_HOTPLUG_CPU
static inline void
clear_cpu_sibling_map(int cpu)
{
	int i;

	for_each_cpu_mask(i, per_cpu(cpu_sibling_map, cpu))
		cpu_clear(cpu, per_cpu(cpu_sibling_map, i));
	for_each_cpu_mask(i, cpu_core_map[cpu])
		cpu_clear(cpu, cpu_core_map[i]);

	per_cpu(cpu_sibling_map, cpu) = cpu_core_map[cpu] = CPU_MASK_NONE;
}

static void
remove_siblinginfo(int cpu)
{
	int last = 0;

	if (cpu_data(cpu)->threads_per_core == 1 &&
	    cpu_data(cpu)->cores_per_socket == 1) {
		cpu_clear(cpu, cpu_core_map[cpu]);
		cpu_clear(cpu, per_cpu(cpu_sibling_map, cpu));
		return;
	}

	last = (cpus_weight(cpu_core_map[cpu]) == 1 ? 1 : 0);

	/* remove it from all sibling map's */
	clear_cpu_sibling_map(cpu);
}

extern void fixup_irqs(void);

int migrate_platform_irqs(unsigned int cpu)
{
	int new_cpei_cpu;
	irq_desc_t *desc = NULL;
	cpumask_t 	mask;
	int 		retval = 0;

	/*
	 * dont permit CPEI target to removed.
	 */
	if (cpe_vector > 0 && is_cpu_cpei_target(cpu)) {
		printk ("CPU (%d) is CPEI Target\n", cpu);
		if (can_cpei_retarget()) {
			/*
			 * Now re-target the CPEI to a different processor
			 */
			new_cpei_cpu = any_online_cpu(cpu_online_map);
			mask = cpumask_of_cpu(new_cpei_cpu);
			set_cpei_target_cpu(new_cpei_cpu);
			desc = irq_desc + ia64_cpe_irq;
			/*
			 * Switch for now, immediately, we need to do fake intr
			 * as other interrupts, but need to study CPEI behaviour with
			 * polling before making changes.
			 */
			if (desc) {
				desc->chip->disable(ia64_cpe_irq);
				desc->chip->set_affinity(ia64_cpe_irq, mask);
				desc->chip->enable(ia64_cpe_irq);
				printk ("Re-targetting CPEI to cpu %d\n", new_cpei_cpu);
			}
		}
		if (!desc) {
			printk ("Unable to retarget CPEI, offline cpu [%d] failed\n", cpu);
			retval = -EBUSY;
		}
	}
	return retval;
}

/* must be called with cpucontrol mutex held */
int __cpu_disable(void)
{
	int cpu = smp_processor_id();

	/*
	 * dont permit boot processor for now
	 */
	if (cpu == 0 && !bsp_remove_ok) {
		printk ("Your platform does not support removal of BSP\n");
		return (-EBUSY);
	}

	if (ia64_platform_is("sn2")) {
		if (!sn_cpu_disable_allowed(cpu))
			return -EBUSY;
	}

	cpu_clear(cpu, cpu_online_map);

	if (migrate_platform_irqs(cpu)) {
		cpu_set(cpu, cpu_online_map);
		return (-EBUSY);
	}

	remove_siblinginfo(cpu);
	cpu_clear(cpu, cpu_online_map);
	fixup_irqs();
	local_flush_tlb_all();
	cpu_clear(cpu, cpu_callin_map);
	return 0;
}

void __cpu_die(unsigned int cpu)
{
	unsigned int i;

	for (i = 0; i < 100; i++) {
		/* They ack this in play_dead by setting CPU_DEAD */
		if (per_cpu(cpu_state, cpu) == CPU_DEAD)
		{
			printk ("CPU %d is now offline\n", cpu);
			return;
		}
		msleep(100);
	}
 	printk(KERN_ERR "CPU %u didn't die...\n", cpu);
}
#endif /* CONFIG_HOTPLUG_CPU */

void
smp_cpus_done (unsigned int dummy)
{
	int cpu;
	unsigned long bogosum = 0;

	/*
	 * Allow the user to impress friends.
	 */

	for_each_online_cpu(cpu) {
		bogosum += cpu_data(cpu)->loops_per_jiffy;
	}

	printk(KERN_INFO "Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
	       (int)num_online_cpus(), bogosum/(500000/HZ), (bogosum/(5000/HZ))%100);
}

static inline void __devinit
set_cpu_sibling_map(int cpu)
{
	int i;

	for_each_online_cpu(i) {
		if ((cpu_data(cpu)->socket_id == cpu_data(i)->socket_id)) {
			cpu_set(i, cpu_core_map[cpu]);
			cpu_set(cpu, cpu_core_map[i]);
			if (cpu_data(cpu)->core_id == cpu_data(i)->core_id) {
				cpu_set(i, per_cpu(cpu_sibling_map, cpu));
				cpu_set(cpu, per_cpu(cpu_sibling_map, i));
			}
		}
	}
}

int __cpuinit
__cpu_up (unsigned int cpu)
{
	int ret;
	int sapicid;

	sapicid = ia64_cpu_to_sapicid[cpu];
	if (sapicid == -1)
		return -EINVAL;

	/*
	 * Already booted cpu? not valid anymore since we dont
	 * do idle loop tightspin anymore.
	 */
	if (cpu_isset(cpu, cpu_callin_map))
		return -EINVAL;

	per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
	/* Processor goes to start_secondary(), sets online flag */
	ret = do_boot_cpu(sapicid, cpu);
	if (ret < 0)
		return ret;

	if (cpu_data(cpu)->threads_per_core == 1 &&
	    cpu_data(cpu)->cores_per_socket == 1) {
		cpu_set(cpu, per_cpu(cpu_sibling_map, cpu));
		cpu_set(cpu, cpu_core_map[cpu]);
		return 0;
	}

	set_cpu_sibling_map(cpu);

	return 0;
}

/*
 * Assume that CPUs have been discovered by some platform-dependent interface.  For
 * SoftSDV/Lion, that would be ACPI.
 *
 * Setup of the IPI irq handler is done in irq.c:init_IRQ_SMP().
 */
void __init
init_smp_config(void)
{
	struct fptr {
		unsigned long fp;
		unsigned long gp;
	} *ap_startup;
	long sal_ret;

	/* Tell SAL where to drop the APs.  */
	ap_startup = (struct fptr *) start_ap;
	sal_ret = ia64_sal_set_vectors(SAL_VECTOR_OS_BOOT_RENDEZ,
				       ia64_tpa(ap_startup->fp), ia64_tpa(ap_startup->gp), 0, 0, 0, 0);
	if (sal_ret < 0)
		printk(KERN_ERR "SMP: Can't set SAL AP Boot Rendezvous: %s\n",
		       ia64_sal_strerror(sal_ret));
}

/*
 * identify_siblings(cpu) gets called from identify_cpu. This populates the 
 * information related to logical execution units in per_cpu_data structure.
 */
void __devinit
identify_siblings(struct cpuinfo_ia64 *c)
{
	s64 status;
	u16 pltid;
	pal_logical_to_physical_t info;

	if ((status = ia64_pal_logical_to_phys(-1, &info)) != PAL_STATUS_SUCCESS) {
		if (status != PAL_STATUS_UNIMPLEMENTED) {
			printk(KERN_ERR
				"ia64_pal_logical_to_phys failed with %ld\n",
				status);
			return;
		}

		info.overview_ppid = 0;
		info.overview_cpp  = 1;
		info.overview_tpc  = 1;
	}
	if ((status = ia64_sal_physical_id_info(&pltid)) != PAL_STATUS_SUCCESS) {
		printk(KERN_ERR "ia64_sal_pltid failed with %ld\n", status);
		return;
	}

	c->socket_id =  (pltid << 8) | info.overview_ppid;

	if (info.overview_cpp == 1 && info.overview_tpc == 1)
		return;

	c->cores_per_socket = info.overview_cpp;
	c->threads_per_core = info.overview_tpc;
	c->num_log = info.overview_num_log;

	c->core_id = info.log1_cid;
	c->thread_id = info.log1_tid;
}

/*
 * returns non zero, if multi-threading is enabled
 * on at least one physical package. Due to hotplug cpu
 * and (maxcpus=), all threads may not necessarily be enabled
 * even though the processor supports multi-threading.
 */
int is_multithreading_enabled(void)
{
	int i, j;

	for_each_present_cpu(i) {
		for_each_present_cpu(j) {
			if (j == i)
				continue;
			if ((cpu_data(j)->socket_id == cpu_data(i)->socket_id)) {
				if (cpu_data(j)->core_id == cpu_data(i)->core_id)
					return 1;
			}
		}
	}
	return 0;
}
EXPORT_SYMBOL_GPL(is_multithreading_enabled);