1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
|
/*
* Linux performance counter support for MIPS.
*
* Copyright (C) 2010 MIPS Technologies, Inc.
* Copyright (C) 2011 Cavium Networks, Inc.
* Author: Deng-Cheng Zhu
*
* This code is based on the implementation for ARM, which is in turn
* based on the sparc64 perf event code and the x86 code. Performance
* counter access is based on the MIPS Oprofile code. And the callchain
* support references the code of MIPS stacktrace.c.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/cpumask.h>
#include <linux/interrupt.h>
#include <linux/smp.h>
#include <linux/kernel.h>
#include <linux/perf_event.h>
#include <linux/uaccess.h>
#include <asm/irq.h>
#include <asm/irq_regs.h>
#include <asm/stacktrace.h>
#include <asm/time.h> /* For perf_irq */
#define MIPS_MAX_HWEVENTS 4
#define MIPS_TCS_PER_COUNTER 2
#define MIPS_CPUID_TO_COUNTER_MASK (MIPS_TCS_PER_COUNTER - 1)
struct cpu_hw_events {
/* Array of events on this cpu. */
struct perf_event *events[MIPS_MAX_HWEVENTS];
/*
* Set the bit (indexed by the counter number) when the counter
* is used for an event.
*/
unsigned long used_mask[BITS_TO_LONGS(MIPS_MAX_HWEVENTS)];
/*
* Software copy of the control register for each performance counter.
* MIPS CPUs vary in performance counters. They use this differently,
* and even may not use it.
*/
unsigned int saved_ctrl[MIPS_MAX_HWEVENTS];
};
DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
.saved_ctrl = {0},
};
/* The description of MIPS performance events. */
struct mips_perf_event {
unsigned int event_id;
/*
* MIPS performance counters are indexed starting from 0.
* CNTR_EVEN indicates the indexes of the counters to be used are
* even numbers.
*/
unsigned int cntr_mask;
#define CNTR_EVEN 0x55555555
#define CNTR_ODD 0xaaaaaaaa
#define CNTR_ALL 0xffffffff
#ifdef CONFIG_MIPS_MT_SMP
enum {
T = 0,
V = 1,
P = 2,
} range;
#else
#define T
#define V
#define P
#endif
};
static struct mips_perf_event raw_event;
static DEFINE_MUTEX(raw_event_mutex);
#define C(x) PERF_COUNT_HW_CACHE_##x
struct mips_pmu {
u64 max_period;
u64 valid_count;
u64 overflow;
const char *name;
int irq;
u64 (*read_counter)(unsigned int idx);
void (*write_counter)(unsigned int idx, u64 val);
const struct mips_perf_event *(*map_raw_event)(u64 config);
const struct mips_perf_event (*general_event_map)[PERF_COUNT_HW_MAX];
const struct mips_perf_event (*cache_event_map)
[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX];
unsigned int num_counters;
};
static struct mips_pmu mipspmu;
#define M_CONFIG1_PC (1 << 4)
#define M_PERFCTL_EXL (1 << 0)
#define M_PERFCTL_KERNEL (1 << 1)
#define M_PERFCTL_SUPERVISOR (1 << 2)
#define M_PERFCTL_USER (1 << 3)
#define M_PERFCTL_INTERRUPT_ENABLE (1 << 4)
#define M_PERFCTL_EVENT(event) (((event) & 0x3ff) << 5)
#define M_PERFCTL_VPEID(vpe) ((vpe) << 16)
#ifdef CONFIG_CPU_BMIPS5000
#define M_PERFCTL_MT_EN(filter) 0
#else /* !CONFIG_CPU_BMIPS5000 */
#define M_PERFCTL_MT_EN(filter) ((filter) << 20)
#endif /* CONFIG_CPU_BMIPS5000 */
#define M_TC_EN_ALL M_PERFCTL_MT_EN(0)
#define M_TC_EN_VPE M_PERFCTL_MT_EN(1)
#define M_TC_EN_TC M_PERFCTL_MT_EN(2)
#define M_PERFCTL_TCID(tcid) ((tcid) << 22)
#define M_PERFCTL_WIDE (1 << 30)
#define M_PERFCTL_MORE (1 << 31)
#define M_PERFCTL_TC (1 << 30)
#define M_PERFCTL_COUNT_EVENT_WHENEVER (M_PERFCTL_EXL | \
M_PERFCTL_KERNEL | \
M_PERFCTL_USER | \
M_PERFCTL_SUPERVISOR | \
M_PERFCTL_INTERRUPT_ENABLE)
#ifdef CONFIG_MIPS_MT_SMP
#define M_PERFCTL_CONFIG_MASK 0x3fff801f
#else
#define M_PERFCTL_CONFIG_MASK 0x1f
#endif
#define M_PERFCTL_EVENT_MASK 0xfe0
#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
static int cpu_has_mipsmt_pertccounters;
static DEFINE_RWLOCK(pmuint_rwlock);
#if defined(CONFIG_CPU_BMIPS5000)
#define vpe_id() (cpu_has_mipsmt_pertccounters ? \
0 : (smp_processor_id() & MIPS_CPUID_TO_COUNTER_MASK))
#else
/*
* FIXME: For VSMP, vpe_id() is redefined for Perf-events, because
* cpu_data[cpuid].vpe_id reports 0 for _both_ CPUs.
*/
#define vpe_id() (cpu_has_mipsmt_pertccounters ? \
0 : smp_processor_id())
#endif
/* Copied from op_model_mipsxx.c */
static unsigned int vpe_shift(void)
{
if (num_possible_cpus() > 1)
return 1;
return 0;
}
static unsigned int counters_total_to_per_cpu(unsigned int counters)
{
return counters >> vpe_shift();
}
#else /* !CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */
#define vpe_id() 0
#endif /* CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */
static void resume_local_counters(void);
static void pause_local_counters(void);
static irqreturn_t mipsxx_pmu_handle_irq(int, void *);
static int mipsxx_pmu_handle_shared_irq(void);
static unsigned int mipsxx_pmu_swizzle_perf_idx(unsigned int idx)
{
if (vpe_id() == 1)
idx = (idx + 2) & 3;
return idx;
}
static u64 mipsxx_pmu_read_counter(unsigned int idx)
{
idx = mipsxx_pmu_swizzle_perf_idx(idx);
switch (idx) {
case 0:
/*
* The counters are unsigned, we must cast to truncate
* off the high bits.
*/
return (u32)read_c0_perfcntr0();
case 1:
return (u32)read_c0_perfcntr1();
case 2:
return (u32)read_c0_perfcntr2();
case 3:
return (u32)read_c0_perfcntr3();
default:
WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
return 0;
}
}
static u64 mipsxx_pmu_read_counter_64(unsigned int idx)
{
idx = mipsxx_pmu_swizzle_perf_idx(idx);
switch (idx) {
case 0:
return read_c0_perfcntr0_64();
case 1:
return read_c0_perfcntr1_64();
case 2:
return read_c0_perfcntr2_64();
case 3:
return read_c0_perfcntr3_64();
default:
WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
return 0;
}
}
static void mipsxx_pmu_write_counter(unsigned int idx, u64 val)
{
idx = mipsxx_pmu_swizzle_perf_idx(idx);
switch (idx) {
case 0:
write_c0_perfcntr0(val);
return;
case 1:
write_c0_perfcntr1(val);
return;
case 2:
write_c0_perfcntr2(val);
return;
case 3:
write_c0_perfcntr3(val);
return;
}
}
static void mipsxx_pmu_write_counter_64(unsigned int idx, u64 val)
{
idx = mipsxx_pmu_swizzle_perf_idx(idx);
switch (idx) {
case 0:
write_c0_perfcntr0_64(val);
return;
case 1:
write_c0_perfcntr1_64(val);
return;
case 2:
write_c0_perfcntr2_64(val);
return;
case 3:
write_c0_perfcntr3_64(val);
return;
}
}
static unsigned int mipsxx_pmu_read_control(unsigned int idx)
{
idx = mipsxx_pmu_swizzle_perf_idx(idx);
switch (idx) {
case 0:
return read_c0_perfctrl0();
case 1:
return read_c0_perfctrl1();
case 2:
return read_c0_perfctrl2();
case 3:
return read_c0_perfctrl3();
default:
WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
return 0;
}
}
static void mipsxx_pmu_write_control(unsigned int idx, unsigned int val)
{
idx = mipsxx_pmu_swizzle_perf_idx(idx);
switch (idx) {
case 0:
write_c0_perfctrl0(val);
return;
case 1:
write_c0_perfctrl1(val);
return;
case 2:
write_c0_perfctrl2(val);
return;
case 3:
write_c0_perfctrl3(val);
return;
}
}
static int mipsxx_pmu_alloc_counter(struct cpu_hw_events *cpuc,
struct hw_perf_event *hwc)
{
int i;
/*
* We only need to care the counter mask. The range has been
* checked definitely.
*/
unsigned long cntr_mask = (hwc->event_base >> 8) & 0xffff;
for (i = mipspmu.num_counters - 1; i >= 0; i--) {
/*
* Note that some MIPS perf events can be counted by both
* even and odd counters, wheresas many other are only by
* even _or_ odd counters. This introduces an issue that
* when the former kind of event takes the counter the
* latter kind of event wants to use, then the "counter
* allocation" for the latter event will fail. In fact if
* they can be dynamically swapped, they both feel happy.
* But here we leave this issue alone for now.
*/
if (test_bit(i, &cntr_mask) &&
!test_and_set_bit(i, cpuc->used_mask))
return i;
}
return -EAGAIN;
}
static void mipsxx_pmu_enable_event(struct hw_perf_event *evt, int idx)
{
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
cpuc->saved_ctrl[idx] = M_PERFCTL_EVENT(evt->event_base & 0xff) |
(evt->config_base & M_PERFCTL_CONFIG_MASK) |
/* Make sure interrupt enabled. */
M_PERFCTL_INTERRUPT_ENABLE;
if (IS_ENABLED(CONFIG_CPU_BMIPS5000))
/* enable the counter for the calling thread */
cpuc->saved_ctrl[idx] |=
(1 << (12 + vpe_id())) | M_PERFCTL_TC;
/*
* We do not actually let the counter run. Leave it until start().
*/
}
static void mipsxx_pmu_disable_event(int idx)
{
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
unsigned long flags;
WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
local_irq_save(flags);
cpuc->saved_ctrl[idx] = mipsxx_pmu_read_control(idx) &
~M_PERFCTL_COUNT_EVENT_WHENEVER;
mipsxx_pmu_write_control(idx, cpuc->saved_ctrl[idx]);
local_irq_restore(flags);
}
static int mipspmu_event_set_period(struct perf_event *event,
struct hw_perf_event *hwc,
int idx)
{
u64 left = local64_read(&hwc->period_left);
u64 period = hwc->sample_period;
int ret = 0;
if (unlikely((left + period) & (1ULL << 63))) {
/* left underflowed by more than period. */
left = period;
local64_set(&hwc->period_left, left);
hwc->last_period = period;
ret = 1;
} else if (unlikely((left + period) <= period)) {
/* left underflowed by less than period. */
left += period;
local64_set(&hwc->period_left, left);
hwc->last_period = period;
ret = 1;
}
if (left > mipspmu.max_period) {
left = mipspmu.max_period;
local64_set(&hwc->period_left, left);
}
local64_set(&hwc->prev_count, mipspmu.overflow - left);
mipspmu.write_counter(idx, mipspmu.overflow - left);
perf_event_update_userpage(event);
return ret;
}
static void mipspmu_event_update(struct perf_event *event,
struct hw_perf_event *hwc,
int idx)
{
u64 prev_raw_count, new_raw_count;
u64 delta;
again:
prev_raw_count = local64_read(&hwc->prev_count);
new_raw_count = mipspmu.read_counter(idx);
if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
new_raw_count) != prev_raw_count)
goto again;
delta = new_raw_count - prev_raw_count;
local64_add(delta, &event->count);
local64_sub(delta, &hwc->period_left);
}
static void mipspmu_start(struct perf_event *event, int flags)
{
struct hw_perf_event *hwc = &event->hw;
if (flags & PERF_EF_RELOAD)
WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
hwc->state = 0;
/* Set the period for the event. */
mipspmu_event_set_period(event, hwc, hwc->idx);
/* Enable the event. */
mipsxx_pmu_enable_event(hwc, hwc->idx);
}
static void mipspmu_stop(struct perf_event *event, int flags)
{
struct hw_perf_event *hwc = &event->hw;
if (!(hwc->state & PERF_HES_STOPPED)) {
/* We are working on a local event. */
mipsxx_pmu_disable_event(hwc->idx);
barrier();
mipspmu_event_update(event, hwc, hwc->idx);
hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
}
}
static int mipspmu_add(struct perf_event *event, int flags)
{
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
struct hw_perf_event *hwc = &event->hw;
int idx;
int err = 0;
perf_pmu_disable(event->pmu);
/* To look for a free counter for this event. */
idx = mipsxx_pmu_alloc_counter(cpuc, hwc);
if (idx < 0) {
err = idx;
goto out;
}
/*
* If there is an event in the counter we are going to use then
* make sure it is disabled.
*/
event->hw.idx = idx;
mipsxx_pmu_disable_event(idx);
cpuc->events[idx] = event;
hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
if (flags & PERF_EF_START)
mipspmu_start(event, PERF_EF_RELOAD);
/* Propagate our changes to the userspace mapping. */
perf_event_update_userpage(event);
out:
perf_pmu_enable(event->pmu);
return err;
}
static void mipspmu_del(struct perf_event *event, int flags)
{
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
struct hw_perf_event *hwc = &event->hw;
int idx = hwc->idx;
WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
mipspmu_stop(event, PERF_EF_UPDATE);
cpuc->events[idx] = NULL;
clear_bit(idx, cpuc->used_mask);
perf_event_update_userpage(event);
}
static void mipspmu_read(struct perf_event *event)
{
struct hw_perf_event *hwc = &event->hw;
/* Don't read disabled counters! */
if (hwc->idx < 0)
return;
mipspmu_event_update(event, hwc, hwc->idx);
}
static void mipspmu_enable(struct pmu *pmu)
{
#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
write_unlock(&pmuint_rwlock);
#endif
resume_local_counters();
}
/*
* MIPS performance counters can be per-TC. The control registers can
* not be directly accessed accross CPUs. Hence if we want to do global
* control, we need cross CPU calls. on_each_cpu() can help us, but we
* can not make sure this function is called with interrupts enabled. So
* here we pause local counters and then grab a rwlock and leave the
* counters on other CPUs alone. If any counter interrupt raises while
* we own the write lock, simply pause local counters on that CPU and
* spin in the handler. Also we know we won't be switched to another
* CPU after pausing local counters and before grabbing the lock.
*/
static void mipspmu_disable(struct pmu *pmu)
{
pause_local_counters();
#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
write_lock(&pmuint_rwlock);
#endif
}
static atomic_t active_events = ATOMIC_INIT(0);
static DEFINE_MUTEX(pmu_reserve_mutex);
static int (*save_perf_irq)(void);
static int mipspmu_get_irq(void)
{
int err;
if (mipspmu.irq >= 0) {
/* Request my own irq handler. */
err = request_irq(mipspmu.irq, mipsxx_pmu_handle_irq,
IRQF_PERCPU | IRQF_NOBALANCING |
IRQF_NO_THREAD | IRQF_NO_SUSPEND |
IRQF_SHARED,
"mips_perf_pmu", &mipspmu);
if (err) {
pr_warn("Unable to request IRQ%d for MIPS performance counters!\n",
mipspmu.irq);
}
} else if (cp0_perfcount_irq < 0) {
/*
* We are sharing the irq number with the timer interrupt.
*/
save_perf_irq = perf_irq;
perf_irq = mipsxx_pmu_handle_shared_irq;
err = 0;
} else {
pr_warn("The platform hasn't properly defined its interrupt controller\n");
err = -ENOENT;
}
return err;
}
static void mipspmu_free_irq(void)
{
if (mipspmu.irq >= 0)
free_irq(mipspmu.irq, &mipspmu);
else if (cp0_perfcount_irq < 0)
perf_irq = save_perf_irq;
}
/*
* mipsxx/rm9000/loongson2 have different performance counters, they have
* specific low-level init routines.
*/
static void reset_counters(void *arg);
static int __hw_perf_event_init(struct perf_event *event);
static void hw_perf_event_destroy(struct perf_event *event)
{
if (atomic_dec_and_mutex_lock(&active_events,
&pmu_reserve_mutex)) {
/*
* We must not call the destroy function with interrupts
* disabled.
*/
on_each_cpu(reset_counters,
(void *)(long)mipspmu.num_counters, 1);
mipspmu_free_irq();
mutex_unlock(&pmu_reserve_mutex);
}
}
static int mipspmu_event_init(struct perf_event *event)
{
int err = 0;
/* does not support taken branch sampling */
if (has_branch_stack(event))
return -EOPNOTSUPP;
switch (event->attr.type) {
case PERF_TYPE_RAW:
case PERF_TYPE_HARDWARE:
case PERF_TYPE_HW_CACHE:
break;
default:
return -ENOENT;
}
if (event->cpu >= nr_cpumask_bits ||
(event->cpu >= 0 && !cpu_online(event->cpu)))
return -ENODEV;
if (!atomic_inc_not_zero(&active_events)) {
mutex_lock(&pmu_reserve_mutex);
if (atomic_read(&active_events) == 0)
err = mipspmu_get_irq();
if (!err)
atomic_inc(&active_events);
mutex_unlock(&pmu_reserve_mutex);
}
if (err)
return err;
return __hw_perf_event_init(event);
}
static struct pmu pmu = {
.pmu_enable = mipspmu_enable,
.pmu_disable = mipspmu_disable,
.event_init = mipspmu_event_init,
.add = mipspmu_add,
.del = mipspmu_del,
.start = mipspmu_start,
.stop = mipspmu_stop,
.read = mipspmu_read,
};
static unsigned int mipspmu_perf_event_encode(const struct mips_perf_event *pev)
{
/*
* Top 8 bits for range, next 16 bits for cntr_mask, lowest 8 bits for
* event_id.
*/
#ifdef CONFIG_MIPS_MT_SMP
return ((unsigned int)pev->range << 24) |
(pev->cntr_mask & 0xffff00) |
(pev->event_id & 0xff);
#else
return (pev->cntr_mask & 0xffff00) |
(pev->event_id & 0xff);
#endif
}
static const struct mips_perf_event *mipspmu_map_general_event(int idx)
{
if ((*mipspmu.general_event_map)[idx].cntr_mask == 0)
return ERR_PTR(-EOPNOTSUPP);
return &(*mipspmu.general_event_map)[idx];
}
static const struct mips_perf_event *mipspmu_map_cache_event(u64 config)
{
unsigned int cache_type, cache_op, cache_result;
const struct mips_perf_event *pev;
cache_type = (config >> 0) & 0xff;
if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
return ERR_PTR(-EINVAL);
cache_op = (config >> 8) & 0xff;
if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
return ERR_PTR(-EINVAL);
cache_result = (config >> 16) & 0xff;
if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
return ERR_PTR(-EINVAL);
pev = &((*mipspmu.cache_event_map)
[cache_type]
[cache_op]
[cache_result]);
if (pev->cntr_mask == 0)
return ERR_PTR(-EOPNOTSUPP);
return pev;
}
static int validate_group(struct perf_event *event)
{
struct perf_event *sibling, *leader = event->group_leader;
struct cpu_hw_events fake_cpuc;
memset(&fake_cpuc, 0, sizeof(fake_cpuc));
if (mipsxx_pmu_alloc_counter(&fake_cpuc, &leader->hw) < 0)
return -EINVAL;
list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
if (mipsxx_pmu_alloc_counter(&fake_cpuc, &sibling->hw) < 0)
return -EINVAL;
}
if (mipsxx_pmu_alloc_counter(&fake_cpuc, &event->hw) < 0)
return -EINVAL;
return 0;
}
/* This is needed by specific irq handlers in perf_event_*.c */
static void handle_associated_event(struct cpu_hw_events *cpuc,
int idx, struct perf_sample_data *data,
struct pt_regs *regs)
{
struct perf_event *event = cpuc->events[idx];
struct hw_perf_event *hwc = &event->hw;
mipspmu_event_update(event, hwc, idx);
data->period = event->hw.last_period;
if (!mipspmu_event_set_period(event, hwc, idx))
return;
if (perf_event_overflow(event, data, regs))
mipsxx_pmu_disable_event(idx);
}
static int __n_counters(void)
{
if (!(read_c0_config1() & M_CONFIG1_PC))
return 0;
if (!(read_c0_perfctrl0() & M_PERFCTL_MORE))
return 1;
if (!(read_c0_perfctrl1() & M_PERFCTL_MORE))
return 2;
if (!(read_c0_perfctrl2() & M_PERFCTL_MORE))
return 3;
return 4;
}
static int n_counters(void)
{
int counters;
switch (current_cpu_type()) {
case CPU_R10000:
counters = 2;
break;
case CPU_R12000:
case CPU_R14000:
case CPU_R16000:
counters = 4;
break;
default:
counters = __n_counters();
}
return counters;
}
static void reset_counters(void *arg)
{
int counters = (int)(long)arg;
switch (counters) {
case 4:
mipsxx_pmu_write_control(3, 0);
mipspmu.write_counter(3, 0);
case 3:
mipsxx_pmu_write_control(2, 0);
mipspmu.write_counter(2, 0);
case 2:
mipsxx_pmu_write_control(1, 0);
mipspmu.write_counter(1, 0);
case 1:
mipsxx_pmu_write_control(0, 0);
mipspmu.write_counter(0, 0);
}
}
/* 24K/34K/1004K/interAptiv/loongson1 cores share the same event map. */
static const struct mips_perf_event mipsxxcore_event_map
[PERF_COUNT_HW_MAX] = {
[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
[PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x02, CNTR_EVEN, T },
[PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
};
/* 74K/proAptiv core has different branch event code. */
static const struct mips_perf_event mipsxxcore_event_map2
[PERF_COUNT_HW_MAX] = {
[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
[PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x27, CNTR_EVEN, T },
[PERF_COUNT_HW_BRANCH_MISSES] = { 0x27, CNTR_ODD, T },
};
static const struct mips_perf_event loongson3_event_map[PERF_COUNT_HW_MAX] = {
[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN },
[PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, CNTR_ODD },
[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x01, CNTR_EVEN },
[PERF_COUNT_HW_BRANCH_MISSES] = { 0x01, CNTR_ODD },
};
static const struct mips_perf_event octeon_event_map[PERF_COUNT_HW_MAX] = {
[PERF_COUNT_HW_CPU_CYCLES] = { 0x01, CNTR_ALL },
[PERF_COUNT_HW_INSTRUCTIONS] = { 0x03, CNTR_ALL },
[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x2b, CNTR_ALL },
[PERF_COUNT_HW_CACHE_MISSES] = { 0x2e, CNTR_ALL },
[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x08, CNTR_ALL },
[PERF_COUNT_HW_BRANCH_MISSES] = { 0x09, CNTR_ALL },
[PERF_COUNT_HW_BUS_CYCLES] = { 0x25, CNTR_ALL },
};
static const struct mips_perf_event bmips5000_event_map
[PERF_COUNT_HW_MAX] = {
[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, T },
[PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
[PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
};
static const struct mips_perf_event xlp_event_map[PERF_COUNT_HW_MAX] = {
[PERF_COUNT_HW_CPU_CYCLES] = { 0x01, CNTR_ALL },
[PERF_COUNT_HW_INSTRUCTIONS] = { 0x18, CNTR_ALL }, /* PAPI_TOT_INS */
[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x04, CNTR_ALL }, /* PAPI_L1_ICA */
[PERF_COUNT_HW_CACHE_MISSES] = { 0x07, CNTR_ALL }, /* PAPI_L1_ICM */
[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x1b, CNTR_ALL }, /* PAPI_BR_CN */
[PERF_COUNT_HW_BRANCH_MISSES] = { 0x1c, CNTR_ALL }, /* PAPI_BR_MSP */
};
/* 24K/34K/1004K/interAptiv/loongson1 cores share the same cache event map. */
static const struct mips_perf_event mipsxxcore_cache_map
[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
[C(L1D)] = {
/*
* Like some other architectures (e.g. ARM), the performance
* counters don't differentiate between read and write
* accesses/misses, so this isn't strictly correct, but it's the
* best we can do. Writes and reads get combined.
*/
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = { 0x0a, CNTR_EVEN, T },
[C(RESULT_MISS)] = { 0x0b, CNTR_EVEN | CNTR_ODD, T },
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = { 0x0a, CNTR_EVEN, T },
[C(RESULT_MISS)] = { 0x0b, CNTR_EVEN | CNTR_ODD, T },
},
},
[C(L1I)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = { 0x09, CNTR_EVEN, T },
[C(RESULT_MISS)] = { 0x09, CNTR_ODD, T },
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = { 0x09, CNTR_EVEN, T },
[C(RESULT_MISS)] = { 0x09, CNTR_ODD, T },
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = { 0x14, CNTR_EVEN, T },
/*
* Note that MIPS has only "hit" events countable for
* the prefetch operation.
*/
},
},
[C(LL)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = { 0x15, CNTR_ODD, P },
[C(RESULT_MISS)] = { 0x16, CNTR_EVEN, P },
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = { 0x15, CNTR_ODD, P },
[C(RESULT_MISS)] = { 0x16, CNTR_EVEN, P },
},
},
[C(DTLB)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
[C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
[C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
},
},
[C(ITLB)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = { 0x05, CNTR_EVEN, T },
[C(RESULT_MISS)] = { 0x05, CNTR_ODD, T },
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = { 0x05, CNTR_EVEN, T },
[C(RESULT_MISS)] = { 0x05, CNTR_ODD, T },
},
},
[C(BPU)] = {
/* Using the same code for *HW_BRANCH* */
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = { 0x02, CNTR_EVEN, T },
[C(RESULT_MISS)] = { 0x02, CNTR_ODD, T },
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = { 0x02, CNTR_EVEN, T },
[C(RESULT_MISS)] = { 0x02, CNTR_ODD, T },
},
},
};
/* 74K/proAptiv core has completely different cache event map. */
static const struct mips_perf_event mipsxxcore_cache_map2
[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
[C(L1D)] = {
/*
* Like some other architectures (e.g. ARM), the performance
* counters don't differentiate between read and write
* accesses/misses, so this isn't strictly correct, but it's the
* best we can do. Writes and reads get combined.
*/
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = { 0x17, CNTR_ODD, T },
[C(RESULT_MISS)] = { 0x18, CNTR_ODD, T },
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = { 0x17, CNTR_ODD, T },
[C(RESULT_MISS)] = { 0x18, CNTR_ODD, T },
},
},
[C(L1I)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
[C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
[C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = { 0x34, CNTR_EVEN, T },
/*
* Note that MIPS has only "hit" events countable for
* the prefetch operation.
*/
},
},
[C(LL)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = { 0x1c, CNTR_ODD, P },
[C(RESULT_MISS)] = { 0x1d, CNTR_EVEN, P },
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = { 0x1c, CNTR_ODD, P },
[C(RESULT_MISS)] = { 0x1d, CNTR_EVEN, P },
},
},
/*
* 74K core does not have specific DTLB events. proAptiv core has
* "speculative" DTLB events which are numbered 0x63 (even/odd) and
* not included here. One can use raw events if really needed.
*/
[C(ITLB)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = { 0x04, CNTR_EVEN, T },
[C(RESULT_MISS)] = { 0x04, CNTR_ODD, T },
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = { 0x04, CNTR_EVEN, T },
[C(RESULT_MISS)] = { 0x04, CNTR_ODD, T },
},
},
[C(BPU)] = {
/* Using the same code for *HW_BRANCH* */
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = { 0x27, CNTR_EVEN, T },
[C(RESULT_MISS)] = { 0x27, CNTR_ODD, T },
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = { 0x27, CNTR_EVEN, T },
[C(RESULT_MISS)] = { 0x27, CNTR_ODD, T },
},
},
};
static const struct mips_perf_event loongson3_cache_map
[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
[C(L1D)] = {
/*
* Like some other architectures (e.g. ARM), the performance
* counters don't differentiate between read and write
* accesses/misses, so this isn't strictly correct, but it's the
* best we can do. Writes and reads get combined.
*/
[C(OP_READ)] = {
[C(RESULT_MISS)] = { 0x04, CNTR_ODD },
},
[C(OP_WRITE)] = {
[C(RESULT_MISS)] = { 0x04, CNTR_ODD },
},
},
[C(L1I)] = {
[C(OP_READ)] = {
[C(RESULT_MISS)] = { 0x04, CNTR_EVEN },
},
[C(OP_WRITE)] = {
[C(RESULT_MISS)] = { 0x04, CNTR_EVEN },
},
},
[C(DTLB)] = {
[C(OP_READ)] = {
[C(RESULT_MISS)] = { 0x09, CNTR_ODD },
},
[C(OP_WRITE)] = {
[C(RESULT_MISS)] = { 0x09, CNTR_ODD },
},
},
[C(ITLB)] = {
[C(OP_READ)] = {
[C(RESULT_MISS)] = { 0x0c, CNTR_ODD },
},
[C(OP_WRITE)] = {
[C(RESULT_MISS)] = { 0x0c, CNTR_ODD },
},
},
[C(BPU)] = {
/* Using the same code for *HW_BRANCH* */
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = { 0x02, CNTR_EVEN },
[C(RESULT_MISS)] = { 0x02, CNTR_ODD },
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = { 0x02, CNTR_EVEN },
[C(RESULT_MISS)] = { 0x02, CNTR_ODD },
},
},
};
/* BMIPS5000 */
static const struct mips_perf_event bmips5000_cache_map
[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
[C(L1D)] = {
/*
* Like some other architectures (e.g. ARM), the performance
* counters don't differentiate between read and write
* accesses/misses, so this isn't strictly correct, but it's the
* best we can do. Writes and reads get combined.
*/
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = { 12, CNTR_EVEN, T },
[C(RESULT_MISS)] = { 12, CNTR_ODD, T },
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = { 12, CNTR_EVEN, T },
[C(RESULT_MISS)] = { 12, CNTR_ODD, T },
},
},
[C(L1I)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = { 10, CNTR_EVEN, T },
[C(RESULT_MISS)] = { 10, CNTR_ODD, T },
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = { 10, CNTR_EVEN, T },
[C(RESULT_MISS)] = { 10, CNTR_ODD, T },
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = { 23, CNTR_EVEN, T },
/*
* Note that MIPS has only "hit" events countable for
* the prefetch operation.
*/
},
},
[C(LL)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = { 28, CNTR_EVEN, P },
[C(RESULT_MISS)] = { 28, CNTR_ODD, P },
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = { 28, CNTR_EVEN, P },
[C(RESULT_MISS)] = { 28, CNTR_ODD, P },
},
},
[C(BPU)] = {
/* Using the same code for *HW_BRANCH* */
[C(OP_READ)] = {
[C(RESULT_MISS)] = { 0x02, CNTR_ODD, T },
},
[C(OP_WRITE)] = {
[C(RESULT_MISS)] = { 0x02, CNTR_ODD, T },
},
},
};
static const struct mips_perf_event octeon_cache_map
[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
[C(L1D)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = { 0x2b, CNTR_ALL },
[C(RESULT_MISS)] = { 0x2e, CNTR_ALL },
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = { 0x30, CNTR_ALL },
},
},
[C(L1I)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = { 0x18, CNTR_ALL },
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = { 0x19, CNTR_ALL },
},
},
[C(DTLB)] = {
/*
* Only general DTLB misses are counted use the same event for
* read and write.
*/
[C(OP_READ)] = {
[C(RESULT_MISS)] = { 0x35, CNTR_ALL },
},
[C(OP_WRITE)] = {
[C(RESULT_MISS)] = { 0x35, CNTR_ALL },
},
},
[C(ITLB)] = {
[C(OP_READ)] = {
[C(RESULT_MISS)] = { 0x37, CNTR_ALL },
},
},
};
static const struct mips_perf_event xlp_cache_map
[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
[C(L1D)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = { 0x31, CNTR_ALL }, /* PAPI_L1_DCR */
[C(RESULT_MISS)] = { 0x30, CNTR_ALL }, /* PAPI_L1_LDM */
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = { 0x2f, CNTR_ALL }, /* PAPI_L1_DCW */
[C(RESULT_MISS)] = { 0x2e, CNTR_ALL }, /* PAPI_L1_STM */
},
},
[C(L1I)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = { 0x04, CNTR_ALL }, /* PAPI_L1_ICA */
[C(RESULT_MISS)] = { 0x07, CNTR_ALL }, /* PAPI_L1_ICM */
},
},
[C(LL)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = { 0x35, CNTR_ALL }, /* PAPI_L2_DCR */
[C(RESULT_MISS)] = { 0x37, CNTR_ALL }, /* PAPI_L2_LDM */
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = { 0x34, CNTR_ALL }, /* PAPI_L2_DCA */
[C(RESULT_MISS)] = { 0x36, CNTR_ALL }, /* PAPI_L2_DCM */
},
},
[C(DTLB)] = {
/*
* Only general DTLB misses are counted use the same event for
* read and write.
*/
[C(OP_READ)] = {
[C(RESULT_MISS)] = { 0x2d, CNTR_ALL }, /* PAPI_TLB_DM */
},
[C(OP_WRITE)] = {
[C(RESULT_MISS)] = { 0x2d, CNTR_ALL }, /* PAPI_TLB_DM */
},
},
[C(ITLB)] = {
[C(OP_READ)] = {
[C(RESULT_MISS)] = { 0x08, CNTR_ALL }, /* PAPI_TLB_IM */
},
[C(OP_WRITE)] = {
[C(RESULT_MISS)] = { 0x08, CNTR_ALL }, /* PAPI_TLB_IM */
},
},
[C(BPU)] = {
[C(OP_READ)] = {
[C(RESULT_MISS)] = { 0x25, CNTR_ALL },
},
},
};
#ifdef CONFIG_MIPS_MT_SMP
static void check_and_calc_range(struct perf_event *event,
const struct mips_perf_event *pev)
{
struct hw_perf_event *hwc = &event->hw;
if (event->cpu >= 0) {
if (pev->range > V) {
/*
* The user selected an event that is processor
* wide, while expecting it to be VPE wide.
*/
hwc->config_base |= M_TC_EN_ALL;
} else {
/*
* FIXME: cpu_data[event->cpu].vpe_id reports 0
* for both CPUs.
*/
hwc->config_base |= M_PERFCTL_VPEID(event->cpu);
hwc->config_base |= M_TC_EN_VPE;
}
} else
hwc->config_base |= M_TC_EN_ALL;
}
#else
static void check_and_calc_range(struct perf_event *event,
const struct mips_perf_event *pev)
{
}
#endif
static int __hw_perf_event_init(struct perf_event *event)
{
struct perf_event_attr *attr = &event->attr;
struct hw_perf_event *hwc = &event->hw;
const struct mips_perf_event *pev;
int err;
/* Returning MIPS event descriptor for generic perf event. */
if (PERF_TYPE_HARDWARE == event->attr.type) {
if (event->attr.config >= PERF_COUNT_HW_MAX)
return -EINVAL;
pev = mipspmu_map_general_event(event->attr.config);
} else if (PERF_TYPE_HW_CACHE == event->attr.type) {
pev = mipspmu_map_cache_event(event->attr.config);
} else if (PERF_TYPE_RAW == event->attr.type) {
/* We are working on the global raw event. */
mutex_lock(&raw_event_mutex);
pev = mipspmu.map_raw_event(event->attr.config);
} else {
/* The event type is not (yet) supported. */
return -EOPNOTSUPP;
}
if (IS_ERR(pev)) {
if (PERF_TYPE_RAW == event->attr.type)
mutex_unlock(&raw_event_mutex);
return PTR_ERR(pev);
}
/*
* We allow max flexibility on how each individual counter shared
* by the single CPU operates (the mode exclusion and the range).
*/
hwc->config_base = M_PERFCTL_INTERRUPT_ENABLE;
/* Calculate range bits and validate it. */
if (num_possible_cpus() > 1)
check_and_calc_range(event, pev);
hwc->event_base = mipspmu_perf_event_encode(pev);
if (PERF_TYPE_RAW == event->attr.type)
mutex_unlock(&raw_event_mutex);
if (!attr->exclude_user)
hwc->config_base |= M_PERFCTL_USER;
if (!attr->exclude_kernel) {
hwc->config_base |= M_PERFCTL_KERNEL;
/* MIPS kernel mode: KSU == 00b || EXL == 1 || ERL == 1 */
hwc->config_base |= M_PERFCTL_EXL;
}
if (!attr->exclude_hv)
hwc->config_base |= M_PERFCTL_SUPERVISOR;
hwc->config_base &= M_PERFCTL_CONFIG_MASK;
/*
* The event can belong to another cpu. We do not assign a local
* counter for it for now.
*/
hwc->idx = -1;
hwc->config = 0;
if (!hwc->sample_period) {
hwc->sample_period = mipspmu.max_period;
hwc->last_period = hwc->sample_period;
local64_set(&hwc->period_left, hwc->sample_period);
}
err = 0;
if (event->group_leader != event)
err = validate_group(event);
event->destroy = hw_perf_event_destroy;
if (err)
event->destroy(event);
return err;
}
static void pause_local_counters(void)
{
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
int ctr = mipspmu.num_counters;
unsigned long flags;
local_irq_save(flags);
do {
ctr--;
cpuc->saved_ctrl[ctr] = mipsxx_pmu_read_control(ctr);
mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr] &
~M_PERFCTL_COUNT_EVENT_WHENEVER);
} while (ctr > 0);
local_irq_restore(flags);
}
static void resume_local_counters(void)
{
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
int ctr = mipspmu.num_counters;
do {
ctr--;
mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr]);
} while (ctr > 0);
}
static int mipsxx_pmu_handle_shared_irq(void)
{
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
struct perf_sample_data data;
unsigned int counters = mipspmu.num_counters;
u64 counter;
int handled = IRQ_NONE;
struct pt_regs *regs;
if (cpu_has_perf_cntr_intr_bit && !(read_c0_cause() & CAUSEF_PCI))
return handled;
/*
* First we pause the local counters, so that when we are locked
* here, the counters are all paused. When it gets locked due to
* perf_disable(), the timer interrupt handler will be delayed.
*
* See also mipsxx_pmu_start().
*/
pause_local_counters();
#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
read_lock(&pmuint_rwlock);
#endif
regs = get_irq_regs();
perf_sample_data_init(&data, 0, 0);
switch (counters) {
#define HANDLE_COUNTER(n) \
case n + 1: \
if (test_bit(n, cpuc->used_mask)) { \
counter = mipspmu.read_counter(n); \
if (counter & mipspmu.overflow) { \
handle_associated_event(cpuc, n, &data, regs); \
handled = IRQ_HANDLED; \
} \
}
HANDLE_COUNTER(3)
HANDLE_COUNTER(2)
HANDLE_COUNTER(1)
HANDLE_COUNTER(0)
}
/*
* Do all the work for the pending perf events. We can do this
* in here because the performance counter interrupt is a regular
* interrupt, not NMI.
*/
if (handled == IRQ_HANDLED)
irq_work_run();
#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
read_unlock(&pmuint_rwlock);
#endif
resume_local_counters();
return handled;
}
static irqreturn_t mipsxx_pmu_handle_irq(int irq, void *dev)
{
return mipsxx_pmu_handle_shared_irq();
}
/* 24K */
#define IS_BOTH_COUNTERS_24K_EVENT(b) \
((b) == 0 || (b) == 1 || (b) == 11)
/* 34K */
#define IS_BOTH_COUNTERS_34K_EVENT(b) \
((b) == 0 || (b) == 1 || (b) == 11)
#ifdef CONFIG_MIPS_MT_SMP
#define IS_RANGE_P_34K_EVENT(r, b) \
((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \
(b) == 25 || (b) == 39 || (r) == 44 || (r) == 174 || \
(r) == 176 || ((b) >= 50 && (b) <= 55) || \
((b) >= 64 && (b) <= 67))
#define IS_RANGE_V_34K_EVENT(r) ((r) == 47)
#endif
/* 74K */
#define IS_BOTH_COUNTERS_74K_EVENT(b) \
((b) == 0 || (b) == 1)
/* proAptiv */
#define IS_BOTH_COUNTERS_PROAPTIV_EVENT(b) \
((b) == 0 || (b) == 1)
/* P5600 */
#define IS_BOTH_COUNTERS_P5600_EVENT(b) \
((b) == 0 || (b) == 1)
/* 1004K */
#define IS_BOTH_COUNTERS_1004K_EVENT(b) \
((b) == 0 || (b) == 1 || (b) == 11)
#ifdef CONFIG_MIPS_MT_SMP
#define IS_RANGE_P_1004K_EVENT(r, b) \
((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \
(b) == 25 || (b) == 36 || (b) == 39 || (r) == 44 || \
(r) == 174 || (r) == 176 || ((b) >= 50 && (b) <= 59) || \
(r) == 188 || (b) == 61 || (b) == 62 || \
((b) >= 64 && (b) <= 67))
#define IS_RANGE_V_1004K_EVENT(r) ((r) == 47)
#endif
/* interAptiv */
#define IS_BOTH_COUNTERS_INTERAPTIV_EVENT(b) \
((b) == 0 || (b) == 1 || (b) == 11)
#ifdef CONFIG_MIPS_MT_SMP
/* The P/V/T info is not provided for "(b) == 38" in SUM, assume P. */
#define IS_RANGE_P_INTERAPTIV_EVENT(r, b) \
((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \
(b) == 25 || (b) == 36 || (b) == 38 || (b) == 39 || \
(r) == 44 || (r) == 174 || (r) == 176 || ((b) >= 50 && \
(b) <= 59) || (r) == 188 || (b) == 61 || (b) == 62 || \
((b) >= 64 && (b) <= 67))
#define IS_RANGE_V_INTERAPTIV_EVENT(r) ((r) == 47 || (r) == 175)
#endif
/* BMIPS5000 */
#define IS_BOTH_COUNTERS_BMIPS5000_EVENT(b) \
((b) == 0 || (b) == 1)
/*
* For most cores the user can use 0-255 raw events, where 0-127 for the events
* of even counters, and 128-255 for odd counters. Note that bit 7 is used to
* indicate the even/odd bank selector. So, for example, when user wants to take
* the Event Num of 15 for odd counters (by referring to the user manual), then
* 128 needs to be added to 15 as the input for the event config, i.e., 143 (0x8F)
* to be used.
*
* Some newer cores have even more events, in which case the user can use raw
* events 0-511, where 0-255 are for the events of even counters, and 256-511
* are for odd counters, so bit 8 is used to indicate the even/odd bank selector.
*/
static const struct mips_perf_event *mipsxx_pmu_map_raw_event(u64 config)
{
/* currently most cores have 7-bit event numbers */
unsigned int raw_id = config & 0xff;
unsigned int base_id = raw_id & 0x7f;
switch (current_cpu_type()) {
case CPU_24K:
if (IS_BOTH_COUNTERS_24K_EVENT(base_id))
raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
else
raw_event.cntr_mask =
raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
#ifdef CONFIG_MIPS_MT_SMP
/*
* This is actually doing nothing. Non-multithreading
* CPUs will not check and calculate the range.
*/
raw_event.range = P;
#endif
break;
case CPU_34K:
if (IS_BOTH_COUNTERS_34K_EVENT(base_id))
raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
else
raw_event.cntr_mask =
raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
#ifdef CONFIG_MIPS_MT_SMP
if (IS_RANGE_P_34K_EVENT(raw_id, base_id))
raw_event.range = P;
else if (unlikely(IS_RANGE_V_34K_EVENT(raw_id)))
raw_event.range = V;
else
raw_event.range = T;
#endif
break;
case CPU_74K:
case CPU_1074K:
if (IS_BOTH_COUNTERS_74K_EVENT(base_id))
raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
else
raw_event.cntr_mask =
raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
#ifdef CONFIG_MIPS_MT_SMP
raw_event.range = P;
#endif
break;
case CPU_PROAPTIV:
if (IS_BOTH_COUNTERS_PROAPTIV_EVENT(base_id))
raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
else
raw_event.cntr_mask =
raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
#ifdef CONFIG_MIPS_MT_SMP
raw_event.range = P;
#endif
break;
case CPU_P5600:
/* 8-bit event numbers */
raw_id = config & 0x1ff;
base_id = raw_id & 0xff;
if (IS_BOTH_COUNTERS_P5600_EVENT(base_id))
raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
else
raw_event.cntr_mask =
raw_id > 255 ? CNTR_ODD : CNTR_EVEN;
#ifdef CONFIG_MIPS_MT_SMP
raw_event.range = P;
#endif
break;
case CPU_1004K:
if (IS_BOTH_COUNTERS_1004K_EVENT(base_id))
raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
else
raw_event.cntr_mask =
raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
#ifdef CONFIG_MIPS_MT_SMP
if (IS_RANGE_P_1004K_EVENT(raw_id, base_id))
raw_event.range = P;
else if (unlikely(IS_RANGE_V_1004K_EVENT(raw_id)))
raw_event.range = V;
else
raw_event.range = T;
#endif
break;
case CPU_INTERAPTIV:
if (IS_BOTH_COUNTERS_INTERAPTIV_EVENT(base_id))
raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
else
raw_event.cntr_mask =
raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
#ifdef CONFIG_MIPS_MT_SMP
if (IS_RANGE_P_INTERAPTIV_EVENT(raw_id, base_id))
raw_event.range = P;
else if (unlikely(IS_RANGE_V_INTERAPTIV_EVENT(raw_id)))
raw_event.range = V;
else
raw_event.range = T;
#endif
break;
case CPU_BMIPS5000:
if (IS_BOTH_COUNTERS_BMIPS5000_EVENT(base_id))
raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
else
raw_event.cntr_mask =
raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
break;
case CPU_LOONGSON3:
raw_event.cntr_mask = raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
break;
}
raw_event.event_id = base_id;
return &raw_event;
}
static const struct mips_perf_event *octeon_pmu_map_raw_event(u64 config)
{
unsigned int raw_id = config & 0xff;
unsigned int base_id = raw_id & 0x7f;
raw_event.cntr_mask = CNTR_ALL;
raw_event.event_id = base_id;
if (current_cpu_type() == CPU_CAVIUM_OCTEON2) {
if (base_id > 0x42)
return ERR_PTR(-EOPNOTSUPP);
} else {
if (base_id > 0x3a)
return ERR_PTR(-EOPNOTSUPP);
}
switch (base_id) {
case 0x00:
case 0x0f:
case 0x1e:
case 0x1f:
case 0x2f:
case 0x34:
case 0x3b ... 0x3f:
return ERR_PTR(-EOPNOTSUPP);
default:
break;
}
return &raw_event;
}
static const struct mips_perf_event *xlp_pmu_map_raw_event(u64 config)
{
unsigned int raw_id = config & 0xff;
/* Only 1-63 are defined */
if ((raw_id < 0x01) || (raw_id > 0x3f))
return ERR_PTR(-EOPNOTSUPP);
raw_event.cntr_mask = CNTR_ALL;
raw_event.event_id = raw_id;
return &raw_event;
}
static int __init
init_hw_perf_events(void)
{
int counters, irq;
int counter_bits;
pr_info("Performance counters: ");
counters = n_counters();
if (counters == 0) {
pr_cont("No available PMU.\n");
return -ENODEV;
}
#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
cpu_has_mipsmt_pertccounters = read_c0_config7() & (1<<19);
if (!cpu_has_mipsmt_pertccounters)
counters = counters_total_to_per_cpu(counters);
#endif
if (get_c0_perfcount_int)
irq = get_c0_perfcount_int();
else if (cp0_perfcount_irq >= 0)
irq = MIPS_CPU_IRQ_BASE + cp0_perfcount_irq;
else
irq = -1;
mipspmu.map_raw_event = mipsxx_pmu_map_raw_event;
switch (current_cpu_type()) {
case CPU_24K:
mipspmu.name = "mips/24K";
mipspmu.general_event_map = &mipsxxcore_event_map;
mipspmu.cache_event_map = &mipsxxcore_cache_map;
break;
case CPU_34K:
mipspmu.name = "mips/34K";
mipspmu.general_event_map = &mipsxxcore_event_map;
mipspmu.cache_event_map = &mipsxxcore_cache_map;
break;
case CPU_74K:
mipspmu.name = "mips/74K";
mipspmu.general_event_map = &mipsxxcore_event_map2;
mipspmu.cache_event_map = &mipsxxcore_cache_map2;
break;
case CPU_PROAPTIV:
mipspmu.name = "mips/proAptiv";
mipspmu.general_event_map = &mipsxxcore_event_map2;
mipspmu.cache_event_map = &mipsxxcore_cache_map2;
break;
case CPU_P5600:
mipspmu.name = "mips/P5600";
mipspmu.general_event_map = &mipsxxcore_event_map2;
mipspmu.cache_event_map = &mipsxxcore_cache_map2;
break;
case CPU_1004K:
mipspmu.name = "mips/1004K";
mipspmu.general_event_map = &mipsxxcore_event_map;
mipspmu.cache_event_map = &mipsxxcore_cache_map;
break;
case CPU_1074K:
mipspmu.name = "mips/1074K";
mipspmu.general_event_map = &mipsxxcore_event_map;
mipspmu.cache_event_map = &mipsxxcore_cache_map;
break;
case CPU_INTERAPTIV:
mipspmu.name = "mips/interAptiv";
mipspmu.general_event_map = &mipsxxcore_event_map;
mipspmu.cache_event_map = &mipsxxcore_cache_map;
break;
case CPU_LOONGSON1:
mipspmu.name = "mips/loongson1";
mipspmu.general_event_map = &mipsxxcore_event_map;
mipspmu.cache_event_map = &mipsxxcore_cache_map;
break;
case CPU_LOONGSON3:
mipspmu.name = "mips/loongson3";
mipspmu.general_event_map = &loongson3_event_map;
mipspmu.cache_event_map = &loongson3_cache_map;
break;
case CPU_CAVIUM_OCTEON:
case CPU_CAVIUM_OCTEON_PLUS:
case CPU_CAVIUM_OCTEON2:
mipspmu.name = "octeon";
mipspmu.general_event_map = &octeon_event_map;
mipspmu.cache_event_map = &octeon_cache_map;
mipspmu.map_raw_event = octeon_pmu_map_raw_event;
break;
case CPU_BMIPS5000:
mipspmu.name = "BMIPS5000";
mipspmu.general_event_map = &bmips5000_event_map;
mipspmu.cache_event_map = &bmips5000_cache_map;
break;
case CPU_XLP:
mipspmu.name = "xlp";
mipspmu.general_event_map = &xlp_event_map;
mipspmu.cache_event_map = &xlp_cache_map;
mipspmu.map_raw_event = xlp_pmu_map_raw_event;
break;
default:
pr_cont("Either hardware does not support performance "
"counters, or not yet implemented.\n");
return -ENODEV;
}
mipspmu.num_counters = counters;
mipspmu.irq = irq;
if (read_c0_perfctrl0() & M_PERFCTL_WIDE) {
mipspmu.max_period = (1ULL << 63) - 1;
mipspmu.valid_count = (1ULL << 63) - 1;
mipspmu.overflow = 1ULL << 63;
mipspmu.read_counter = mipsxx_pmu_read_counter_64;
mipspmu.write_counter = mipsxx_pmu_write_counter_64;
counter_bits = 64;
} else {
mipspmu.max_period = (1ULL << 31) - 1;
mipspmu.valid_count = (1ULL << 31) - 1;
mipspmu.overflow = 1ULL << 31;
mipspmu.read_counter = mipsxx_pmu_read_counter;
mipspmu.write_counter = mipsxx_pmu_write_counter;
counter_bits = 32;
}
on_each_cpu(reset_counters, (void *)(long)counters, 1);
pr_cont("%s PMU enabled, %d %d-bit counters available to each "
"CPU, irq %d%s\n", mipspmu.name, counters, counter_bits, irq,
irq < 0 ? " (share with timer interrupt)" : "");
perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
return 0;
}
early_initcall(init_hw_perf_events);
|