summaryrefslogtreecommitdiffstats
path: root/arch/powerpc/crypto/aes-spe-glue.c
blob: e8dfe9fb0266896a548899b71ae2e770b3da95b2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * Glue code for AES implementation for SPE instructions (PPC)
 *
 * Based on generic implementation. The assembler module takes care
 * about the SPE registers so it can run from interrupt context.
 *
 * Copyright (c) 2015 Markus Stockhausen <stockhausen@collogia.de>
 */

#include <crypto/aes.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/crypto.h>
#include <asm/byteorder.h>
#include <asm/switch_to.h>
#include <crypto/algapi.h>
#include <crypto/internal/skcipher.h>
#include <crypto/xts.h>
#include <crypto/gf128mul.h>
#include <crypto/scatterwalk.h>

/*
 * MAX_BYTES defines the number of bytes that are allowed to be processed
 * between preempt_disable() and preempt_enable(). e500 cores can issue two
 * instructions per clock cycle using one 32/64 bit unit (SU1) and one 32
 * bit unit (SU2). One of these can be a memory access that is executed via
 * a single load and store unit (LSU). XTS-AES-256 takes ~780 operations per
 * 16 byte block block or 25 cycles per byte. Thus 768 bytes of input data
 * will need an estimated maximum of 20,000 cycles. Headroom for cache misses
 * included. Even with the low end model clocked at 667 MHz this equals to a
 * critical time window of less than 30us. The value has been chosen to
 * process a 512 byte disk block in one or a large 1400 bytes IPsec network
 * packet in two runs.
 *
 */
#define MAX_BYTES 768

struct ppc_aes_ctx {
	u32 key_enc[AES_MAX_KEYLENGTH_U32];
	u32 key_dec[AES_MAX_KEYLENGTH_U32];
	u32 rounds;
};

struct ppc_xts_ctx {
	u32 key_enc[AES_MAX_KEYLENGTH_U32];
	u32 key_dec[AES_MAX_KEYLENGTH_U32];
	u32 key_twk[AES_MAX_KEYLENGTH_U32];
	u32 rounds;
};

extern void ppc_encrypt_aes(u8 *out, const u8 *in, u32 *key_enc, u32 rounds);
extern void ppc_decrypt_aes(u8 *out, const u8 *in, u32 *key_dec, u32 rounds);
extern void ppc_encrypt_ecb(u8 *out, const u8 *in, u32 *key_enc, u32 rounds,
			    u32 bytes);
extern void ppc_decrypt_ecb(u8 *out, const u8 *in, u32 *key_dec, u32 rounds,
			    u32 bytes);
extern void ppc_encrypt_cbc(u8 *out, const u8 *in, u32 *key_enc, u32 rounds,
			    u32 bytes, u8 *iv);
extern void ppc_decrypt_cbc(u8 *out, const u8 *in, u32 *key_dec, u32 rounds,
			    u32 bytes, u8 *iv);
extern void ppc_crypt_ctr  (u8 *out, const u8 *in, u32 *key_enc, u32 rounds,
			    u32 bytes, u8 *iv);
extern void ppc_encrypt_xts(u8 *out, const u8 *in, u32 *key_enc, u32 rounds,
			    u32 bytes, u8 *iv, u32 *key_twk);
extern void ppc_decrypt_xts(u8 *out, const u8 *in, u32 *key_dec, u32 rounds,
			    u32 bytes, u8 *iv, u32 *key_twk);

extern void ppc_expand_key_128(u32 *key_enc, const u8 *key);
extern void ppc_expand_key_192(u32 *key_enc, const u8 *key);
extern void ppc_expand_key_256(u32 *key_enc, const u8 *key);

extern void ppc_generate_decrypt_key(u32 *key_dec,u32 *key_enc,
				     unsigned int key_len);

static void spe_begin(void)
{
	/* disable preemption and save users SPE registers if required */
	preempt_disable();
	enable_kernel_spe();
}

static void spe_end(void)
{
	disable_kernel_spe();
	/* reenable preemption */
	preempt_enable();
}

static int ppc_aes_setkey(struct crypto_tfm *tfm, const u8 *in_key,
		unsigned int key_len)
{
	struct ppc_aes_ctx *ctx = crypto_tfm_ctx(tfm);

	switch (key_len) {
	case AES_KEYSIZE_128:
		ctx->rounds = 4;
		ppc_expand_key_128(ctx->key_enc, in_key);
		break;
	case AES_KEYSIZE_192:
		ctx->rounds = 5;
		ppc_expand_key_192(ctx->key_enc, in_key);
		break;
	case AES_KEYSIZE_256:
		ctx->rounds = 6;
		ppc_expand_key_256(ctx->key_enc, in_key);
		break;
	default:
		return -EINVAL;
	}

	ppc_generate_decrypt_key(ctx->key_dec, ctx->key_enc, key_len);

	return 0;
}

static int ppc_aes_setkey_skcipher(struct crypto_skcipher *tfm,
				   const u8 *in_key, unsigned int key_len)
{
	return ppc_aes_setkey(crypto_skcipher_tfm(tfm), in_key, key_len);
}

static int ppc_xts_setkey(struct crypto_skcipher *tfm, const u8 *in_key,
		   unsigned int key_len)
{
	struct ppc_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
	int err;

	err = xts_verify_key(tfm, in_key, key_len);
	if (err)
		return err;

	key_len >>= 1;

	switch (key_len) {
	case AES_KEYSIZE_128:
		ctx->rounds = 4;
		ppc_expand_key_128(ctx->key_enc, in_key);
		ppc_expand_key_128(ctx->key_twk, in_key + AES_KEYSIZE_128);
		break;
	case AES_KEYSIZE_192:
		ctx->rounds = 5;
		ppc_expand_key_192(ctx->key_enc, in_key);
		ppc_expand_key_192(ctx->key_twk, in_key + AES_KEYSIZE_192);
		break;
	case AES_KEYSIZE_256:
		ctx->rounds = 6;
		ppc_expand_key_256(ctx->key_enc, in_key);
		ppc_expand_key_256(ctx->key_twk, in_key + AES_KEYSIZE_256);
		break;
	default:
		return -EINVAL;
	}

	ppc_generate_decrypt_key(ctx->key_dec, ctx->key_enc, key_len);

	return 0;
}

static void ppc_aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
{
	struct ppc_aes_ctx *ctx = crypto_tfm_ctx(tfm);

	spe_begin();
	ppc_encrypt_aes(out, in, ctx->key_enc, ctx->rounds);
	spe_end();
}

static void ppc_aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
{
	struct ppc_aes_ctx *ctx = crypto_tfm_ctx(tfm);

	spe_begin();
	ppc_decrypt_aes(out, in, ctx->key_dec, ctx->rounds);
	spe_end();
}

static int ppc_ecb_crypt(struct skcipher_request *req, bool enc)
{
	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
	struct ppc_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
	struct skcipher_walk walk;
	unsigned int nbytes;
	int err;

	err = skcipher_walk_virt(&walk, req, false);

	while ((nbytes = walk.nbytes) != 0) {
		nbytes = min_t(unsigned int, nbytes, MAX_BYTES);
		nbytes = round_down(nbytes, AES_BLOCK_SIZE);

		spe_begin();
		if (enc)
			ppc_encrypt_ecb(walk.dst.virt.addr, walk.src.virt.addr,
					ctx->key_enc, ctx->rounds, nbytes);
		else
			ppc_decrypt_ecb(walk.dst.virt.addr, walk.src.virt.addr,
					ctx->key_dec, ctx->rounds, nbytes);
		spe_end();

		err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
	}

	return err;
}

static int ppc_ecb_encrypt(struct skcipher_request *req)
{
	return ppc_ecb_crypt(req, true);
}

static int ppc_ecb_decrypt(struct skcipher_request *req)
{
	return ppc_ecb_crypt(req, false);
}

static int ppc_cbc_crypt(struct skcipher_request *req, bool enc)
{
	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
	struct ppc_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
	struct skcipher_walk walk;
	unsigned int nbytes;
	int err;

	err = skcipher_walk_virt(&walk, req, false);

	while ((nbytes = walk.nbytes) != 0) {
		nbytes = min_t(unsigned int, nbytes, MAX_BYTES);
		nbytes = round_down(nbytes, AES_BLOCK_SIZE);

		spe_begin();
		if (enc)
			ppc_encrypt_cbc(walk.dst.virt.addr, walk.src.virt.addr,
					ctx->key_enc, ctx->rounds, nbytes,
					walk.iv);
		else
			ppc_decrypt_cbc(walk.dst.virt.addr, walk.src.virt.addr,
					ctx->key_dec, ctx->rounds, nbytes,
					walk.iv);
		spe_end();

		err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
	}

	return err;
}

static int ppc_cbc_encrypt(struct skcipher_request *req)
{
	return ppc_cbc_crypt(req, true);
}

static int ppc_cbc_decrypt(struct skcipher_request *req)
{
	return ppc_cbc_crypt(req, false);
}

static int ppc_ctr_crypt(struct skcipher_request *req)
{
	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
	struct ppc_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
	struct skcipher_walk walk;
	unsigned int nbytes;
	int err;

	err = skcipher_walk_virt(&walk, req, false);

	while ((nbytes = walk.nbytes) != 0) {
		nbytes = min_t(unsigned int, nbytes, MAX_BYTES);
		if (nbytes < walk.total)
			nbytes = round_down(nbytes, AES_BLOCK_SIZE);

		spe_begin();
		ppc_crypt_ctr(walk.dst.virt.addr, walk.src.virt.addr,
			      ctx->key_enc, ctx->rounds, nbytes, walk.iv);
		spe_end();

		err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
	}

	return err;
}

static int ppc_xts_crypt(struct skcipher_request *req, bool enc)
{
	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
	struct ppc_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
	struct skcipher_walk walk;
	unsigned int nbytes;
	int err;
	u32 *twk;

	err = skcipher_walk_virt(&walk, req, false);
	twk = ctx->key_twk;

	while ((nbytes = walk.nbytes) != 0) {
		nbytes = min_t(unsigned int, nbytes, MAX_BYTES);
		nbytes = round_down(nbytes, AES_BLOCK_SIZE);

		spe_begin();
		if (enc)
			ppc_encrypt_xts(walk.dst.virt.addr, walk.src.virt.addr,
					ctx->key_enc, ctx->rounds, nbytes,
					walk.iv, twk);
		else
			ppc_decrypt_xts(walk.dst.virt.addr, walk.src.virt.addr,
					ctx->key_dec, ctx->rounds, nbytes,
					walk.iv, twk);
		spe_end();

		twk = NULL;
		err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
	}

	return err;
}

static int ppc_xts_encrypt(struct skcipher_request *req)
{
	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
	struct ppc_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
	int tail = req->cryptlen % AES_BLOCK_SIZE;
	int offset = req->cryptlen - tail - AES_BLOCK_SIZE;
	struct skcipher_request subreq;
	u8 b[2][AES_BLOCK_SIZE];
	int err;

	if (req->cryptlen < AES_BLOCK_SIZE)
		return -EINVAL;

	if (tail) {
		subreq = *req;
		skcipher_request_set_crypt(&subreq, req->src, req->dst,
					   req->cryptlen - tail, req->iv);
		req = &subreq;
	}

	err = ppc_xts_crypt(req, true);
	if (err || !tail)
		return err;

	scatterwalk_map_and_copy(b[0], req->dst, offset, AES_BLOCK_SIZE, 0);
	memcpy(b[1], b[0], tail);
	scatterwalk_map_and_copy(b[0], req->src, offset + AES_BLOCK_SIZE, tail, 0);

	spe_begin();
	ppc_encrypt_xts(b[0], b[0], ctx->key_enc, ctx->rounds, AES_BLOCK_SIZE,
			req->iv, NULL);
	spe_end();

	scatterwalk_map_and_copy(b[0], req->dst, offset, AES_BLOCK_SIZE + tail, 1);

	return 0;
}

static int ppc_xts_decrypt(struct skcipher_request *req)
{
	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
	struct ppc_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
	int tail = req->cryptlen % AES_BLOCK_SIZE;
	int offset = req->cryptlen - tail - AES_BLOCK_SIZE;
	struct skcipher_request subreq;
	u8 b[3][AES_BLOCK_SIZE];
	le128 twk;
	int err;

	if (req->cryptlen < AES_BLOCK_SIZE)
		return -EINVAL;

	if (tail) {
		subreq = *req;
		skcipher_request_set_crypt(&subreq, req->src, req->dst,
					   offset, req->iv);
		req = &subreq;
	}

	err = ppc_xts_crypt(req, false);
	if (err || !tail)
		return err;

	scatterwalk_map_and_copy(b[1], req->src, offset, AES_BLOCK_SIZE + tail, 0);

	spe_begin();
	if (!offset)
		ppc_encrypt_ecb(req->iv, req->iv, ctx->key_twk, ctx->rounds,
				AES_BLOCK_SIZE);

	gf128mul_x_ble(&twk, (le128 *)req->iv);

	ppc_decrypt_xts(b[1], b[1], ctx->key_dec, ctx->rounds, AES_BLOCK_SIZE,
			(u8 *)&twk, NULL);
	memcpy(b[0], b[2], tail);
	memcpy(b[0] + tail, b[1] + tail, AES_BLOCK_SIZE - tail);
	ppc_decrypt_xts(b[0], b[0], ctx->key_dec, ctx->rounds, AES_BLOCK_SIZE,
			req->iv, NULL);
	spe_end();

	scatterwalk_map_and_copy(b[0], req->dst, offset, AES_BLOCK_SIZE + tail, 1);

	return 0;
}

/*
 * Algorithm definitions. Disabling alignment (cra_alignmask=0) was chosen
 * because the e500 platform can handle unaligned reads/writes very efficiently.
 * This improves IPsec thoughput by another few percent. Additionally we assume
 * that AES context is always aligned to at least 8 bytes because it is created
 * with kmalloc() in the crypto infrastructure
 */

static struct crypto_alg aes_cipher_alg = {
	.cra_name		=	"aes",
	.cra_driver_name	=	"aes-ppc-spe",
	.cra_priority		=	300,
	.cra_flags		=	CRYPTO_ALG_TYPE_CIPHER,
	.cra_blocksize		=	AES_BLOCK_SIZE,
	.cra_ctxsize		=	sizeof(struct ppc_aes_ctx),
	.cra_alignmask		=	0,
	.cra_module		=	THIS_MODULE,
	.cra_u			=	{
		.cipher = {
			.cia_min_keysize	=	AES_MIN_KEY_SIZE,
			.cia_max_keysize	=	AES_MAX_KEY_SIZE,
			.cia_setkey		=	ppc_aes_setkey,
			.cia_encrypt		=	ppc_aes_encrypt,
			.cia_decrypt		=	ppc_aes_decrypt
		}
	}
};

static struct skcipher_alg aes_skcipher_algs[] = {
	{
		.base.cra_name		=	"ecb(aes)",
		.base.cra_driver_name	=	"ecb-ppc-spe",
		.base.cra_priority	=	300,
		.base.cra_blocksize	=	AES_BLOCK_SIZE,
		.base.cra_ctxsize	=	sizeof(struct ppc_aes_ctx),
		.base.cra_module	=	THIS_MODULE,
		.min_keysize		=	AES_MIN_KEY_SIZE,
		.max_keysize		=	AES_MAX_KEY_SIZE,
		.setkey			=	ppc_aes_setkey_skcipher,
		.encrypt		=	ppc_ecb_encrypt,
		.decrypt		=	ppc_ecb_decrypt,
	}, {
		.base.cra_name		=	"cbc(aes)",
		.base.cra_driver_name	=	"cbc-ppc-spe",
		.base.cra_priority	=	300,
		.base.cra_blocksize	=	AES_BLOCK_SIZE,
		.base.cra_ctxsize	=	sizeof(struct ppc_aes_ctx),
		.base.cra_module	=	THIS_MODULE,
		.min_keysize		=	AES_MIN_KEY_SIZE,
		.max_keysize		=	AES_MAX_KEY_SIZE,
		.ivsize			=	AES_BLOCK_SIZE,
		.setkey			=	ppc_aes_setkey_skcipher,
		.encrypt		=	ppc_cbc_encrypt,
		.decrypt		=	ppc_cbc_decrypt,
	}, {
		.base.cra_name		=	"ctr(aes)",
		.base.cra_driver_name	=	"ctr-ppc-spe",
		.base.cra_priority	=	300,
		.base.cra_blocksize	=	1,
		.base.cra_ctxsize	=	sizeof(struct ppc_aes_ctx),
		.base.cra_module	=	THIS_MODULE,
		.min_keysize		=	AES_MIN_KEY_SIZE,
		.max_keysize		=	AES_MAX_KEY_SIZE,
		.ivsize			=	AES_BLOCK_SIZE,
		.setkey			=	ppc_aes_setkey_skcipher,
		.encrypt		=	ppc_ctr_crypt,
		.decrypt		=	ppc_ctr_crypt,
		.chunksize		=	AES_BLOCK_SIZE,
	}, {
		.base.cra_name		=	"xts(aes)",
		.base.cra_driver_name	=	"xts-ppc-spe",
		.base.cra_priority	=	300,
		.base.cra_blocksize	=	AES_BLOCK_SIZE,
		.base.cra_ctxsize	=	sizeof(struct ppc_xts_ctx),
		.base.cra_module	=	THIS_MODULE,
		.min_keysize		=	AES_MIN_KEY_SIZE * 2,
		.max_keysize		=	AES_MAX_KEY_SIZE * 2,
		.ivsize			=	AES_BLOCK_SIZE,
		.setkey			=	ppc_xts_setkey,
		.encrypt		=	ppc_xts_encrypt,
		.decrypt		=	ppc_xts_decrypt,
	}
};

static int __init ppc_aes_mod_init(void)
{
	int err;

	err = crypto_register_alg(&aes_cipher_alg);
	if (err)
		return err;

	err = crypto_register_skciphers(aes_skcipher_algs,
					ARRAY_SIZE(aes_skcipher_algs));
	if (err)
		crypto_unregister_alg(&aes_cipher_alg);
	return err;
}

static void __exit ppc_aes_mod_fini(void)
{
	crypto_unregister_alg(&aes_cipher_alg);
	crypto_unregister_skciphers(aes_skcipher_algs,
				    ARRAY_SIZE(aes_skcipher_algs));
}

module_init(ppc_aes_mod_init);
module_exit(ppc_aes_mod_fini);

MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("AES-ECB/CBC/CTR/XTS, SPE optimized");

MODULE_ALIAS_CRYPTO("aes");
MODULE_ALIAS_CRYPTO("ecb(aes)");
MODULE_ALIAS_CRYPTO("cbc(aes)");
MODULE_ALIAS_CRYPTO("ctr(aes)");
MODULE_ALIAS_CRYPTO("xts(aes)");
MODULE_ALIAS_CRYPTO("aes-ppc-spe");