summaryrefslogtreecommitdiffstats
path: root/arch/powerpc/kernel/rtasd.c
blob: aa610ce8742fe6bb0d3875e0a1d69c37d6741e63 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
/*
 * Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 *
 * Communication to userspace based on kernel/printk.c
 */

#include <linux/types.h>
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/poll.h>
#include <linux/proc_fs.h>
#include <linux/init.h>
#include <linux/vmalloc.h>
#include <linux/spinlock.h>
#include <linux/cpu.h>
#include <linux/workqueue.h>
#include <linux/slab.h>

#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/rtas.h>
#include <asm/prom.h>
#include <asm/nvram.h>
#include <linux/atomic.h>
#include <asm/machdep.h>
#include <asm/topology.h>


static DEFINE_SPINLOCK(rtasd_log_lock);

static DECLARE_WAIT_QUEUE_HEAD(rtas_log_wait);

static char *rtas_log_buf;
static unsigned long rtas_log_start;
static unsigned long rtas_log_size;

static int surveillance_timeout = -1;

static unsigned int rtas_error_log_max;
static unsigned int rtas_error_log_buffer_max;

/* RTAS service tokens */
static unsigned int event_scan;
static unsigned int rtas_event_scan_rate;

static bool full_rtas_msgs;

/* Stop logging to nvram after first fatal error */
static int logging_enabled; /* Until we initialize everything,
                             * make sure we don't try logging
                             * anything */
static int error_log_cnt;

/*
 * Since we use 32 bit RTAS, the physical address of this must be below
 * 4G or else bad things happen. Allocate this in the kernel data and
 * make it big enough.
 */
static unsigned char logdata[RTAS_ERROR_LOG_MAX];

static char *rtas_type[] = {
	"Unknown", "Retry", "TCE Error", "Internal Device Failure",
	"Timeout", "Data Parity", "Address Parity", "Cache Parity",
	"Address Invalid", "ECC Uncorrected", "ECC Corrupted",
};

static char *rtas_event_type(int type)
{
	if ((type > 0) && (type < 11))
		return rtas_type[type];

	switch (type) {
		case RTAS_TYPE_EPOW:
			return "EPOW";
		case RTAS_TYPE_PLATFORM:
			return "Platform Error";
		case RTAS_TYPE_IO:
			return "I/O Event";
		case RTAS_TYPE_INFO:
			return "Platform Information Event";
		case RTAS_TYPE_DEALLOC:
			return "Resource Deallocation Event";
		case RTAS_TYPE_DUMP:
			return "Dump Notification Event";
		case RTAS_TYPE_PRRN:
			return "Platform Resource Reassignment Event";
	}

	return rtas_type[0];
}

/* To see this info, grep RTAS /var/log/messages and each entry
 * will be collected together with obvious begin/end.
 * There will be a unique identifier on the begin and end lines.
 * This will persist across reboots.
 *
 * format of error logs returned from RTAS:
 * bytes	(size)	: contents
 * --------------------------------------------------------
 * 0-7		(8)	: rtas_error_log
 * 8-47		(40)	: extended info
 * 48-51	(4)	: vendor id
 * 52-1023 (vendor specific) : location code and debug data
 */
static void printk_log_rtas(char *buf, int len)
{

	int i,j,n = 0;
	int perline = 16;
	char buffer[64];
	char * str = "RTAS event";

	if (full_rtas_msgs) {
		printk(RTAS_DEBUG "%d -------- %s begin --------\n",
		       error_log_cnt, str);

		/*
		 * Print perline bytes on each line, each line will start
		 * with RTAS and a changing number, so syslogd will
		 * print lines that are otherwise the same.  Separate every
		 * 4 bytes with a space.
		 */
		for (i = 0; i < len; i++) {
			j = i % perline;
			if (j == 0) {
				memset(buffer, 0, sizeof(buffer));
				n = sprintf(buffer, "RTAS %d:", i/perline);
			}

			if ((i % 4) == 0)
				n += sprintf(buffer+n, " ");

			n += sprintf(buffer+n, "%02x", (unsigned char)buf[i]);

			if (j == (perline-1))
				printk(KERN_DEBUG "%s\n", buffer);
		}
		if ((i % perline) != 0)
			printk(KERN_DEBUG "%s\n", buffer);

		printk(RTAS_DEBUG "%d -------- %s end ----------\n",
		       error_log_cnt, str);
	} else {
		struct rtas_error_log *errlog = (struct rtas_error_log *)buf;

		printk(RTAS_DEBUG "event: %d, Type: %s, Severity: %d\n",
		       error_log_cnt, rtas_event_type(rtas_error_type(errlog)),
		       rtas_error_severity(errlog));
	}
}

static int log_rtas_len(char * buf)
{
	int len;
	struct rtas_error_log *err;
	uint32_t extended_log_length;

	/* rtas fixed header */
	len = 8;
	err = (struct rtas_error_log *)buf;
	extended_log_length = rtas_error_extended_log_length(err);
	if (rtas_error_extended(err) && extended_log_length) {

		/* extended header */
		len += extended_log_length;
	}

	if (rtas_error_log_max == 0)
		rtas_error_log_max = rtas_get_error_log_max();

	if (len > rtas_error_log_max)
		len = rtas_error_log_max;

	return len;
}

/*
 * First write to nvram, if fatal error, that is the only
 * place we log the info.  The error will be picked up
 * on the next reboot by rtasd.  If not fatal, run the
 * method for the type of error.  Currently, only RTAS
 * errors have methods implemented, but in the future
 * there might be a need to store data in nvram before a
 * call to panic().
 *
 * XXX We write to nvram periodically, to indicate error has
 * been written and sync'd, but there is a possibility
 * that if we don't shutdown correctly, a duplicate error
 * record will be created on next reboot.
 */
void pSeries_log_error(char *buf, unsigned int err_type, int fatal)
{
	unsigned long offset;
	unsigned long s;
	int len = 0;

	pr_debug("rtasd: logging event\n");
	if (buf == NULL)
		return;

	spin_lock_irqsave(&rtasd_log_lock, s);

	/* get length and increase count */
	switch (err_type & ERR_TYPE_MASK) {
	case ERR_TYPE_RTAS_LOG:
		len = log_rtas_len(buf);
		if (!(err_type & ERR_FLAG_BOOT))
			error_log_cnt++;
		break;
	case ERR_TYPE_KERNEL_PANIC:
	default:
		WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */
		spin_unlock_irqrestore(&rtasd_log_lock, s);
		return;
	}

#ifdef CONFIG_PPC64
	/* Write error to NVRAM */
	if (logging_enabled && !(err_type & ERR_FLAG_BOOT))
		nvram_write_error_log(buf, len, err_type, error_log_cnt);
#endif /* CONFIG_PPC64 */

	/*
	 * rtas errors can occur during boot, and we do want to capture
	 * those somewhere, even if nvram isn't ready (why not?), and even
	 * if rtasd isn't ready. Put them into the boot log, at least.
	 */
	if ((err_type & ERR_TYPE_MASK) == ERR_TYPE_RTAS_LOG)
		printk_log_rtas(buf, len);

	/* Check to see if we need to or have stopped logging */
	if (fatal || !logging_enabled) {
		logging_enabled = 0;
		WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */
		spin_unlock_irqrestore(&rtasd_log_lock, s);
		return;
	}

	/* call type specific method for error */
	switch (err_type & ERR_TYPE_MASK) {
	case ERR_TYPE_RTAS_LOG:
		offset = rtas_error_log_buffer_max *
			((rtas_log_start+rtas_log_size) & LOG_NUMBER_MASK);

		/* First copy over sequence number */
		memcpy(&rtas_log_buf[offset], (void *) &error_log_cnt, sizeof(int));

		/* Second copy over error log data */
		offset += sizeof(int);
		memcpy(&rtas_log_buf[offset], buf, len);

		if (rtas_log_size < LOG_NUMBER)
			rtas_log_size += 1;
		else
			rtas_log_start += 1;

		WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */
		spin_unlock_irqrestore(&rtasd_log_lock, s);
		wake_up_interruptible(&rtas_log_wait);
		break;
	case ERR_TYPE_KERNEL_PANIC:
	default:
		WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */
		spin_unlock_irqrestore(&rtasd_log_lock, s);
		return;
	}
}

#ifdef CONFIG_PPC_PSERIES
static s32 prrn_update_scope;

static void prrn_work_fn(struct work_struct *work)
{
	/*
	 * For PRRN, we must pass the negative of the scope value in
	 * the RTAS event.
	 */
	pseries_devicetree_update(-prrn_update_scope);
}

static DECLARE_WORK(prrn_work, prrn_work_fn);

static void prrn_schedule_update(u32 scope)
{
	flush_work(&prrn_work);
	prrn_update_scope = scope;
	schedule_work(&prrn_work);
}

static void handle_rtas_event(const struct rtas_error_log *log)
{
	if (rtas_error_type(log) != RTAS_TYPE_PRRN || !prrn_is_enabled())
		return;

	/* For PRRN Events the extended log length is used to denote
	 * the scope for calling rtas update-nodes.
	 */
	prrn_schedule_update(rtas_error_extended_log_length(log));
}

#else

static void handle_rtas_event(const struct rtas_error_log *log)
{
	return;
}

#endif

static int rtas_log_open(struct inode * inode, struct file * file)
{
	return 0;
}

static int rtas_log_release(struct inode * inode, struct file * file)
{
	return 0;
}

/* This will check if all events are logged, if they are then, we
 * know that we can safely clear the events in NVRAM.
 * Next we'll sit and wait for something else to log.
 */
static ssize_t rtas_log_read(struct file * file, char __user * buf,
			 size_t count, loff_t *ppos)
{
	int error;
	char *tmp;
	unsigned long s;
	unsigned long offset;

	if (!buf || count < rtas_error_log_buffer_max)
		return -EINVAL;

	count = rtas_error_log_buffer_max;

	if (!access_ok(VERIFY_WRITE, buf, count))
		return -EFAULT;

	tmp = kmalloc(count, GFP_KERNEL);
	if (!tmp)
		return -ENOMEM;

	spin_lock_irqsave(&rtasd_log_lock, s);

	/* if it's 0, then we know we got the last one (the one in NVRAM) */
	while (rtas_log_size == 0) {
		if (file->f_flags & O_NONBLOCK) {
			spin_unlock_irqrestore(&rtasd_log_lock, s);
			error = -EAGAIN;
			goto out;
		}

		if (!logging_enabled) {
			spin_unlock_irqrestore(&rtasd_log_lock, s);
			error = -ENODATA;
			goto out;
		}
#ifdef CONFIG_PPC64
		nvram_clear_error_log();
#endif /* CONFIG_PPC64 */

		spin_unlock_irqrestore(&rtasd_log_lock, s);
		error = wait_event_interruptible(rtas_log_wait, rtas_log_size);
		if (error)
			goto out;
		spin_lock_irqsave(&rtasd_log_lock, s);
	}

	offset = rtas_error_log_buffer_max * (rtas_log_start & LOG_NUMBER_MASK);
	memcpy(tmp, &rtas_log_buf[offset], count);

	rtas_log_start += 1;
	rtas_log_size -= 1;
	spin_unlock_irqrestore(&rtasd_log_lock, s);

	error = copy_to_user(buf, tmp, count) ? -EFAULT : count;
out:
	kfree(tmp);
	return error;
}

static unsigned int rtas_log_poll(struct file *file, poll_table * wait)
{
	poll_wait(file, &rtas_log_wait, wait);
	if (rtas_log_size)
		return POLLIN | POLLRDNORM;
	return 0;
}

static const struct file_operations proc_rtas_log_operations = {
	.read =		rtas_log_read,
	.poll =		rtas_log_poll,
	.open =		rtas_log_open,
	.release =	rtas_log_release,
	.llseek =	noop_llseek,
};

static int enable_surveillance(int timeout)
{
	int error;

	error = rtas_set_indicator(SURVEILLANCE_TOKEN, 0, timeout);

	if (error == 0)
		return 0;

	if (error == -EINVAL) {
		printk(KERN_DEBUG "rtasd: surveillance not supported\n");
		return 0;
	}

	printk(KERN_ERR "rtasd: could not update surveillance\n");
	return -1;
}

static void do_event_scan(void)
{
	int error;
	do {
		memset(logdata, 0, rtas_error_log_max);
		error = rtas_call(event_scan, 4, 1, NULL,
				  RTAS_EVENT_SCAN_ALL_EVENTS, 0,
				  __pa(logdata), rtas_error_log_max);
		if (error == -1) {
			printk(KERN_ERR "event-scan failed\n");
			break;
		}

		if (error == 0) {
			pSeries_log_error(logdata, ERR_TYPE_RTAS_LOG, 0);
			handle_rtas_event((struct rtas_error_log *)logdata);
		}

	} while(error == 0);
}

static void rtas_event_scan(struct work_struct *w);
DECLARE_DELAYED_WORK(event_scan_work, rtas_event_scan);

/*
 * Delay should be at least one second since some machines have problems if
 * we call event-scan too quickly.
 */
static unsigned long event_scan_delay = 1*HZ;
static int first_pass = 1;

static void rtas_event_scan(struct work_struct *w)
{
	unsigned int cpu;

	do_event_scan();

	get_online_cpus();

	/* raw_ OK because just using CPU as starting point. */
	cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
        if (cpu >= nr_cpu_ids) {
		cpu = cpumask_first(cpu_online_mask);

		if (first_pass) {
			first_pass = 0;
			event_scan_delay = 30*HZ/rtas_event_scan_rate;

			if (surveillance_timeout != -1) {
				pr_debug("rtasd: enabling surveillance\n");
				enable_surveillance(surveillance_timeout);
				pr_debug("rtasd: surveillance enabled\n");
			}
		}
	}

	schedule_delayed_work_on(cpu, &event_scan_work,
		__round_jiffies_relative(event_scan_delay, cpu));

	put_online_cpus();
}

#ifdef CONFIG_PPC64
static void retreive_nvram_error_log(void)
{
	unsigned int err_type ;
	int rc ;

	/* See if we have any error stored in NVRAM */
	memset(logdata, 0, rtas_error_log_max);
	rc = nvram_read_error_log(logdata, rtas_error_log_max,
	                          &err_type, &error_log_cnt);
	/* We can use rtas_log_buf now */
	logging_enabled = 1;
	if (!rc) {
		if (err_type != ERR_FLAG_ALREADY_LOGGED) {
			pSeries_log_error(logdata, err_type | ERR_FLAG_BOOT, 0);
		}
	}
}
#else /* CONFIG_PPC64 */
static void retreive_nvram_error_log(void)
{
}
#endif /* CONFIG_PPC64 */

static void start_event_scan(void)
{
	printk(KERN_DEBUG "RTAS daemon started\n");
	pr_debug("rtasd: will sleep for %d milliseconds\n",
		 (30000 / rtas_event_scan_rate));

	/* Retrieve errors from nvram if any */
	retreive_nvram_error_log();

	schedule_delayed_work_on(cpumask_first(cpu_online_mask),
				 &event_scan_work, event_scan_delay);
}

/* Cancel the rtas event scan work */
void rtas_cancel_event_scan(void)
{
	cancel_delayed_work_sync(&event_scan_work);
}
EXPORT_SYMBOL_GPL(rtas_cancel_event_scan);

static int __init rtas_init(void)
{
	struct proc_dir_entry *entry;

	if (!machine_is(pseries) && !machine_is(chrp))
		return 0;

	/* No RTAS */
	event_scan = rtas_token("event-scan");
	if (event_scan == RTAS_UNKNOWN_SERVICE) {
		printk(KERN_INFO "rtasd: No event-scan on system\n");
		return -ENODEV;
	}

	rtas_event_scan_rate = rtas_token("rtas-event-scan-rate");
	if (rtas_event_scan_rate == RTAS_UNKNOWN_SERVICE) {
		printk(KERN_ERR "rtasd: no rtas-event-scan-rate on system\n");
		return -ENODEV;
	}

	if (!rtas_event_scan_rate) {
		/* Broken firmware: take a rate of zero to mean don't scan */
		printk(KERN_DEBUG "rtasd: scan rate is 0, not scanning\n");
		return 0;
	}

	/* Make room for the sequence number */
	rtas_error_log_max = rtas_get_error_log_max();
	rtas_error_log_buffer_max = rtas_error_log_max + sizeof(int);

	rtas_log_buf = vmalloc(rtas_error_log_buffer_max*LOG_NUMBER);
	if (!rtas_log_buf) {
		printk(KERN_ERR "rtasd: no memory\n");
		return -ENOMEM;
	}

	entry = proc_create("powerpc/rtas/error_log", S_IRUSR, NULL,
			    &proc_rtas_log_operations);
	if (!entry)
		printk(KERN_ERR "Failed to create error_log proc entry\n");

	start_event_scan();

	return 0;
}
__initcall(rtas_init);

static int __init surveillance_setup(char *str)
{
	int i;

	/* We only do surveillance on pseries */
	if (!machine_is(pseries))
		return 0;

	if (get_option(&str,&i)) {
		if (i >= 0 && i <= 255)
			surveillance_timeout = i;
	}

	return 1;
}
__setup("surveillance=", surveillance_setup);

static int __init rtasmsgs_setup(char *str)
{
	return (kstrtobool(str, &full_rtas_msgs) == 0);
}
__setup("rtasmsgs=", rtasmsgs_setup);