1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
|
/* SPDX-License-Identifier: GPL-2.0-only */
/*
* Copyright (c) 2024 Ventana Micro Systems Inc.
*/
#ifndef __KVM_NACL_H
#define __KVM_NACL_H
#include <linux/jump_label.h>
#include <linux/percpu.h>
#include <asm/byteorder.h>
#include <asm/csr.h>
#include <asm/sbi.h>
struct kvm_vcpu_arch;
DECLARE_STATIC_KEY_FALSE(kvm_riscv_nacl_available);
#define kvm_riscv_nacl_available() \
static_branch_unlikely(&kvm_riscv_nacl_available)
DECLARE_STATIC_KEY_FALSE(kvm_riscv_nacl_sync_csr_available);
#define kvm_riscv_nacl_sync_csr_available() \
static_branch_unlikely(&kvm_riscv_nacl_sync_csr_available)
DECLARE_STATIC_KEY_FALSE(kvm_riscv_nacl_sync_hfence_available);
#define kvm_riscv_nacl_sync_hfence_available() \
static_branch_unlikely(&kvm_riscv_nacl_sync_hfence_available)
DECLARE_STATIC_KEY_FALSE(kvm_riscv_nacl_sync_sret_available);
#define kvm_riscv_nacl_sync_sret_available() \
static_branch_unlikely(&kvm_riscv_nacl_sync_sret_available)
DECLARE_STATIC_KEY_FALSE(kvm_riscv_nacl_autoswap_csr_available);
#define kvm_riscv_nacl_autoswap_csr_available() \
static_branch_unlikely(&kvm_riscv_nacl_autoswap_csr_available)
struct kvm_riscv_nacl {
void *shmem;
phys_addr_t shmem_phys;
};
DECLARE_PER_CPU(struct kvm_riscv_nacl, kvm_riscv_nacl);
void __kvm_riscv_nacl_hfence(void *shmem,
unsigned long control,
unsigned long page_num,
unsigned long page_count);
void __kvm_riscv_nacl_switch_to(struct kvm_vcpu_arch *vcpu_arch,
unsigned long sbi_ext_id,
unsigned long sbi_func_id);
int kvm_riscv_nacl_enable(void);
void kvm_riscv_nacl_disable(void);
void kvm_riscv_nacl_exit(void);
int kvm_riscv_nacl_init(void);
#ifdef CONFIG_32BIT
#define lelong_to_cpu(__x) le32_to_cpu(__x)
#define cpu_to_lelong(__x) cpu_to_le32(__x)
#else
#define lelong_to_cpu(__x) le64_to_cpu(__x)
#define cpu_to_lelong(__x) cpu_to_le64(__x)
#endif
#define nacl_shmem() \
this_cpu_ptr(&kvm_riscv_nacl)->shmem
#define nacl_scratch_read_long(__shmem, __offset) \
({ \
unsigned long *__p = (__shmem) + \
SBI_NACL_SHMEM_SCRATCH_OFFSET + \
(__offset); \
lelong_to_cpu(*__p); \
})
#define nacl_scratch_write_long(__shmem, __offset, __val) \
do { \
unsigned long *__p = (__shmem) + \
SBI_NACL_SHMEM_SCRATCH_OFFSET + \
(__offset); \
*__p = cpu_to_lelong(__val); \
} while (0)
#define nacl_scratch_write_longs(__shmem, __offset, __array, __count) \
do { \
unsigned int __i; \
unsigned long *__p = (__shmem) + \
SBI_NACL_SHMEM_SCRATCH_OFFSET + \
(__offset); \
for (__i = 0; __i < (__count); __i++) \
__p[__i] = cpu_to_lelong((__array)[__i]); \
} while (0)
#define nacl_sync_hfence(__e) \
sbi_ecall(SBI_EXT_NACL, SBI_EXT_NACL_SYNC_HFENCE, \
(__e), 0, 0, 0, 0, 0)
#define nacl_hfence_mkconfig(__type, __order, __vmid, __asid) \
({ \
unsigned long __c = SBI_NACL_SHMEM_HFENCE_CONFIG_PEND; \
__c |= ((__type) & SBI_NACL_SHMEM_HFENCE_CONFIG_TYPE_MASK) \
<< SBI_NACL_SHMEM_HFENCE_CONFIG_TYPE_SHIFT; \
__c |= (((__order) - SBI_NACL_SHMEM_HFENCE_ORDER_BASE) & \
SBI_NACL_SHMEM_HFENCE_CONFIG_ORDER_MASK) \
<< SBI_NACL_SHMEM_HFENCE_CONFIG_ORDER_SHIFT; \
__c |= ((__vmid) & SBI_NACL_SHMEM_HFENCE_CONFIG_VMID_MASK) \
<< SBI_NACL_SHMEM_HFENCE_CONFIG_VMID_SHIFT; \
__c |= ((__asid) & SBI_NACL_SHMEM_HFENCE_CONFIG_ASID_MASK); \
__c; \
})
#define nacl_hfence_mkpnum(__order, __addr) \
((__addr) >> (__order))
#define nacl_hfence_mkpcount(__order, __size) \
((__size) >> (__order))
#define nacl_hfence_gvma(__shmem, __gpa, __gpsz, __order) \
__kvm_riscv_nacl_hfence(__shmem, \
nacl_hfence_mkconfig(SBI_NACL_SHMEM_HFENCE_TYPE_GVMA, \
__order, 0, 0), \
nacl_hfence_mkpnum(__order, __gpa), \
nacl_hfence_mkpcount(__order, __gpsz))
#define nacl_hfence_gvma_all(__shmem) \
__kvm_riscv_nacl_hfence(__shmem, \
nacl_hfence_mkconfig(SBI_NACL_SHMEM_HFENCE_TYPE_GVMA_ALL, \
0, 0, 0), 0, 0)
#define nacl_hfence_gvma_vmid(__shmem, __vmid, __gpa, __gpsz, __order) \
__kvm_riscv_nacl_hfence(__shmem, \
nacl_hfence_mkconfig(SBI_NACL_SHMEM_HFENCE_TYPE_GVMA_VMID, \
__order, __vmid, 0), \
nacl_hfence_mkpnum(__order, __gpa), \
nacl_hfence_mkpcount(__order, __gpsz))
#define nacl_hfence_gvma_vmid_all(__shmem, __vmid) \
__kvm_riscv_nacl_hfence(__shmem, \
nacl_hfence_mkconfig(SBI_NACL_SHMEM_HFENCE_TYPE_GVMA_VMID_ALL, \
0, __vmid, 0), 0, 0)
#define nacl_hfence_vvma(__shmem, __vmid, __gva, __gvsz, __order) \
__kvm_riscv_nacl_hfence(__shmem, \
nacl_hfence_mkconfig(SBI_NACL_SHMEM_HFENCE_TYPE_VVMA, \
__order, __vmid, 0), \
nacl_hfence_mkpnum(__order, __gva), \
nacl_hfence_mkpcount(__order, __gvsz))
#define nacl_hfence_vvma_all(__shmem, __vmid) \
__kvm_riscv_nacl_hfence(__shmem, \
nacl_hfence_mkconfig(SBI_NACL_SHMEM_HFENCE_TYPE_VVMA_ALL, \
0, __vmid, 0), 0, 0)
#define nacl_hfence_vvma_asid(__shmem, __vmid, __asid, __gva, __gvsz, __order)\
__kvm_riscv_nacl_hfence(__shmem, \
nacl_hfence_mkconfig(SBI_NACL_SHMEM_HFENCE_TYPE_VVMA_ASID, \
__order, __vmid, __asid), \
nacl_hfence_mkpnum(__order, __gva), \
nacl_hfence_mkpcount(__order, __gvsz))
#define nacl_hfence_vvma_asid_all(__shmem, __vmid, __asid) \
__kvm_riscv_nacl_hfence(__shmem, \
nacl_hfence_mkconfig(SBI_NACL_SHMEM_HFENCE_TYPE_VVMA_ASID_ALL, \
0, __vmid, __asid), 0, 0)
#define nacl_csr_read(__shmem, __csr) \
({ \
unsigned long *__a = (__shmem) + SBI_NACL_SHMEM_CSR_OFFSET; \
lelong_to_cpu(__a[SBI_NACL_SHMEM_CSR_INDEX(__csr)]); \
})
#define nacl_csr_write(__shmem, __csr, __val) \
do { \
void *__s = (__shmem); \
unsigned int __i = SBI_NACL_SHMEM_CSR_INDEX(__csr); \
unsigned long *__a = (__s) + SBI_NACL_SHMEM_CSR_OFFSET; \
u8 *__b = (__s) + SBI_NACL_SHMEM_DBITMAP_OFFSET; \
__a[__i] = cpu_to_lelong(__val); \
__b[__i >> 3] |= 1U << (__i & 0x7); \
} while (0)
#define nacl_csr_swap(__shmem, __csr, __val) \
({ \
void *__s = (__shmem); \
unsigned int __i = SBI_NACL_SHMEM_CSR_INDEX(__csr); \
unsigned long *__a = (__s) + SBI_NACL_SHMEM_CSR_OFFSET; \
u8 *__b = (__s) + SBI_NACL_SHMEM_DBITMAP_OFFSET; \
unsigned long __r = lelong_to_cpu(__a[__i]); \
__a[__i] = cpu_to_lelong(__val); \
__b[__i >> 3] |= 1U << (__i & 0x7); \
__r; \
})
#define nacl_sync_csr(__csr) \
sbi_ecall(SBI_EXT_NACL, SBI_EXT_NACL_SYNC_CSR, \
(__csr), 0, 0, 0, 0, 0)
/*
* Each ncsr_xyz() macro defined below has it's own static-branch so every
* use of ncsr_xyz() macro emits a patchable direct jump. This means multiple
* back-to-back ncsr_xyz() macro usage will emit multiple patchable direct
* jumps which is sub-optimal.
*
* Based on the above, it is recommended to avoid multiple back-to-back
* ncsr_xyz() macro usage.
*/
#define ncsr_read(__csr) \
({ \
unsigned long __r; \
if (kvm_riscv_nacl_available()) \
__r = nacl_csr_read(nacl_shmem(), __csr); \
else \
__r = csr_read(__csr); \
__r; \
})
#define ncsr_write(__csr, __val) \
do { \
if (kvm_riscv_nacl_sync_csr_available()) \
nacl_csr_write(nacl_shmem(), __csr, __val); \
else \
csr_write(__csr, __val); \
} while (0)
#define ncsr_swap(__csr, __val) \
({ \
unsigned long __r; \
if (kvm_riscv_nacl_sync_csr_available()) \
__r = nacl_csr_swap(nacl_shmem(), __csr, __val); \
else \
__r = csr_swap(__csr, __val); \
__r; \
})
#define nsync_csr(__csr) \
do { \
if (kvm_riscv_nacl_sync_csr_available()) \
nacl_sync_csr(__csr); \
} while (0)
#endif
|