summaryrefslogtreecommitdiffstats
path: root/arch/s390/numa/toptree.c
blob: 902d350d859a8b9412db1dd8ff0259576d119157 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
/*
 * NUMA support for s390
 *
 * A tree structure used for machine topology mangling
 *
 * Copyright IBM Corp. 2015
 */

#include <linux/kernel.h>
#include <linux/cpumask.h>
#include <linux/list.h>
#include <linux/list_sort.h>
#include <linux/slab.h>
#include <asm/numa.h>

#include "toptree.h"

/**
 * toptree_alloc - Allocate and initialize a new tree node.
 * @level: The node's vertical level; level 0 contains the leaves.
 * @id: ID number, explicitly not unique beyond scope of node's siblings
 *
 * Allocate a new tree node and initialize it.
 *
 * RETURNS:
 * Pointer to the new tree node or NULL on error
 */
struct toptree *toptree_alloc(int level, int id)
{
	struct toptree *res = kzalloc(sizeof(struct toptree), GFP_KERNEL);

	if (!res)
		return res;

	INIT_LIST_HEAD(&res->children);
	INIT_LIST_HEAD(&res->sibling);
	cpumask_clear(&res->mask);
	res->level = level;
	res->id = id;
	return res;
}

/**
 * toptree_remove - Remove a tree node from a tree
 * @cand: Pointer to the node to remove
 *
 * The node is detached from its parent node. The parent node's
 * masks will be updated to reflect the loss of the child.
 */
static void toptree_remove(struct toptree *cand)
{
	struct toptree *oldparent;

	list_del_init(&cand->sibling);
	oldparent = cand->parent;
	cand->parent = NULL;
	toptree_update_mask(oldparent);
}

/**
 * toptree_free - discard a tree node
 * @cand: Pointer to the tree node to discard
 *
 * Checks if @cand is attached to a parent node. Detaches it
 * cleanly using toptree_remove. Possible children are freed
 * recursively. In the end @cand itself is freed.
 */
void toptree_free(struct toptree *cand)
{
	struct toptree *child, *tmp;

	if (cand->parent)
		toptree_remove(cand);
	toptree_for_each_child_safe(child, tmp, cand)
		toptree_free(child);
	kfree(cand);
}

/**
 * toptree_update_mask - Update node bitmasks
 * @cand: Pointer to a tree node
 *
 * The node's cpumask will be updated by combining all children's
 * masks. Then toptree_update_mask is called recursively for the
 * parent if applicable.
 *
 * NOTE:
 * This must not be called on leaves. If called on a leaf, its
 * CPU mask is cleared and lost.
 */
void toptree_update_mask(struct toptree *cand)
{
	struct toptree *child;

	cpumask_clear(&cand->mask);
	list_for_each_entry(child, &cand->children, sibling)
		cpumask_or(&cand->mask, &cand->mask, &child->mask);
	if (cand->parent)
		toptree_update_mask(cand->parent);
}

/**
 * toptree_insert - Insert a tree node into tree
 * @cand: Pointer to the node to insert
 * @target: Pointer to the node to which @cand will added as a child
 *
 * Insert a tree node into a tree. Masks will be updated automatically.
 *
 * RETURNS:
 * 0 on success, -1 if NULL is passed as argument or the node levels
 * don't fit.
 */
static int toptree_insert(struct toptree *cand, struct toptree *target)
{
	if (!cand || !target)
		return -1;
	if (target->level != (cand->level + 1))
		return -1;
	list_add_tail(&cand->sibling, &target->children);
	cand->parent = target;
	toptree_update_mask(target);
	return 0;
}

/**
 * toptree_move_children - Move all child nodes of a node to a new place
 * @cand: Pointer to the node whose children are to be moved
 * @target: Pointer to the node to which @cand's children will be attached
 *
 * Take all child nodes of @cand and move them using toptree_move.
 */
static void toptree_move_children(struct toptree *cand, struct toptree *target)
{
	struct toptree *child, *tmp;

	toptree_for_each_child_safe(child, tmp, cand)
		toptree_move(child, target);
}

/**
 * toptree_unify - Merge children with same ID
 * @cand: Pointer to node whose direct children should be made unique
 *
 * When mangling the tree it is possible that a node has two or more children
 * which have the same ID. This routine merges these children into one and
 * moves all children of the merged nodes into the unified node.
 */
void toptree_unify(struct toptree *cand)
{
	struct toptree *child, *tmp, *cand_copy;

	/* Threads cannot be split, cores are not split */
	if (cand->level < 2)
		return;

	cand_copy = toptree_alloc(cand->level, 0);
	toptree_for_each_child_safe(child, tmp, cand) {
		struct toptree *tmpchild;

		if (!cpumask_empty(&child->mask)) {
			tmpchild = toptree_get_child(cand_copy, child->id);
			toptree_move_children(child, tmpchild);
		}
		toptree_free(child);
	}
	toptree_move_children(cand_copy, cand);
	toptree_free(cand_copy);

	toptree_for_each_child(child, cand)
		toptree_unify(child);
}

/**
 * toptree_move - Move a node to another context
 * @cand: Pointer to the node to move
 * @target: Pointer to the node where @cand should go
 *
 * In the easiest case @cand is exactly on the level below @target
 * and will be immediately moved to the target.
 *
 * If @target's level is not the direct parent level of @cand,
 * nodes for the missing levels are created and put between
 * @cand and @target. The "stacking" nodes' IDs are taken from
 * @cand's parents.
 *
 * After this it is likely to have redundant nodes in the tree
 * which are addressed by means of toptree_unify.
 */
void toptree_move(struct toptree *cand, struct toptree *target)
{
	struct toptree *stack_target, *real_insert_point, *ptr, *tmp;

	if (cand->level + 1 == target->level) {
		toptree_remove(cand);
		toptree_insert(cand, target);
		return;
	}

	real_insert_point = NULL;
	ptr = cand;
	stack_target = NULL;

	do {
		tmp = stack_target;
		stack_target = toptree_alloc(ptr->level + 1,
					     ptr->parent->id);
		toptree_insert(tmp, stack_target);
		if (!real_insert_point)
			real_insert_point = stack_target;
		ptr = ptr->parent;
	} while (stack_target->level < (target->level - 1));

	toptree_remove(cand);
	toptree_insert(cand, real_insert_point);
	toptree_insert(stack_target, target);
}

/**
 * toptree_get_child - Access a tree node's child by its ID
 * @cand: Pointer to tree node whose child is to access
 * @id: The desired child's ID
 *
 * @cand's children are searched for a child with matching ID.
 * If no match can be found, a new child with the desired ID
 * is created and returned.
 */
struct toptree *toptree_get_child(struct toptree *cand, int id)
{
	struct toptree *child;

	toptree_for_each_child(child, cand)
		if (child->id == id)
			return child;
	child = toptree_alloc(cand->level-1, id);
	toptree_insert(child, cand);
	return child;
}

/**
 * toptree_first - Find the first descendant on specified level
 * @context: Pointer to tree node whose descendants are to be used
 * @level: The level of interest
 *
 * RETURNS:
 * @context's first descendant on the specified level, or NULL
 * if there is no matching descendant
 */
struct toptree *toptree_first(struct toptree *context, int level)
{
	struct toptree *child, *tmp;

	if (context->level == level)
		return context;

	if (!list_empty(&context->children)) {
		list_for_each_entry(child, &context->children, sibling) {
			tmp = toptree_first(child, level);
			if (tmp)
				return tmp;
		}
	}
	return NULL;
}

/**
 * toptree_next_sibling - Return next sibling
 * @cur: Pointer to a tree node
 *
 * RETURNS:
 * If @cur has a parent and is not the last in the parent's children list,
 * the next sibling is returned. Or NULL when there are no siblings left.
 */
static struct toptree *toptree_next_sibling(struct toptree *cur)
{
	if (cur->parent == NULL)
		return NULL;

	if (cur == list_last_entry(&cur->parent->children,
				   struct toptree, sibling))
		return NULL;
	return (struct toptree *) list_next_entry(cur, sibling);
}

/**
 * toptree_next - Tree traversal function
 * @cur: Pointer to current element
 * @context: Pointer to the root node of the tree or subtree to
 * be traversed.
 * @level: The level of interest.
 *
 * RETURNS:
 * Pointer to the next node on level @level
 * or NULL when there is no next node.
 */
struct toptree *toptree_next(struct toptree *cur, struct toptree *context,
			     int level)
{
	struct toptree *cur_context, *tmp;

	if (!cur)
		return NULL;

	if (context->level == level)
		return NULL;

	tmp = toptree_next_sibling(cur);
	if (tmp != NULL)
		return tmp;

	cur_context = cur;
	while (cur_context->level < context->level - 1) {
		/* Step up */
		cur_context = cur_context->parent;
		/* Step aside */
		tmp = toptree_next_sibling(cur_context);
		if (tmp != NULL) {
			/* Step down */
			tmp = toptree_first(tmp, level);
			if (tmp != NULL)
				return tmp;
		}
	}
	return NULL;
}

/**
 * toptree_count - Count descendants on specified level
 * @context: Pointer to node whose descendants are to be considered
 * @level: Only descendants on the specified level will be counted
 *
 * RETURNS:
 * Number of descendants on the specified level
 */
int toptree_count(struct toptree *context, int level)
{
	struct toptree *cur;
	int cnt = 0;

	toptree_for_each(cur, context, level)
		cnt++;
	return cnt;
}