summaryrefslogtreecommitdiffstats
path: root/arch/sh/mm/ioremap.c
blob: 85b420d006221a8e4e56d61667d8cd90cd7b0134 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
/*
 * arch/sh/mm/ioremap.c
 *
 * (C) Copyright 1995 1996 Linus Torvalds
 * (C) Copyright 2005 - 2010  Paul Mundt
 *
 * Re-map IO memory to kernel address space so that we can access it.
 * This is needed for high PCI addresses that aren't mapped in the
 * 640k-1MB IO memory area on PC's
 *
 * This file is subject to the terms and conditions of the GNU General
 * Public License. See the file "COPYING" in the main directory of this
 * archive for more details.
 */
#include <linux/vmalloc.h>
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/pci.h>
#include <linux/io.h>
#include <asm/page.h>
#include <asm/pgalloc.h>
#include <asm/addrspace.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/mmu.h>

/*
 * Remap an arbitrary physical address space into the kernel virtual
 * address space. Needed when the kernel wants to access high addresses
 * directly.
 *
 * NOTE! We need to allow non-page-aligned mappings too: we will obviously
 * have to convert them into an offset in a page-aligned mapping, but the
 * caller shouldn't need to know that small detail.
 */
void __iomem * __init_refok
__ioremap_caller(unsigned long phys_addr, unsigned long size,
		 pgprot_t pgprot, void *caller)
{
	struct vm_struct *area;
	unsigned long offset, last_addr, addr, orig_addr;

	/* Don't allow wraparound or zero size */
	last_addr = phys_addr + size - 1;
	if (!size || last_addr < phys_addr)
		return NULL;

	/*
	 * If we're in the fixed PCI memory range, mapping through page
	 * tables is not only pointless, but also fundamentally broken.
	 * Just return the physical address instead.
	 *
	 * For boards that map a small PCI memory aperture somewhere in
	 * P1/P2 space, ioremap() will already do the right thing,
	 * and we'll never get this far.
	 */
	if (is_pci_memory_fixed_range(phys_addr, size))
		return (void __iomem *)phys_addr;

	/*
	 * Mappings have to be page-aligned
	 */
	offset = phys_addr & ~PAGE_MASK;
	phys_addr &= PAGE_MASK;
	size = PAGE_ALIGN(last_addr+1) - phys_addr;

	/*
	 * If we can't yet use the regular approach, go the fixmap route.
	 */
	if (!mem_init_done)
		return ioremap_fixed(phys_addr, size, pgprot);

	/*
	 * Ok, go for it..
	 */
	area = get_vm_area_caller(size, VM_IOREMAP, caller);
	if (!area)
		return NULL;
	area->phys_addr = phys_addr;
	orig_addr = addr = (unsigned long)area->addr;

#ifdef CONFIG_PMB
	/*
	 * First try to remap through the PMB once a valid VMA has been
	 * established. Smaller allocations (or the rest of the size
	 * remaining after a PMB mapping due to the size not being
	 * perfectly aligned on a PMB size boundary) are then mapped
	 * through the UTLB using conventional page tables.
	 *
	 * PMB entries are all pre-faulted.
	 */
	if (unlikely(phys_addr >= P1SEG)) {
		unsigned long mapped;

		mapped = pmb_remap(addr, phys_addr, size, pgprot_val(pgprot));
		if (likely(mapped)) {
			addr		+= mapped;
			phys_addr	+= mapped;
			size		-= mapped;
		}
	}
#endif

	if (likely(size))
		if (ioremap_page_range(addr, addr + size, phys_addr, pgprot)) {
			vunmap((void *)orig_addr);
			return NULL;
		}

	return (void __iomem *)(offset + (char *)orig_addr);
}
EXPORT_SYMBOL(__ioremap_caller);

/*
 * Simple checks for non-translatable mappings.
 */
static inline int iomapping_nontranslatable(unsigned long offset)
{
#ifdef CONFIG_29BIT
	/*
	 * In 29-bit mode this includes the fixed P1/P2 areas, as well as
	 * parts of P3.
	 */
	if (PXSEG(offset) < P3SEG || offset >= P3_ADDR_MAX)
		return 1;
#endif

	if (is_pci_memory_fixed_range(offset, 0))
		return 1;

	return 0;
}

void __iounmap(void __iomem *addr)
{
	unsigned long vaddr = (unsigned long __force)addr;
	struct vm_struct *p;

	/*
	 * Nothing to do if there is no translatable mapping.
	 */
	if (iomapping_nontranslatable(vaddr))
		return;

	/*
	 * There's no VMA if it's from an early fixed mapping.
	 */
	if (iounmap_fixed(addr) == 0)
		return;

#ifdef CONFIG_PMB
	/*
	 * Purge any PMB entries that may have been established for this
	 * mapping, then proceed with conventional VMA teardown.
	 *
	 * XXX: Note that due to the way that remove_vm_area() does
	 * matching of the resultant VMA, we aren't able to fast-forward
	 * the address past the PMB space until the end of the VMA where
	 * the page tables reside. As such, unmap_vm_area() will be
	 * forced to linearly scan over the area until it finds the page
	 * tables where PTEs that need to be unmapped actually reside,
	 * which is far from optimal. Perhaps we need to use a separate
	 * VMA for the PMB mappings?
	 *					-- PFM.
	 */
	pmb_unmap(vaddr);
#endif

	p = remove_vm_area((void *)(vaddr & PAGE_MASK));
	if (!p) {
		printk(KERN_ERR "%s: bad address %p\n", __func__, addr);
		return;
	}

	kfree(p);
}
EXPORT_SYMBOL(__iounmap);