summaryrefslogtreecommitdiffstats
path: root/arch/sparc/kernel/sun4m_smp.c
blob: 5547fcb1d72df5c90ceaf9e39bdc50e68da9966c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
/*
 *  sun4m SMP support.
 *
 * Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu)
 */

#include <linux/clockchips.h>
#include <linux/interrupt.h>
#include <linux/profile.h>
#include <linux/delay.h>
#include <linux/sched/mm.h>
#include <linux/cpu.h>

#include <asm/cacheflush.h>
#include <asm/switch_to.h>
#include <asm/tlbflush.h>
#include <asm/timer.h>
#include <asm/oplib.h>

#include "irq.h"
#include "kernel.h"

#define IRQ_IPI_SINGLE		12
#define IRQ_IPI_MASK		13
#define IRQ_IPI_RESCHED		14
#define IRQ_CROSS_CALL		15

static inline unsigned long
swap_ulong(volatile unsigned long *ptr, unsigned long val)
{
	__asm__ __volatile__("swap [%1], %0\n\t" :
			     "=&r" (val), "=&r" (ptr) :
			     "0" (val), "1" (ptr));
	return val;
}

void sun4m_cpu_pre_starting(void *arg)
{
}

void sun4m_cpu_pre_online(void *arg)
{
	int cpuid = hard_smp_processor_id();

	/* Allow master to continue. The master will then give us the
	 * go-ahead by setting the smp_commenced_mask and will wait without
	 * timeouts until our setup is completed fully (signified by
	 * our bit being set in the cpu_online_mask).
	 */
	swap_ulong(&cpu_callin_map[cpuid], 1);

	/* XXX: What's up with all the flushes? */
	local_ops->cache_all();
	local_ops->tlb_all();

	/* Fix idle thread fields. */
	__asm__ __volatile__("ld [%0], %%g6\n\t"
			     : : "r" (&current_set[cpuid])
			     : "memory" /* paranoid */);

	/* Attach to the address space of init_task. */
	mmgrab(&init_mm);
	current->active_mm = &init_mm;

	while (!cpumask_test_cpu(cpuid, &smp_commenced_mask))
		mb();
}

/*
 *	Cycle through the processors asking the PROM to start each one.
 */
void __init smp4m_boot_cpus(void)
{
	sun4m_unmask_profile_irq();
	local_ops->cache_all();
}

int smp4m_boot_one_cpu(int i, struct task_struct *idle)
{
	unsigned long *entry = &sun4m_cpu_startup;
	int timeout;
	int cpu_node;

	cpu_find_by_mid(i, &cpu_node);
	current_set[i] = task_thread_info(idle);

	/* See trampoline.S for details... */
	entry += ((i - 1) * 3);

	/*
	 * Initialize the contexts table
	 * Since the call to prom_startcpu() trashes the structure,
	 * we need to re-initialize it for each cpu
	 */
	smp_penguin_ctable.which_io = 0;
	smp_penguin_ctable.phys_addr = (unsigned int) srmmu_ctx_table_phys;
	smp_penguin_ctable.reg_size = 0;

	/* whirrr, whirrr, whirrrrrrrrr... */
	printk(KERN_INFO "Starting CPU %d at %p\n", i, entry);
	local_ops->cache_all();
	prom_startcpu(cpu_node, &smp_penguin_ctable, 0, (char *)entry);

	/* wheee... it's going... */
	for (timeout = 0; timeout < 10000; timeout++) {
		if (cpu_callin_map[i])
			break;
		udelay(200);
	}

	if (!(cpu_callin_map[i])) {
		printk(KERN_ERR "Processor %d is stuck.\n", i);
		return -ENODEV;
	}

	local_ops->cache_all();
	return 0;
}

void __init smp4m_smp_done(void)
{
	int i, first;
	int *prev;

	/* setup cpu list for irq rotation */
	first = 0;
	prev = &first;
	for_each_online_cpu(i) {
		*prev = i;
		prev = &cpu_data(i).next;
	}
	*prev = first;
	local_ops->cache_all();

	/* Ok, they are spinning and ready to go. */
}

static void sun4m_send_ipi(int cpu, int level)
{
	sbus_writel(SUN4M_SOFT_INT(level), &sun4m_irq_percpu[cpu]->set);
}

static void sun4m_ipi_resched(int cpu)
{
	sun4m_send_ipi(cpu, IRQ_IPI_RESCHED);
}

static void sun4m_ipi_single(int cpu)
{
	sun4m_send_ipi(cpu, IRQ_IPI_SINGLE);
}

static void sun4m_ipi_mask_one(int cpu)
{
	sun4m_send_ipi(cpu, IRQ_IPI_MASK);
}

static struct smp_funcall {
	smpfunc_t func;
	unsigned long arg1;
	unsigned long arg2;
	unsigned long arg3;
	unsigned long arg4;
	unsigned long arg5;
	unsigned long processors_in[SUN4M_NCPUS];  /* Set when ipi entered. */
	unsigned long processors_out[SUN4M_NCPUS]; /* Set when ipi exited. */
} ccall_info;

static DEFINE_SPINLOCK(cross_call_lock);

/* Cross calls must be serialized, at least currently. */
static void sun4m_cross_call(smpfunc_t func, cpumask_t mask, unsigned long arg1,
			     unsigned long arg2, unsigned long arg3,
			     unsigned long arg4)
{
		register int ncpus = SUN4M_NCPUS;
		unsigned long flags;

		spin_lock_irqsave(&cross_call_lock, flags);

		/* Init function glue. */
		ccall_info.func = func;
		ccall_info.arg1 = arg1;
		ccall_info.arg2 = arg2;
		ccall_info.arg3 = arg3;
		ccall_info.arg4 = arg4;
		ccall_info.arg5 = 0;

		/* Init receive/complete mapping, plus fire the IPI's off. */
		{
			register int i;

			cpumask_clear_cpu(smp_processor_id(), &mask);
			cpumask_and(&mask, cpu_online_mask, &mask);
			for (i = 0; i < ncpus; i++) {
				if (cpumask_test_cpu(i, &mask)) {
					ccall_info.processors_in[i] = 0;
					ccall_info.processors_out[i] = 0;
					sun4m_send_ipi(i, IRQ_CROSS_CALL);
				} else {
					ccall_info.processors_in[i] = 1;
					ccall_info.processors_out[i] = 1;
				}
			}
		}

		{
			register int i;

			i = 0;
			do {
				if (!cpumask_test_cpu(i, &mask))
					continue;
				while (!ccall_info.processors_in[i])
					barrier();
			} while (++i < ncpus);

			i = 0;
			do {
				if (!cpumask_test_cpu(i, &mask))
					continue;
				while (!ccall_info.processors_out[i])
					barrier();
			} while (++i < ncpus);
		}
		spin_unlock_irqrestore(&cross_call_lock, flags);
}

/* Running cross calls. */
void smp4m_cross_call_irq(void)
{
	int i = smp_processor_id();

	ccall_info.processors_in[i] = 1;
	ccall_info.func(ccall_info.arg1, ccall_info.arg2, ccall_info.arg3,
			ccall_info.arg4, ccall_info.arg5);
	ccall_info.processors_out[i] = 1;
}

void smp4m_percpu_timer_interrupt(struct pt_regs *regs)
{
	struct pt_regs *old_regs;
	struct clock_event_device *ce;
	int cpu = smp_processor_id();

	old_regs = set_irq_regs(regs);

	ce = &per_cpu(sparc32_clockevent, cpu);

	if (clockevent_state_periodic(ce))
		sun4m_clear_profile_irq(cpu);
	else
		sparc_config.load_profile_irq(cpu, 0); /* Is this needless? */

	irq_enter();
	ce->event_handler(ce);
	irq_exit();

	set_irq_regs(old_regs);
}

static const struct sparc32_ipi_ops sun4m_ipi_ops = {
	.cross_call = sun4m_cross_call,
	.resched    = sun4m_ipi_resched,
	.single     = sun4m_ipi_single,
	.mask_one   = sun4m_ipi_mask_one,
};

void __init sun4m_init_smp(void)
{
	sparc32_ipi_ops = &sun4m_ipi_ops;
}