summaryrefslogtreecommitdiffstats
path: root/arch/x86/hyperv/ivm.c
blob: b4a851d27c7cb8f11fdc95c3d8a8eae6ef06f106 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
// SPDX-License-Identifier: GPL-2.0
/*
 * Hyper-V Isolation VM interface with paravisor and hypervisor
 *
 * Author:
 *  Tianyu Lan <Tianyu.Lan@microsoft.com>
 */

#include <linux/bitfield.h>
#include <linux/hyperv.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <asm/svm.h>
#include <asm/sev.h>
#include <asm/io.h>
#include <asm/coco.h>
#include <asm/mem_encrypt.h>
#include <asm/set_memory.h>
#include <asm/mshyperv.h>
#include <asm/hypervisor.h>
#include <asm/mtrr.h>
#include <asm/io_apic.h>
#include <asm/realmode.h>
#include <asm/e820/api.h>
#include <asm/desc.h>
#include <uapi/asm/vmx.h>

#ifdef CONFIG_AMD_MEM_ENCRYPT

#define GHCB_USAGE_HYPERV_CALL	1

union hv_ghcb {
	struct ghcb ghcb;
	struct {
		u64 hypercalldata[509];
		u64 outputgpa;
		union {
			union {
				struct {
					u32 callcode        : 16;
					u32 isfast          : 1;
					u32 reserved1       : 14;
					u32 isnested        : 1;
					u32 countofelements : 12;
					u32 reserved2       : 4;
					u32 repstartindex   : 12;
					u32 reserved3       : 4;
				};
				u64 asuint64;
			} hypercallinput;
			union {
				struct {
					u16 callstatus;
					u16 reserved1;
					u32 elementsprocessed : 12;
					u32 reserved2         : 20;
				};
				u64 asunit64;
			} hypercalloutput;
		};
		u64 reserved2;
	} hypercall;
} __packed __aligned(HV_HYP_PAGE_SIZE);

/* Only used in an SNP VM with the paravisor */
static u16 hv_ghcb_version __ro_after_init;

/* Functions only used in an SNP VM with the paravisor go here. */
u64 hv_ghcb_hypercall(u64 control, void *input, void *output, u32 input_size)
{
	union hv_ghcb *hv_ghcb;
	void **ghcb_base;
	unsigned long flags;
	u64 status;

	if (!hv_ghcb_pg)
		return -EFAULT;

	WARN_ON(in_nmi());

	local_irq_save(flags);
	ghcb_base = (void **)this_cpu_ptr(hv_ghcb_pg);
	hv_ghcb = (union hv_ghcb *)*ghcb_base;
	if (!hv_ghcb) {
		local_irq_restore(flags);
		return -EFAULT;
	}

	hv_ghcb->ghcb.protocol_version = GHCB_PROTOCOL_MAX;
	hv_ghcb->ghcb.ghcb_usage = GHCB_USAGE_HYPERV_CALL;

	hv_ghcb->hypercall.outputgpa = (u64)output;
	hv_ghcb->hypercall.hypercallinput.asuint64 = 0;
	hv_ghcb->hypercall.hypercallinput.callcode = control;

	if (input_size)
		memcpy(hv_ghcb->hypercall.hypercalldata, input, input_size);

	VMGEXIT();

	hv_ghcb->ghcb.ghcb_usage = 0xffffffff;
	memset(hv_ghcb->ghcb.save.valid_bitmap, 0,
	       sizeof(hv_ghcb->ghcb.save.valid_bitmap));

	status = hv_ghcb->hypercall.hypercalloutput.callstatus;

	local_irq_restore(flags);

	return status;
}

static inline u64 rd_ghcb_msr(void)
{
	return __rdmsr(MSR_AMD64_SEV_ES_GHCB);
}

static inline void wr_ghcb_msr(u64 val)
{
	native_wrmsrl(MSR_AMD64_SEV_ES_GHCB, val);
}

static enum es_result hv_ghcb_hv_call(struct ghcb *ghcb, u64 exit_code,
				   u64 exit_info_1, u64 exit_info_2)
{
	/* Fill in protocol and format specifiers */
	ghcb->protocol_version = hv_ghcb_version;
	ghcb->ghcb_usage       = GHCB_DEFAULT_USAGE;

	ghcb_set_sw_exit_code(ghcb, exit_code);
	ghcb_set_sw_exit_info_1(ghcb, exit_info_1);
	ghcb_set_sw_exit_info_2(ghcb, exit_info_2);

	VMGEXIT();

	if (ghcb->save.sw_exit_info_1 & GENMASK_ULL(31, 0))
		return ES_VMM_ERROR;
	else
		return ES_OK;
}

void __noreturn hv_ghcb_terminate(unsigned int set, unsigned int reason)
{
	u64 val = GHCB_MSR_TERM_REQ;

	/* Tell the hypervisor what went wrong. */
	val |= GHCB_SEV_TERM_REASON(set, reason);

	/* Request Guest Termination from Hypervisor */
	wr_ghcb_msr(val);
	VMGEXIT();

	while (true)
		asm volatile("hlt\n" : : : "memory");
}

bool hv_ghcb_negotiate_protocol(void)
{
	u64 ghcb_gpa;
	u64 val;

	/* Save ghcb page gpa. */
	ghcb_gpa = rd_ghcb_msr();

	/* Do the GHCB protocol version negotiation */
	wr_ghcb_msr(GHCB_MSR_SEV_INFO_REQ);
	VMGEXIT();
	val = rd_ghcb_msr();

	if (GHCB_MSR_INFO(val) != GHCB_MSR_SEV_INFO_RESP)
		return false;

	if (GHCB_MSR_PROTO_MAX(val) < GHCB_PROTOCOL_MIN ||
	    GHCB_MSR_PROTO_MIN(val) > GHCB_PROTOCOL_MAX)
		return false;

	hv_ghcb_version = min_t(size_t, GHCB_MSR_PROTO_MAX(val),
			     GHCB_PROTOCOL_MAX);

	/* Write ghcb page back after negotiating protocol. */
	wr_ghcb_msr(ghcb_gpa);
	VMGEXIT();

	return true;
}

static void hv_ghcb_msr_write(u64 msr, u64 value)
{
	union hv_ghcb *hv_ghcb;
	void **ghcb_base;
	unsigned long flags;

	if (!hv_ghcb_pg)
		return;

	WARN_ON(in_nmi());

	local_irq_save(flags);
	ghcb_base = (void **)this_cpu_ptr(hv_ghcb_pg);
	hv_ghcb = (union hv_ghcb *)*ghcb_base;
	if (!hv_ghcb) {
		local_irq_restore(flags);
		return;
	}

	ghcb_set_rcx(&hv_ghcb->ghcb, msr);
	ghcb_set_rax(&hv_ghcb->ghcb, lower_32_bits(value));
	ghcb_set_rdx(&hv_ghcb->ghcb, upper_32_bits(value));

	if (hv_ghcb_hv_call(&hv_ghcb->ghcb, SVM_EXIT_MSR, 1, 0))
		pr_warn("Fail to write msr via ghcb %llx.\n", msr);

	local_irq_restore(flags);
}

static void hv_ghcb_msr_read(u64 msr, u64 *value)
{
	union hv_ghcb *hv_ghcb;
	void **ghcb_base;
	unsigned long flags;

	/* Check size of union hv_ghcb here. */
	BUILD_BUG_ON(sizeof(union hv_ghcb) != HV_HYP_PAGE_SIZE);

	if (!hv_ghcb_pg)
		return;

	WARN_ON(in_nmi());

	local_irq_save(flags);
	ghcb_base = (void **)this_cpu_ptr(hv_ghcb_pg);
	hv_ghcb = (union hv_ghcb *)*ghcb_base;
	if (!hv_ghcb) {
		local_irq_restore(flags);
		return;
	}

	ghcb_set_rcx(&hv_ghcb->ghcb, msr);
	if (hv_ghcb_hv_call(&hv_ghcb->ghcb, SVM_EXIT_MSR, 0, 0))
		pr_warn("Fail to read msr via ghcb %llx.\n", msr);
	else
		*value = (u64)lower_32_bits(hv_ghcb->ghcb.save.rax)
			| ((u64)lower_32_bits(hv_ghcb->ghcb.save.rdx) << 32);
	local_irq_restore(flags);
}

/* Only used in a fully enlightened SNP VM, i.e. without the paravisor */
static u8 ap_start_input_arg[PAGE_SIZE] __bss_decrypted __aligned(PAGE_SIZE);
static u8 ap_start_stack[PAGE_SIZE] __aligned(PAGE_SIZE);
static DEFINE_PER_CPU(struct sev_es_save_area *, hv_sev_vmsa);

/* Functions only used in an SNP VM without the paravisor go here. */

#define hv_populate_vmcb_seg(seg, gdtr_base)			\
do {								\
	if (seg.selector) {					\
		seg.base = 0;					\
		seg.limit = HV_AP_SEGMENT_LIMIT;		\
		seg.attrib = *(u16 *)(gdtr_base + seg.selector + 5);	\
		seg.attrib = (seg.attrib & 0xFF) | ((seg.attrib >> 4) & 0xF00); \
	}							\
} while (0)							\

static int snp_set_vmsa(void *va, bool vmsa)
{
	u64 attrs;

	/*
	 * Running at VMPL0 allows the kernel to change the VMSA bit for a page
	 * using the RMPADJUST instruction. However, for the instruction to
	 * succeed it must target the permissions of a lesser privileged
	 * (higher numbered) VMPL level, so use VMPL1 (refer to the RMPADJUST
	 * instruction in the AMD64 APM Volume 3).
	 */
	attrs = 1;
	if (vmsa)
		attrs |= RMPADJUST_VMSA_PAGE_BIT;

	return rmpadjust((unsigned long)va, RMP_PG_SIZE_4K, attrs);
}

static void snp_cleanup_vmsa(struct sev_es_save_area *vmsa)
{
	int err;

	err = snp_set_vmsa(vmsa, false);
	if (err)
		pr_err("clear VMSA page failed (%u), leaking page\n", err);
	else
		free_page((unsigned long)vmsa);
}

int hv_snp_boot_ap(u32 cpu, unsigned long start_ip)
{
	struct sev_es_save_area *vmsa = (struct sev_es_save_area *)
		__get_free_page(GFP_KERNEL | __GFP_ZERO);
	struct sev_es_save_area *cur_vmsa;
	struct desc_ptr gdtr;
	u64 ret, retry = 5;
	struct hv_enable_vp_vtl *start_vp_input;
	unsigned long flags;

	if (!vmsa)
		return -ENOMEM;

	native_store_gdt(&gdtr);

	vmsa->gdtr.base = gdtr.address;
	vmsa->gdtr.limit = gdtr.size;

	asm volatile("movl %%es, %%eax;" : "=a" (vmsa->es.selector));
	hv_populate_vmcb_seg(vmsa->es, vmsa->gdtr.base);

	asm volatile("movl %%cs, %%eax;" : "=a" (vmsa->cs.selector));
	hv_populate_vmcb_seg(vmsa->cs, vmsa->gdtr.base);

	asm volatile("movl %%ss, %%eax;" : "=a" (vmsa->ss.selector));
	hv_populate_vmcb_seg(vmsa->ss, vmsa->gdtr.base);

	asm volatile("movl %%ds, %%eax;" : "=a" (vmsa->ds.selector));
	hv_populate_vmcb_seg(vmsa->ds, vmsa->gdtr.base);

	vmsa->efer = native_read_msr(MSR_EFER);

	asm volatile("movq %%cr4, %%rax;" : "=a" (vmsa->cr4));
	asm volatile("movq %%cr3, %%rax;" : "=a" (vmsa->cr3));
	asm volatile("movq %%cr0, %%rax;" : "=a" (vmsa->cr0));

	vmsa->xcr0 = 1;
	vmsa->g_pat = HV_AP_INIT_GPAT_DEFAULT;
	vmsa->rip = (u64)secondary_startup_64_no_verify;
	vmsa->rsp = (u64)&ap_start_stack[PAGE_SIZE];

	/*
	 * Set the SNP-specific fields for this VMSA:
	 *   VMPL level
	 *   SEV_FEATURES (matches the SEV STATUS MSR right shifted 2 bits)
	 */
	vmsa->vmpl = 0;
	vmsa->sev_features = sev_status >> 2;

	ret = snp_set_vmsa(vmsa, true);
	if (!ret) {
		pr_err("RMPADJUST(%llx) failed: %llx\n", (u64)vmsa, ret);
		free_page((u64)vmsa);
		return ret;
	}

	local_irq_save(flags);
	start_vp_input = (struct hv_enable_vp_vtl *)ap_start_input_arg;
	memset(start_vp_input, 0, sizeof(*start_vp_input));
	start_vp_input->partition_id = -1;
	start_vp_input->vp_index = cpu;
	start_vp_input->target_vtl.target_vtl = ms_hyperv.vtl;
	*(u64 *)&start_vp_input->vp_context = __pa(vmsa) | 1;

	do {
		ret = hv_do_hypercall(HVCALL_START_VP,
				      start_vp_input, NULL);
	} while (hv_result(ret) == HV_STATUS_TIME_OUT && retry--);

	local_irq_restore(flags);

	if (!hv_result_success(ret)) {
		pr_err("HvCallStartVirtualProcessor failed: %llx\n", ret);
		snp_cleanup_vmsa(vmsa);
		vmsa = NULL;
	}

	cur_vmsa = per_cpu(hv_sev_vmsa, cpu);
	/* Free up any previous VMSA page */
	if (cur_vmsa)
		snp_cleanup_vmsa(cur_vmsa);

	/* Record the current VMSA page */
	per_cpu(hv_sev_vmsa, cpu) = vmsa;

	return ret;
}

#else
static inline void hv_ghcb_msr_write(u64 msr, u64 value) {}
static inline void hv_ghcb_msr_read(u64 msr, u64 *value) {}
#endif /* CONFIG_AMD_MEM_ENCRYPT */

#ifdef CONFIG_INTEL_TDX_GUEST
static void hv_tdx_msr_write(u64 msr, u64 val)
{
	struct tdx_module_args args = {
		.r10 = TDX_HYPERCALL_STANDARD,
		.r11 = EXIT_REASON_MSR_WRITE,
		.r12 = msr,
		.r13 = val,
	};

	u64 ret = __tdx_hypercall(&args);

	WARN_ONCE(ret, "Failed to emulate MSR write: %lld\n", ret);
}

static void hv_tdx_msr_read(u64 msr, u64 *val)
{
	struct tdx_module_args args = {
		.r10 = TDX_HYPERCALL_STANDARD,
		.r11 = EXIT_REASON_MSR_READ,
		.r12 = msr,
	};

	u64 ret = __tdx_hypercall(&args);

	if (WARN_ONCE(ret, "Failed to emulate MSR read: %lld\n", ret))
		*val = 0;
	else
		*val = args.r11;
}

u64 hv_tdx_hypercall(u64 control, u64 param1, u64 param2)
{
	struct tdx_module_args args = { };

	args.r10 = control;
	args.rdx = param1;
	args.r8  = param2;

	(void)__tdx_hypercall(&args);

	return args.r11;
}

#else
static inline void hv_tdx_msr_write(u64 msr, u64 value) {}
static inline void hv_tdx_msr_read(u64 msr, u64 *value) {}
#endif /* CONFIG_INTEL_TDX_GUEST */

#if defined(CONFIG_AMD_MEM_ENCRYPT) || defined(CONFIG_INTEL_TDX_GUEST)
void hv_ivm_msr_write(u64 msr, u64 value)
{
	if (!ms_hyperv.paravisor_present)
		return;

	if (hv_isolation_type_tdx())
		hv_tdx_msr_write(msr, value);
	else if (hv_isolation_type_snp())
		hv_ghcb_msr_write(msr, value);
}

void hv_ivm_msr_read(u64 msr, u64 *value)
{
	if (!ms_hyperv.paravisor_present)
		return;

	if (hv_isolation_type_tdx())
		hv_tdx_msr_read(msr, value);
	else if (hv_isolation_type_snp())
		hv_ghcb_msr_read(msr, value);
}

/*
 * hv_mark_gpa_visibility - Set pages visible to host via hvcall.
 *
 * In Isolation VM, all guest memory is encrypted from host and guest
 * needs to set memory visible to host via hvcall before sharing memory
 * with host.
 */
static int hv_mark_gpa_visibility(u16 count, const u64 pfn[],
			   enum hv_mem_host_visibility visibility)
{
	struct hv_gpa_range_for_visibility *input;
	u16 pages_processed;
	u64 hv_status;
	unsigned long flags;

	/* no-op if partition isolation is not enabled */
	if (!hv_is_isolation_supported())
		return 0;

	if (count > HV_MAX_MODIFY_GPA_REP_COUNT) {
		pr_err("Hyper-V: GPA count:%d exceeds supported:%lu\n", count,
			HV_MAX_MODIFY_GPA_REP_COUNT);
		return -EINVAL;
	}

	local_irq_save(flags);
	input = *this_cpu_ptr(hyperv_pcpu_input_arg);

	if (unlikely(!input)) {
		local_irq_restore(flags);
		return -EINVAL;
	}

	input->partition_id = HV_PARTITION_ID_SELF;
	input->host_visibility = visibility;
	input->reserved0 = 0;
	input->reserved1 = 0;
	memcpy((void *)input->gpa_page_list, pfn, count * sizeof(*pfn));
	hv_status = hv_do_rep_hypercall(
			HVCALL_MODIFY_SPARSE_GPA_PAGE_HOST_VISIBILITY, count,
			0, input, &pages_processed);
	local_irq_restore(flags);

	if (hv_result_success(hv_status))
		return 0;
	else
		return -EFAULT;
}

/*
 * When transitioning memory between encrypted and decrypted, the caller
 * of set_memory_encrypted() or set_memory_decrypted() is responsible for
 * ensuring that the memory isn't in use and isn't referenced while the
 * transition is in progress.  The transition has multiple steps, and the
 * memory is in an inconsistent state until all steps are complete. A
 * reference while the state is inconsistent could result in an exception
 * that can't be cleanly fixed up.
 *
 * But the Linux kernel load_unaligned_zeropad() mechanism could cause a
 * stray reference that can't be prevented by the caller, so Linux has
 * specific code to handle this case. But when the #VC and #VE exceptions
 * routed to a paravisor, the specific code doesn't work. To avoid this
 * problem, mark the pages as "not present" while the transition is in
 * progress. If load_unaligned_zeropad() causes a stray reference, a normal
 * page fault is generated instead of #VC or #VE, and the page-fault-based
 * handlers for load_unaligned_zeropad() resolve the reference.  When the
 * transition is complete, hv_vtom_set_host_visibility() marks the pages
 * as "present" again.
 */
static int hv_vtom_clear_present(unsigned long kbuffer, int pagecount, bool enc)
{
	return set_memory_np(kbuffer, pagecount);
}

/*
 * hv_vtom_set_host_visibility - Set specified memory visible to host.
 *
 * In Isolation VM, all guest memory is encrypted from host and guest
 * needs to set memory visible to host via hvcall before sharing memory
 * with host. This function works as wrap of hv_mark_gpa_visibility()
 * with memory base and size.
 */
static int hv_vtom_set_host_visibility(unsigned long kbuffer, int pagecount, bool enc)
{
	enum hv_mem_host_visibility visibility = enc ?
			VMBUS_PAGE_NOT_VISIBLE : VMBUS_PAGE_VISIBLE_READ_WRITE;
	u64 *pfn_array;
	phys_addr_t paddr;
	int i, pfn, err;
	void *vaddr;
	int ret = 0;

	pfn_array = kmalloc(HV_HYP_PAGE_SIZE, GFP_KERNEL);
	if (!pfn_array) {
		ret = -ENOMEM;
		goto err_set_memory_p;
	}

	for (i = 0, pfn = 0; i < pagecount; i++) {
		/*
		 * Use slow_virt_to_phys() because the PRESENT bit has been
		 * temporarily cleared in the PTEs.  slow_virt_to_phys() works
		 * without the PRESENT bit while virt_to_hvpfn() or similar
		 * does not.
		 */
		vaddr = (void *)kbuffer + (i * HV_HYP_PAGE_SIZE);
		paddr = slow_virt_to_phys(vaddr);
		pfn_array[pfn] = paddr >> HV_HYP_PAGE_SHIFT;
		pfn++;

		if (pfn == HV_MAX_MODIFY_GPA_REP_COUNT || i == pagecount - 1) {
			ret = hv_mark_gpa_visibility(pfn, pfn_array,
						     visibility);
			if (ret)
				goto err_free_pfn_array;
			pfn = 0;
		}
	}

err_free_pfn_array:
	kfree(pfn_array);

err_set_memory_p:
	/*
	 * Set the PTE PRESENT bits again to revert what hv_vtom_clear_present()
	 * did. Do this even if there is an error earlier in this function in
	 * order to avoid leaving the memory range in a "broken" state. Setting
	 * the PRESENT bits shouldn't fail, but return an error if it does.
	 */
	err = set_memory_p(kbuffer, pagecount);
	if (err && !ret)
		ret = err;

	return ret;
}

static bool hv_vtom_tlb_flush_required(bool private)
{
	/*
	 * Since hv_vtom_clear_present() marks the PTEs as "not present"
	 * and flushes the TLB, they can't be in the TLB. That makes the
	 * flush controlled by this function redundant, so return "false".
	 */
	return false;
}

static bool hv_vtom_cache_flush_required(void)
{
	return false;
}

static bool hv_is_private_mmio(u64 addr)
{
	/*
	 * Hyper-V always provides a single IO-APIC in a guest VM.
	 * When a paravisor is used, it is emulated by the paravisor
	 * in the guest context and must be mapped private.
	 */
	if (addr >= HV_IOAPIC_BASE_ADDRESS &&
	    addr < (HV_IOAPIC_BASE_ADDRESS + PAGE_SIZE))
		return true;

	/* Same with a vTPM */
	if (addr >= VTPM_BASE_ADDRESS &&
	    addr < (VTPM_BASE_ADDRESS + PAGE_SIZE))
		return true;

	return false;
}

void __init hv_vtom_init(void)
{
	enum hv_isolation_type type = hv_get_isolation_type();

	switch (type) {
	case HV_ISOLATION_TYPE_VBS:
		fallthrough;
	/*
	 * By design, a VM using vTOM doesn't see the SEV setting,
	 * so SEV initialization is bypassed and sev_status isn't set.
	 * Set it here to indicate a vTOM VM.
	 *
	 * Note: if CONFIG_AMD_MEM_ENCRYPT is not set, sev_status is
	 * defined as 0ULL, to which we can't assigned a value.
	 */
#ifdef CONFIG_AMD_MEM_ENCRYPT
	case HV_ISOLATION_TYPE_SNP:
		sev_status = MSR_AMD64_SNP_VTOM;
		cc_vendor = CC_VENDOR_AMD;
		break;
#endif

	case HV_ISOLATION_TYPE_TDX:
		cc_vendor = CC_VENDOR_INTEL;
		break;

	default:
		panic("hv_vtom_init: unsupported isolation type %d\n", type);
	}

	cc_set_mask(ms_hyperv.shared_gpa_boundary);
	physical_mask &= ms_hyperv.shared_gpa_boundary - 1;

	x86_platform.hyper.is_private_mmio = hv_is_private_mmio;
	x86_platform.guest.enc_cache_flush_required = hv_vtom_cache_flush_required;
	x86_platform.guest.enc_tlb_flush_required = hv_vtom_tlb_flush_required;
	x86_platform.guest.enc_status_change_prepare = hv_vtom_clear_present;
	x86_platform.guest.enc_status_change_finish = hv_vtom_set_host_visibility;

	/* Set WB as the default cache mode. */
	mtrr_overwrite_state(NULL, 0, MTRR_TYPE_WRBACK);
}

#endif /* defined(CONFIG_AMD_MEM_ENCRYPT) || defined(CONFIG_INTEL_TDX_GUEST) */

enum hv_isolation_type hv_get_isolation_type(void)
{
	if (!(ms_hyperv.priv_high & HV_ISOLATION))
		return HV_ISOLATION_TYPE_NONE;
	return FIELD_GET(HV_ISOLATION_TYPE, ms_hyperv.isolation_config_b);
}
EXPORT_SYMBOL_GPL(hv_get_isolation_type);

/*
 * hv_is_isolation_supported - Check system runs in the Hyper-V
 * isolation VM.
 */
bool hv_is_isolation_supported(void)
{
	if (!cpu_feature_enabled(X86_FEATURE_HYPERVISOR))
		return false;

	if (!hypervisor_is_type(X86_HYPER_MS_HYPERV))
		return false;

	return hv_get_isolation_type() != HV_ISOLATION_TYPE_NONE;
}

DEFINE_STATIC_KEY_FALSE(isolation_type_snp);

/*
 * hv_isolation_type_snp - Check if the system runs in an AMD SEV-SNP based
 * isolation VM.
 */
bool hv_isolation_type_snp(void)
{
	return static_branch_unlikely(&isolation_type_snp);
}

DEFINE_STATIC_KEY_FALSE(isolation_type_tdx);
/*
 * hv_isolation_type_tdx - Check if the system runs in an Intel TDX based
 * isolated VM.
 */
bool hv_isolation_type_tdx(void)
{
	return static_branch_unlikely(&isolation_type_tdx);
}