summaryrefslogtreecommitdiffstats
path: root/arch/x86/kernel/fpu/init.c
blob: 0a250afc6cdf5f6710ab0a7969e8b3a35cf9963b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
/*
 * x86 FPU boot time init code:
 */
#include <asm/fpu/internal.h>
#include <asm/tlbflush.h>

#include <linux/sched.h>

/*
 * Initialize the TS bit in CR0 according to the style of context-switches
 * we are using:
 */
static void fpu__init_cpu_ctx_switch(void)
{
	if (!cpu_has_eager_fpu)
		stts();
	else
		clts();
}

/*
 * Initialize the registers found in all CPUs, CR0 and CR4:
 */
static void fpu__init_cpu_generic(void)
{
	unsigned long cr0;
	unsigned long cr4_mask = 0;

	if (cpu_has_fxsr)
		cr4_mask |= X86_CR4_OSFXSR;
	if (cpu_has_xmm)
		cr4_mask |= X86_CR4_OSXMMEXCPT;
	if (cr4_mask)
		cr4_set_bits(cr4_mask);

	cr0 = read_cr0();
	cr0 &= ~(X86_CR0_TS|X86_CR0_EM); /* clear TS and EM */
	if (!cpu_has_fpu)
		cr0 |= X86_CR0_EM;
	write_cr0(cr0);

	/* Flush out any pending x87 state: */
#ifdef CONFIG_MATH_EMULATION
	if (!cpu_has_fpu)
		fpstate_init_soft(&current->thread.fpu.state.soft);
	else
#endif
		asm volatile ("fninit");
}

/*
 * Enable all supported FPU features. Called when a CPU is brought online:
 */
void fpu__init_cpu(void)
{
	fpu__init_cpu_generic();
	fpu__init_cpu_xstate();
	fpu__init_cpu_ctx_switch();
}

/*
 * The earliest FPU detection code.
 *
 * Set the X86_FEATURE_FPU CPU-capability bit based on
 * trying to execute an actual sequence of FPU instructions:
 */
static void fpu__init_system_early_generic(struct cpuinfo_x86 *c)
{
	unsigned long cr0;
	u16 fsw, fcw;

	fsw = fcw = 0xffff;

	cr0 = read_cr0();
	cr0 &= ~(X86_CR0_TS | X86_CR0_EM);
	write_cr0(cr0);

	asm volatile("fninit ; fnstsw %0 ; fnstcw %1"
		     : "+m" (fsw), "+m" (fcw));

	if (fsw == 0 && (fcw & 0x103f) == 0x003f)
		set_cpu_cap(c, X86_FEATURE_FPU);
	else
		clear_cpu_cap(c, X86_FEATURE_FPU);

#ifndef CONFIG_MATH_EMULATION
	if (!cpu_has_fpu) {
		pr_emerg("x86/fpu: Giving up, no FPU found and no math emulation present\n");
		for (;;)
			asm volatile("hlt");
	}
#endif
}

/*
 * Boot time FPU feature detection code:
 */
unsigned int mxcsr_feature_mask __read_mostly = 0xffffffffu;

static void __init fpu__init_system_mxcsr(void)
{
	unsigned int mask = 0;

	if (cpu_has_fxsr) {
		/* Static because GCC does not get 16-byte stack alignment right: */
		static struct fxregs_state fxregs __initdata;

		asm volatile("fxsave %0" : "+m" (fxregs));

		mask = fxregs.mxcsr_mask;

		/*
		 * If zero then use the default features mask,
		 * which has all features set, except the
		 * denormals-are-zero feature bit:
		 */
		if (mask == 0)
			mask = 0x0000ffbf;
	}
	mxcsr_feature_mask &= mask;
}

/*
 * Once per bootup FPU initialization sequences that will run on most x86 CPUs:
 */
static void __init fpu__init_system_generic(void)
{
	/*
	 * Set up the legacy init FPU context. (xstate init might overwrite this
	 * with a more modern format, if the CPU supports it.)
	 */
	fpstate_init_fxstate(&init_fpstate.fxsave);

	fpu__init_system_mxcsr();
}

/*
 * Size of the FPU context state. All tasks in the system use the
 * same context size, regardless of what portion they use.
 * This is inherent to the XSAVE architecture which puts all state
 * components into a single, continuous memory block:
 */
unsigned int xstate_size;
EXPORT_SYMBOL_GPL(xstate_size);

/* Enforce that 'MEMBER' is the last field of 'TYPE': */
#define CHECK_MEMBER_AT_END_OF(TYPE, MEMBER) \
	BUILD_BUG_ON(sizeof(TYPE) != offsetofend(TYPE, MEMBER))

/*
 * We append the 'struct fpu' to the task_struct:
 */
static void __init fpu__init_task_struct_size(void)
{
	int task_size = sizeof(struct task_struct);

	/*
	 * Subtract off the static size of the register state.
	 * It potentially has a bunch of padding.
	 */
	task_size -= sizeof(((struct task_struct *)0)->thread.fpu.state);

	/*
	 * Add back the dynamically-calculated register state
	 * size.
	 */
	task_size += xstate_size;

	/*
	 * We dynamically size 'struct fpu', so we require that
	 * it be at the end of 'thread_struct' and that
	 * 'thread_struct' be at the end of 'task_struct'.  If
	 * you hit a compile error here, check the structure to
	 * see if something got added to the end.
	 */
	CHECK_MEMBER_AT_END_OF(struct fpu, state);
	CHECK_MEMBER_AT_END_OF(struct thread_struct, fpu);
	CHECK_MEMBER_AT_END_OF(struct task_struct, thread);

	arch_task_struct_size = task_size;
}

/*
 * Set up the xstate_size based on the legacy FPU context size.
 *
 * We set this up first, and later it will be overwritten by
 * fpu__init_system_xstate() if the CPU knows about xstates.
 */
static void __init fpu__init_system_xstate_size_legacy(void)
{
	static int on_boot_cpu = 1;

	WARN_ON_FPU(!on_boot_cpu);
	on_boot_cpu = 0;

	/*
	 * Note that xstate_size might be overwriten later during
	 * fpu__init_system_xstate().
	 */

	if (!cpu_has_fpu) {
		/*
		 * Disable xsave as we do not support it if i387
		 * emulation is enabled.
		 */
		setup_clear_cpu_cap(X86_FEATURE_XSAVE);
		setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
		xstate_size = sizeof(struct swregs_state);
	} else {
		if (cpu_has_fxsr)
			xstate_size = sizeof(struct fxregs_state);
		else
			xstate_size = sizeof(struct fregs_state);
	}
	/*
	 * Quirk: we don't yet handle the XSAVES* instructions
	 * correctly, as we don't correctly convert between
	 * standard and compacted format when interfacing
	 * with user-space - so disable it for now.
	 *
	 * The difference is small: with recent CPUs the
	 * compacted format is only marginally smaller than
	 * the standard FPU state format.
	 *
	 * ( This is easy to backport while we are fixing
	 *   XSAVES* support. )
	 */
	setup_clear_cpu_cap(X86_FEATURE_XSAVES);
}

/*
 * FPU context switching strategies:
 *
 * Against popular belief, we don't do lazy FPU saves, due to the
 * task migration complications it brings on SMP - we only do
 * lazy FPU restores.
 *
 * 'lazy' is the traditional strategy, which is based on setting
 * CR0::TS to 1 during context-switch (instead of doing a full
 * restore of the FPU state), which causes the first FPU instruction
 * after the context switch (whenever it is executed) to fault - at
 * which point we lazily restore the FPU state into FPU registers.
 *
 * Tasks are of course under no obligation to execute FPU instructions,
 * so it can easily happen that another context-switch occurs without
 * a single FPU instruction being executed. If we eventually switch
 * back to the original task (that still owns the FPU) then we have
 * not only saved the restores along the way, but we also have the
 * FPU ready to be used for the original task.
 *
 * 'eager' switching is used on modern CPUs, there we switch the FPU
 * state during every context switch, regardless of whether the task
 * has used FPU instructions in that time slice or not. This is done
 * because modern FPU context saving instructions are able to optimize
 * state saving and restoration in hardware: they can detect both
 * unused and untouched FPU state and optimize accordingly.
 *
 * [ Note that even in 'lazy' mode we might optimize context switches
 *   to use 'eager' restores, if we detect that a task is using the FPU
 *   frequently. See the fpu->counter logic in fpu/internal.h for that. ]
 */
static enum { AUTO, ENABLE, DISABLE } eagerfpu = AUTO;

static int __init eager_fpu_setup(char *s)
{
	if (!strcmp(s, "on"))
		eagerfpu = ENABLE;
	else if (!strcmp(s, "off"))
		eagerfpu = DISABLE;
	else if (!strcmp(s, "auto"))
		eagerfpu = AUTO;
	return 1;
}
__setup("eagerfpu=", eager_fpu_setup);

/*
 * Pick the FPU context switching strategy:
 */
static void __init fpu__init_system_ctx_switch(void)
{
	static bool on_boot_cpu = 1;

	WARN_ON_FPU(!on_boot_cpu);
	on_boot_cpu = 0;

	WARN_ON_FPU(current->thread.fpu.fpstate_active);
	current_thread_info()->status = 0;

	/* Auto enable eagerfpu for xsaveopt */
	if (cpu_has_xsaveopt && eagerfpu != DISABLE)
		eagerfpu = ENABLE;

	if (xfeatures_mask & XSTATE_EAGER) {
		if (eagerfpu == DISABLE) {
			pr_err("x86/fpu: eagerfpu switching disabled, disabling the following xstate features: 0x%llx.\n",
			       xfeatures_mask & XSTATE_EAGER);
			xfeatures_mask &= ~XSTATE_EAGER;
		} else {
			eagerfpu = ENABLE;
		}
	}

	if (eagerfpu == ENABLE)
		setup_force_cpu_cap(X86_FEATURE_EAGER_FPU);

	printk(KERN_INFO "x86/fpu: Using '%s' FPU context switches.\n", eagerfpu == ENABLE ? "eager" : "lazy");
}

/*
 * Called on the boot CPU once per system bootup, to set up the initial
 * FPU state that is later cloned into all processes:
 */
void __init fpu__init_system(struct cpuinfo_x86 *c)
{
	fpu__init_system_early_generic(c);

	/*
	 * The FPU has to be operational for some of the
	 * later FPU init activities:
	 */
	fpu__init_cpu();

	/*
	 * But don't leave CR0::TS set yet, as some of the FPU setup
	 * methods depend on being able to execute FPU instructions
	 * that will fault on a set TS, such as the FXSAVE in
	 * fpu__init_system_mxcsr().
	 */
	clts();

	fpu__init_system_generic();
	fpu__init_system_xstate_size_legacy();
	fpu__init_system_xstate();
	fpu__init_task_struct_size();

	fpu__init_system_ctx_switch();
}

/*
 * Boot parameter to turn off FPU support and fall back to math-emu:
 */
static int __init no_387(char *s)
{
	setup_clear_cpu_cap(X86_FEATURE_FPU);
	return 1;
}
__setup("no387", no_387);

/*
 * Disable all xstate CPU features:
 */
static int __init x86_noxsave_setup(char *s)
{
	if (strlen(s))
		return 0;

	fpu__xstate_clear_all_cpu_caps();

	return 1;
}
__setup("noxsave", x86_noxsave_setup);

/*
 * Disable the XSAVEOPT instruction specifically:
 */
static int __init x86_noxsaveopt_setup(char *s)
{
	setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);

	return 1;
}
__setup("noxsaveopt", x86_noxsaveopt_setup);

/*
 * Disable the XSAVES instruction:
 */
static int __init x86_noxsaves_setup(char *s)
{
	setup_clear_cpu_cap(X86_FEATURE_XSAVES);

	return 1;
}
__setup("noxsaves", x86_noxsaves_setup);

/*
 * Disable FX save/restore and SSE support:
 */
static int __init x86_nofxsr_setup(char *s)
{
	setup_clear_cpu_cap(X86_FEATURE_FXSR);
	setup_clear_cpu_cap(X86_FEATURE_FXSR_OPT);
	setup_clear_cpu_cap(X86_FEATURE_XMM);

	return 1;
}
__setup("nofxsr", x86_nofxsr_setup);