summaryrefslogtreecommitdiffstats
path: root/arch/x86/kvm/cpuid.c
blob: 4c1c2c06e96bb261ee0884adf192f06e231c0c78 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Kernel-based Virtual Machine driver for Linux
 * cpuid support routines
 *
 * derived from arch/x86/kvm/x86.c
 *
 * Copyright 2011 Red Hat, Inc. and/or its affiliates.
 * Copyright IBM Corporation, 2008
 */

#include <linux/kvm_host.h>
#include <linux/export.h>
#include <linux/vmalloc.h>
#include <linux/uaccess.h>
#include <linux/sched/stat.h>

#include <asm/processor.h>
#include <asm/user.h>
#include <asm/fpu/xstate.h>
#include <asm/sgx.h>
#include <asm/cpuid.h>
#include "cpuid.h"
#include "lapic.h"
#include "mmu.h"
#include "trace.h"
#include "pmu.h"

/*
 * Unlike "struct cpuinfo_x86.x86_capability", kvm_cpu_caps doesn't need to be
 * aligned to sizeof(unsigned long) because it's not accessed via bitops.
 */
u32 kvm_cpu_caps[NR_KVM_CPU_CAPS] __read_mostly;
EXPORT_SYMBOL_GPL(kvm_cpu_caps);

u32 xstate_required_size(u64 xstate_bv, bool compacted)
{
	int feature_bit = 0;
	u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;

	xstate_bv &= XFEATURE_MASK_EXTEND;
	while (xstate_bv) {
		if (xstate_bv & 0x1) {
		        u32 eax, ebx, ecx, edx, offset;
		        cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
			/* ECX[1]: 64B alignment in compacted form */
			if (compacted)
				offset = (ecx & 0x2) ? ALIGN(ret, 64) : ret;
			else
				offset = ebx;
			ret = max(ret, offset + eax);
		}

		xstate_bv >>= 1;
		feature_bit++;
	}

	return ret;
}

/*
 * This one is tied to SSB in the user API, and not
 * visible in /proc/cpuinfo.
 */
#define KVM_X86_FEATURE_PSFD		(13*32+28) /* Predictive Store Forwarding Disable */

#define F feature_bit
#define SF(name) (boot_cpu_has(X86_FEATURE_##name) ? F(name) : 0)

/*
 * Magic value used by KVM when querying userspace-provided CPUID entries and
 * doesn't care about the CPIUD index because the index of the function in
 * question is not significant.  Note, this magic value must have at least one
 * bit set in bits[63:32] and must be consumed as a u64 by cpuid_entry2_find()
 * to avoid false positives when processing guest CPUID input.
 */
#define KVM_CPUID_INDEX_NOT_SIGNIFICANT -1ull

static inline struct kvm_cpuid_entry2 *cpuid_entry2_find(
	struct kvm_cpuid_entry2 *entries, int nent, u32 function, u64 index)
{
	struct kvm_cpuid_entry2 *e;
	int i;

	for (i = 0; i < nent; i++) {
		e = &entries[i];

		if (e->function != function)
			continue;

		/*
		 * If the index isn't significant, use the first entry with a
		 * matching function.  It's userspace's responsibilty to not
		 * provide "duplicate" entries in all cases.
		 */
		if (!(e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) || e->index == index)
			return e;


		/*
		 * Similarly, use the first matching entry if KVM is doing a
		 * lookup (as opposed to emulating CPUID) for a function that's
		 * architecturally defined as not having a significant index.
		 */
		if (index == KVM_CPUID_INDEX_NOT_SIGNIFICANT) {
			/*
			 * Direct lookups from KVM should not diverge from what
			 * KVM defines internally (the architectural behavior).
			 */
			WARN_ON_ONCE(cpuid_function_is_indexed(function));
			return e;
		}
	}

	return NULL;
}

static int kvm_check_cpuid(struct kvm_vcpu *vcpu,
			   struct kvm_cpuid_entry2 *entries,
			   int nent)
{
	struct kvm_cpuid_entry2 *best;
	u64 xfeatures;

	/*
	 * The existing code assumes virtual address is 48-bit or 57-bit in the
	 * canonical address checks; exit if it is ever changed.
	 */
	best = cpuid_entry2_find(entries, nent, 0x80000008,
				 KVM_CPUID_INDEX_NOT_SIGNIFICANT);
	if (best) {
		int vaddr_bits = (best->eax & 0xff00) >> 8;

		if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
			return -EINVAL;
	}

	/*
	 * Exposing dynamic xfeatures to the guest requires additional
	 * enabling in the FPU, e.g. to expand the guest XSAVE state size.
	 */
	best = cpuid_entry2_find(entries, nent, 0xd, 0);
	if (!best)
		return 0;

	xfeatures = best->eax | ((u64)best->edx << 32);
	xfeatures &= XFEATURE_MASK_USER_DYNAMIC;
	if (!xfeatures)
		return 0;

	return fpu_enable_guest_xfd_features(&vcpu->arch.guest_fpu, xfeatures);
}

/* Check whether the supplied CPUID data is equal to what is already set for the vCPU. */
static int kvm_cpuid_check_equal(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
				 int nent)
{
	struct kvm_cpuid_entry2 *orig;
	int i;

	if (nent != vcpu->arch.cpuid_nent)
		return -EINVAL;

	for (i = 0; i < nent; i++) {
		orig = &vcpu->arch.cpuid_entries[i];
		if (e2[i].function != orig->function ||
		    e2[i].index != orig->index ||
		    e2[i].flags != orig->flags ||
		    e2[i].eax != orig->eax || e2[i].ebx != orig->ebx ||
		    e2[i].ecx != orig->ecx || e2[i].edx != orig->edx)
			return -EINVAL;
	}

	return 0;
}

static void kvm_update_kvm_cpuid_base(struct kvm_vcpu *vcpu)
{
	u32 function;
	struct kvm_cpuid_entry2 *entry;

	vcpu->arch.kvm_cpuid_base = 0;

	for_each_possible_hypervisor_cpuid_base(function) {
		entry = kvm_find_cpuid_entry(vcpu, function);

		if (entry) {
			u32 signature[3];

			signature[0] = entry->ebx;
			signature[1] = entry->ecx;
			signature[2] = entry->edx;

			BUILD_BUG_ON(sizeof(signature) > sizeof(KVM_SIGNATURE));
			if (!memcmp(signature, KVM_SIGNATURE, sizeof(signature))) {
				vcpu->arch.kvm_cpuid_base = function;
				break;
			}
		}
	}
}

static struct kvm_cpuid_entry2 *__kvm_find_kvm_cpuid_features(struct kvm_vcpu *vcpu,
					      struct kvm_cpuid_entry2 *entries, int nent)
{
	u32 base = vcpu->arch.kvm_cpuid_base;

	if (!base)
		return NULL;

	return cpuid_entry2_find(entries, nent, base | KVM_CPUID_FEATURES,
				 KVM_CPUID_INDEX_NOT_SIGNIFICANT);
}

static struct kvm_cpuid_entry2 *kvm_find_kvm_cpuid_features(struct kvm_vcpu *vcpu)
{
	return __kvm_find_kvm_cpuid_features(vcpu, vcpu->arch.cpuid_entries,
					     vcpu->arch.cpuid_nent);
}

void kvm_update_pv_runtime(struct kvm_vcpu *vcpu)
{
	struct kvm_cpuid_entry2 *best = kvm_find_kvm_cpuid_features(vcpu);

	/*
	 * save the feature bitmap to avoid cpuid lookup for every PV
	 * operation
	 */
	if (best)
		vcpu->arch.pv_cpuid.features = best->eax;
}

/*
 * Calculate guest's supported XCR0 taking into account guest CPUID data and
 * KVM's supported XCR0 (comprised of host's XCR0 and KVM_SUPPORTED_XCR0).
 */
static u64 cpuid_get_supported_xcr0(struct kvm_cpuid_entry2 *entries, int nent)
{
	struct kvm_cpuid_entry2 *best;

	best = cpuid_entry2_find(entries, nent, 0xd, 0);
	if (!best)
		return 0;

	return (best->eax | ((u64)best->edx << 32)) & kvm_caps.supported_xcr0;
}

static void __kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *entries,
				       int nent)
{
	struct kvm_cpuid_entry2 *best;
	u64 guest_supported_xcr0 = cpuid_get_supported_xcr0(entries, nent);

	best = cpuid_entry2_find(entries, nent, 1, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
	if (best) {
		/* Update OSXSAVE bit */
		if (boot_cpu_has(X86_FEATURE_XSAVE))
			cpuid_entry_change(best, X86_FEATURE_OSXSAVE,
				   kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE));

		cpuid_entry_change(best, X86_FEATURE_APIC,
			   vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE);
	}

	best = cpuid_entry2_find(entries, nent, 7, 0);
	if (best && boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7)
		cpuid_entry_change(best, X86_FEATURE_OSPKE,
				   kvm_read_cr4_bits(vcpu, X86_CR4_PKE));

	best = cpuid_entry2_find(entries, nent, 0xD, 0);
	if (best)
		best->ebx = xstate_required_size(vcpu->arch.xcr0, false);

	best = cpuid_entry2_find(entries, nent, 0xD, 1);
	if (best && (cpuid_entry_has(best, X86_FEATURE_XSAVES) ||
		     cpuid_entry_has(best, X86_FEATURE_XSAVEC)))
		best->ebx = xstate_required_size(vcpu->arch.xcr0, true);

	best = __kvm_find_kvm_cpuid_features(vcpu, entries, nent);
	if (kvm_hlt_in_guest(vcpu->kvm) && best &&
		(best->eax & (1 << KVM_FEATURE_PV_UNHALT)))
		best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);

	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) {
		best = cpuid_entry2_find(entries, nent, 0x1, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
		if (best)
			cpuid_entry_change(best, X86_FEATURE_MWAIT,
					   vcpu->arch.ia32_misc_enable_msr &
					   MSR_IA32_MISC_ENABLE_MWAIT);
	}

	/*
	 * Bits 127:0 of the allowed SECS.ATTRIBUTES (CPUID.0x12.0x1) enumerate
	 * the supported XSAVE Feature Request Mask (XFRM), i.e. the enclave's
	 * requested XCR0 value.  The enclave's XFRM must be a subset of XCRO
	 * at the time of EENTER, thus adjust the allowed XFRM by the guest's
	 * supported XCR0.  Similar to XCR0 handling, FP and SSE are forced to
	 * '1' even on CPUs that don't support XSAVE.
	 */
	best = cpuid_entry2_find(entries, nent, 0x12, 0x1);
	if (best) {
		best->ecx &= guest_supported_xcr0 & 0xffffffff;
		best->edx &= guest_supported_xcr0 >> 32;
		best->ecx |= XFEATURE_MASK_FPSSE;
	}
}

void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu)
{
	__kvm_update_cpuid_runtime(vcpu, vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent);
}
EXPORT_SYMBOL_GPL(kvm_update_cpuid_runtime);

static void kvm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
{
	struct kvm_lapic *apic = vcpu->arch.apic;
	struct kvm_cpuid_entry2 *best;

	best = kvm_find_cpuid_entry(vcpu, 1);
	if (best && apic) {
		if (cpuid_entry_has(best, X86_FEATURE_TSC_DEADLINE_TIMER))
			apic->lapic_timer.timer_mode_mask = 3 << 17;
		else
			apic->lapic_timer.timer_mode_mask = 1 << 17;

		kvm_apic_set_version(vcpu);
	}

	vcpu->arch.guest_supported_xcr0 =
		cpuid_get_supported_xcr0(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent);

	/*
	 * FP+SSE can always be saved/restored via KVM_{G,S}ET_XSAVE, even if
	 * XSAVE/XCRO are not exposed to the guest, and even if XSAVE isn't
	 * supported by the host.
	 */
	vcpu->arch.guest_fpu.fpstate->user_xfeatures = vcpu->arch.guest_supported_xcr0 |
						       XFEATURE_MASK_FPSSE;

	kvm_update_pv_runtime(vcpu);

	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
	vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);

	kvm_pmu_refresh(vcpu);
	vcpu->arch.cr4_guest_rsvd_bits =
	    __cr4_reserved_bits(guest_cpuid_has, vcpu);

	kvm_hv_set_cpuid(vcpu);

	/* Invoke the vendor callback only after the above state is updated. */
	static_call(kvm_x86_vcpu_after_set_cpuid)(vcpu);

	/*
	 * Except for the MMU, which needs to do its thing any vendor specific
	 * adjustments to the reserved GPA bits.
	 */
	kvm_mmu_after_set_cpuid(vcpu);
}

int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
{
	struct kvm_cpuid_entry2 *best;

	best = kvm_find_cpuid_entry(vcpu, 0x80000000);
	if (!best || best->eax < 0x80000008)
		goto not_found;
	best = kvm_find_cpuid_entry(vcpu, 0x80000008);
	if (best)
		return best->eax & 0xff;
not_found:
	return 36;
}

/*
 * This "raw" version returns the reserved GPA bits without any adjustments for
 * encryption technologies that usurp bits.  The raw mask should be used if and
 * only if hardware does _not_ strip the usurped bits, e.g. in virtual MTRRs.
 */
u64 kvm_vcpu_reserved_gpa_bits_raw(struct kvm_vcpu *vcpu)
{
	return rsvd_bits(cpuid_maxphyaddr(vcpu), 63);
}

static int kvm_set_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
                        int nent)
{
	int r;

	__kvm_update_cpuid_runtime(vcpu, e2, nent);

	/*
	 * KVM does not correctly handle changing guest CPUID after KVM_RUN, as
	 * MAXPHYADDR, GBPAGES support, AMD reserved bit behavior, etc.. aren't
	 * tracked in kvm_mmu_page_role.  As a result, KVM may miss guest page
	 * faults due to reusing SPs/SPTEs. In practice no sane VMM mucks with
	 * the core vCPU model on the fly. It would've been better to forbid any
	 * KVM_SET_CPUID{,2} calls after KVM_RUN altogether but unfortunately
	 * some VMMs (e.g. QEMU) reuse vCPU fds for CPU hotplug/unplug and do
	 * KVM_SET_CPUID{,2} again. To support this legacy behavior, check
	 * whether the supplied CPUID data is equal to what's already set.
	 */
	if (vcpu->arch.last_vmentry_cpu != -1) {
		r = kvm_cpuid_check_equal(vcpu, e2, nent);
		if (r)
			return r;

		kvfree(e2);
		return 0;
	}

	r = kvm_check_cpuid(vcpu, e2, nent);
	if (r)
		return r;

	kvfree(vcpu->arch.cpuid_entries);
	vcpu->arch.cpuid_entries = e2;
	vcpu->arch.cpuid_nent = nent;

	kvm_update_kvm_cpuid_base(vcpu);
	kvm_vcpu_after_set_cpuid(vcpu);

	return 0;
}

/* when an old userspace process fills a new kernel module */
int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
			     struct kvm_cpuid *cpuid,
			     struct kvm_cpuid_entry __user *entries)
{
	int r, i;
	struct kvm_cpuid_entry *e = NULL;
	struct kvm_cpuid_entry2 *e2 = NULL;

	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
		return -E2BIG;

	if (cpuid->nent) {
		e = vmemdup_user(entries, array_size(sizeof(*e), cpuid->nent));
		if (IS_ERR(e))
			return PTR_ERR(e);

		e2 = kvmalloc_array(cpuid->nent, sizeof(*e2), GFP_KERNEL_ACCOUNT);
		if (!e2) {
			r = -ENOMEM;
			goto out_free_cpuid;
		}
	}
	for (i = 0; i < cpuid->nent; i++) {
		e2[i].function = e[i].function;
		e2[i].eax = e[i].eax;
		e2[i].ebx = e[i].ebx;
		e2[i].ecx = e[i].ecx;
		e2[i].edx = e[i].edx;
		e2[i].index = 0;
		e2[i].flags = 0;
		e2[i].padding[0] = 0;
		e2[i].padding[1] = 0;
		e2[i].padding[2] = 0;
	}

	r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
	if (r)
		kvfree(e2);

out_free_cpuid:
	kvfree(e);

	return r;
}

int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
			      struct kvm_cpuid2 *cpuid,
			      struct kvm_cpuid_entry2 __user *entries)
{
	struct kvm_cpuid_entry2 *e2 = NULL;
	int r;

	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
		return -E2BIG;

	if (cpuid->nent) {
		e2 = vmemdup_user(entries, array_size(sizeof(*e2), cpuid->nent));
		if (IS_ERR(e2))
			return PTR_ERR(e2);
	}

	r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
	if (r)
		kvfree(e2);

	return r;
}

int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
			      struct kvm_cpuid2 *cpuid,
			      struct kvm_cpuid_entry2 __user *entries)
{
	int r;

	r = -E2BIG;
	if (cpuid->nent < vcpu->arch.cpuid_nent)
		goto out;
	r = -EFAULT;
	if (copy_to_user(entries, vcpu->arch.cpuid_entries,
			 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
		goto out;
	return 0;

out:
	cpuid->nent = vcpu->arch.cpuid_nent;
	return r;
}

/* Mask kvm_cpu_caps for @leaf with the raw CPUID capabilities of this CPU. */
static __always_inline void __kvm_cpu_cap_mask(unsigned int leaf)
{
	const struct cpuid_reg cpuid = x86_feature_cpuid(leaf * 32);
	struct kvm_cpuid_entry2 entry;

	reverse_cpuid_check(leaf);

	cpuid_count(cpuid.function, cpuid.index,
		    &entry.eax, &entry.ebx, &entry.ecx, &entry.edx);

	kvm_cpu_caps[leaf] &= *__cpuid_entry_get_reg(&entry, cpuid.reg);
}

static __always_inline
void kvm_cpu_cap_init_scattered(enum kvm_only_cpuid_leafs leaf, u32 mask)
{
	/* Use kvm_cpu_cap_mask for non-scattered leafs. */
	BUILD_BUG_ON(leaf < NCAPINTS);

	kvm_cpu_caps[leaf] = mask;

	__kvm_cpu_cap_mask(leaf);
}

static __always_inline void kvm_cpu_cap_mask(enum cpuid_leafs leaf, u32 mask)
{
	/* Use kvm_cpu_cap_init_scattered for scattered leafs. */
	BUILD_BUG_ON(leaf >= NCAPINTS);

	kvm_cpu_caps[leaf] &= mask;

	__kvm_cpu_cap_mask(leaf);
}

void kvm_set_cpu_caps(void)
{
#ifdef CONFIG_X86_64
	unsigned int f_gbpages = F(GBPAGES);
	unsigned int f_lm = F(LM);
	unsigned int f_xfd = F(XFD);
#else
	unsigned int f_gbpages = 0;
	unsigned int f_lm = 0;
	unsigned int f_xfd = 0;
#endif
	memset(kvm_cpu_caps, 0, sizeof(kvm_cpu_caps));

	BUILD_BUG_ON(sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)) >
		     sizeof(boot_cpu_data.x86_capability));

	memcpy(&kvm_cpu_caps, &boot_cpu_data.x86_capability,
	       sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)));

	kvm_cpu_cap_mask(CPUID_1_ECX,
		/*
		 * NOTE: MONITOR (and MWAIT) are emulated as NOP, but *not*
		 * advertised to guests via CPUID!
		 */
		F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
		0 /* DS-CPL, VMX, SMX, EST */ |
		0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
		F(FMA) | F(CX16) | 0 /* xTPR Update */ | F(PDCM) |
		F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
		F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
		0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
		F(F16C) | F(RDRAND)
	);
	/* KVM emulates x2apic in software irrespective of host support. */
	kvm_cpu_cap_set(X86_FEATURE_X2APIC);

	kvm_cpu_cap_mask(CPUID_1_EDX,
		F(FPU) | F(VME) | F(DE) | F(PSE) |
		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
		F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
		0 /* Reserved, DS, ACPI */ | F(MMX) |
		F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
		0 /* HTT, TM, Reserved, PBE */
	);

	kvm_cpu_cap_mask(CPUID_7_0_EBX,
		F(FSGSBASE) | F(SGX) | F(BMI1) | F(HLE) | F(AVX2) |
		F(FDP_EXCPTN_ONLY) | F(SMEP) | F(BMI2) | F(ERMS) | F(INVPCID) |
		F(RTM) | F(ZERO_FCS_FDS) | 0 /*MPX*/ | F(AVX512F) |
		F(AVX512DQ) | F(RDSEED) | F(ADX) | F(SMAP) | F(AVX512IFMA) |
		F(CLFLUSHOPT) | F(CLWB) | 0 /*INTEL_PT*/ | F(AVX512PF) |
		F(AVX512ER) | F(AVX512CD) | F(SHA_NI) | F(AVX512BW) |
		F(AVX512VL));

	kvm_cpu_cap_mask(CPUID_7_ECX,
		F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ | F(RDPID) |
		F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
		F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) |
		F(CLDEMOTE) | F(MOVDIRI) | F(MOVDIR64B) | 0 /*WAITPKG*/ |
		F(SGX_LC) | F(BUS_LOCK_DETECT)
	);
	/* Set LA57 based on hardware capability. */
	if (cpuid_ecx(7) & F(LA57))
		kvm_cpu_cap_set(X86_FEATURE_LA57);

	/*
	 * PKU not yet implemented for shadow paging and requires OSPKE
	 * to be set on the host. Clear it if that is not the case
	 */
	if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
		kvm_cpu_cap_clear(X86_FEATURE_PKU);

	kvm_cpu_cap_mask(CPUID_7_EDX,
		F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
		F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) |
		F(MD_CLEAR) | F(AVX512_VP2INTERSECT) | F(FSRM) |
		F(SERIALIZE) | F(TSXLDTRK) | F(AVX512_FP16) |
		F(AMX_TILE) | F(AMX_INT8) | F(AMX_BF16)
	);

	/* TSC_ADJUST and ARCH_CAPABILITIES are emulated in software. */
	kvm_cpu_cap_set(X86_FEATURE_TSC_ADJUST);
	kvm_cpu_cap_set(X86_FEATURE_ARCH_CAPABILITIES);

	if (boot_cpu_has(X86_FEATURE_IBPB) && boot_cpu_has(X86_FEATURE_IBRS))
		kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL);
	if (boot_cpu_has(X86_FEATURE_STIBP))
		kvm_cpu_cap_set(X86_FEATURE_INTEL_STIBP);
	if (boot_cpu_has(X86_FEATURE_AMD_SSBD))
		kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL_SSBD);

	kvm_cpu_cap_mask(CPUID_7_1_EAX,
		F(AVX_VNNI) | F(AVX512_BF16)
	);

	kvm_cpu_cap_mask(CPUID_D_1_EAX,
		F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | F(XSAVES) | f_xfd
	);

	kvm_cpu_cap_init_scattered(CPUID_12_EAX,
		SF(SGX1) | SF(SGX2)
	);

	kvm_cpu_cap_mask(CPUID_8000_0001_ECX,
		F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
		F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
		F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
		0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) |
		F(TOPOEXT) | 0 /* PERFCTR_CORE */
	);

	kvm_cpu_cap_mask(CPUID_8000_0001_EDX,
		F(FPU) | F(VME) | F(DE) | F(PSE) |
		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
		F(PAT) | F(PSE36) | 0 /* Reserved */ |
		F(NX) | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
		F(FXSR) | F(FXSR_OPT) | f_gbpages | F(RDTSCP) |
		0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW)
	);

	if (!tdp_enabled && IS_ENABLED(CONFIG_X86_64))
		kvm_cpu_cap_set(X86_FEATURE_GBPAGES);

	kvm_cpu_cap_mask(CPUID_8000_0008_EBX,
		F(CLZERO) | F(XSAVEERPTR) |
		F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
		F(AMD_SSB_NO) | F(AMD_STIBP) | F(AMD_STIBP_ALWAYS_ON) |
		__feature_bit(KVM_X86_FEATURE_PSFD)
	);

	/*
	 * AMD has separate bits for each SPEC_CTRL bit.
	 * arch/x86/kernel/cpu/bugs.c is kind enough to
	 * record that in cpufeatures so use them.
	 */
	if (boot_cpu_has(X86_FEATURE_IBPB))
		kvm_cpu_cap_set(X86_FEATURE_AMD_IBPB);
	if (boot_cpu_has(X86_FEATURE_IBRS))
		kvm_cpu_cap_set(X86_FEATURE_AMD_IBRS);
	if (boot_cpu_has(X86_FEATURE_STIBP))
		kvm_cpu_cap_set(X86_FEATURE_AMD_STIBP);
	if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD))
		kvm_cpu_cap_set(X86_FEATURE_AMD_SSBD);
	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
		kvm_cpu_cap_set(X86_FEATURE_AMD_SSB_NO);
	/*
	 * The preference is to use SPEC CTRL MSR instead of the
	 * VIRT_SPEC MSR.
	 */
	if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
	    !boot_cpu_has(X86_FEATURE_AMD_SSBD))
		kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);

	/*
	 * Hide all SVM features by default, SVM will set the cap bits for
	 * features it emulates and/or exposes for L1.
	 */
	kvm_cpu_cap_mask(CPUID_8000_000A_EDX, 0);

	kvm_cpu_cap_mask(CPUID_8000_001F_EAX,
		0 /* SME */ | F(SEV) | 0 /* VM_PAGE_FLUSH */ | F(SEV_ES) |
		F(SME_COHERENT));

	kvm_cpu_cap_mask(CPUID_C000_0001_EDX,
		F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
		F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
		F(PMM) | F(PMM_EN)
	);

	/*
	 * Hide RDTSCP and RDPID if either feature is reported as supported but
	 * probing MSR_TSC_AUX failed.  This is purely a sanity check and
	 * should never happen, but the guest will likely crash if RDTSCP or
	 * RDPID is misreported, and KVM has botched MSR_TSC_AUX emulation in
	 * the past.  For example, the sanity check may fire if this instance of
	 * KVM is running as L1 on top of an older, broken KVM.
	 */
	if (WARN_ON((kvm_cpu_cap_has(X86_FEATURE_RDTSCP) ||
		     kvm_cpu_cap_has(X86_FEATURE_RDPID)) &&
		     !kvm_is_supported_user_return_msr(MSR_TSC_AUX))) {
		kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
		kvm_cpu_cap_clear(X86_FEATURE_RDPID);
	}
}
EXPORT_SYMBOL_GPL(kvm_set_cpu_caps);

struct kvm_cpuid_array {
	struct kvm_cpuid_entry2 *entries;
	int maxnent;
	int nent;
};

static struct kvm_cpuid_entry2 *do_host_cpuid(struct kvm_cpuid_array *array,
					      u32 function, u32 index)
{
	struct kvm_cpuid_entry2 *entry;

	if (array->nent >= array->maxnent)
		return NULL;

	entry = &array->entries[array->nent++];

	memset(entry, 0, sizeof(*entry));
	entry->function = function;
	entry->index = index;
	switch (function & 0xC0000000) {
	case 0x40000000:
		/* Hypervisor leaves are always synthesized by __do_cpuid_func.  */
		return entry;

	case 0x80000000:
		/*
		 * 0x80000021 is sometimes synthesized by __do_cpuid_func, which
		 * would result in out-of-bounds calls to do_host_cpuid.
		 */
		{
			static int max_cpuid_80000000;
			if (!READ_ONCE(max_cpuid_80000000))
				WRITE_ONCE(max_cpuid_80000000, cpuid_eax(0x80000000));
			if (function > READ_ONCE(max_cpuid_80000000))
				return entry;
		}
		break;

	default:
		break;
	}

	cpuid_count(entry->function, entry->index,
		    &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);

	if (cpuid_function_is_indexed(function))
		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;

	return entry;
}

static int __do_cpuid_func_emulated(struct kvm_cpuid_array *array, u32 func)
{
	struct kvm_cpuid_entry2 *entry;

	if (array->nent >= array->maxnent)
		return -E2BIG;

	entry = &array->entries[array->nent];
	entry->function = func;
	entry->index = 0;
	entry->flags = 0;

	switch (func) {
	case 0:
		entry->eax = 7;
		++array->nent;
		break;
	case 1:
		entry->ecx = F(MOVBE);
		++array->nent;
		break;
	case 7:
		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
		entry->eax = 0;
		if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
			entry->ecx = F(RDPID);
		++array->nent;
		break;
	default:
		break;
	}

	return 0;
}

static inline int __do_cpuid_func(struct kvm_cpuid_array *array, u32 function)
{
	struct kvm_cpuid_entry2 *entry;
	int r, i, max_idx;

	/* all calls to cpuid_count() should be made on the same cpu */
	get_cpu();

	r = -E2BIG;

	entry = do_host_cpuid(array, function, 0);
	if (!entry)
		goto out;

	switch (function) {
	case 0:
		/* Limited to the highest leaf implemented in KVM. */
		entry->eax = min(entry->eax, 0x1fU);
		break;
	case 1:
		cpuid_entry_override(entry, CPUID_1_EDX);
		cpuid_entry_override(entry, CPUID_1_ECX);
		break;
	case 2:
		/*
		 * On ancient CPUs, function 2 entries are STATEFUL.  That is,
		 * CPUID(function=2, index=0) may return different results each
		 * time, with the least-significant byte in EAX enumerating the
		 * number of times software should do CPUID(2, 0).
		 *
		 * Modern CPUs, i.e. every CPU KVM has *ever* run on are less
		 * idiotic.  Intel's SDM states that EAX & 0xff "will always
		 * return 01H. Software should ignore this value and not
		 * interpret it as an informational descriptor", while AMD's
		 * APM states that CPUID(2) is reserved.
		 *
		 * WARN if a frankenstein CPU that supports virtualization and
		 * a stateful CPUID.0x2 is encountered.
		 */
		WARN_ON_ONCE((entry->eax & 0xff) > 1);
		break;
	/* functions 4 and 0x8000001d have additional index. */
	case 4:
	case 0x8000001d:
		/*
		 * Read entries until the cache type in the previous entry is
		 * zero, i.e. indicates an invalid entry.
		 */
		for (i = 1; entry->eax & 0x1f; ++i) {
			entry = do_host_cpuid(array, function, i);
			if (!entry)
				goto out;
		}
		break;
	case 6: /* Thermal management */
		entry->eax = 0x4; /* allow ARAT */
		entry->ebx = 0;
		entry->ecx = 0;
		entry->edx = 0;
		break;
	/* function 7 has additional index. */
	case 7:
		entry->eax = min(entry->eax, 1u);
		cpuid_entry_override(entry, CPUID_7_0_EBX);
		cpuid_entry_override(entry, CPUID_7_ECX);
		cpuid_entry_override(entry, CPUID_7_EDX);

		/* KVM only supports 0x7.0 and 0x7.1, capped above via min(). */
		if (entry->eax == 1) {
			entry = do_host_cpuid(array, function, 1);
			if (!entry)
				goto out;

			cpuid_entry_override(entry, CPUID_7_1_EAX);
			entry->ebx = 0;
			entry->ecx = 0;
			entry->edx = 0;
		}
		break;
	case 9:
		break;
	case 0xa: { /* Architectural Performance Monitoring */
		union cpuid10_eax eax;
		union cpuid10_edx edx;

		if (!static_cpu_has(X86_FEATURE_ARCH_PERFMON)) {
			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
			break;
		}

		eax.split.version_id = kvm_pmu_cap.version;
		eax.split.num_counters = kvm_pmu_cap.num_counters_gp;
		eax.split.bit_width = kvm_pmu_cap.bit_width_gp;
		eax.split.mask_length = kvm_pmu_cap.events_mask_len;
		edx.split.num_counters_fixed = kvm_pmu_cap.num_counters_fixed;
		edx.split.bit_width_fixed = kvm_pmu_cap.bit_width_fixed;

		if (kvm_pmu_cap.version)
			edx.split.anythread_deprecated = 1;
		edx.split.reserved1 = 0;
		edx.split.reserved2 = 0;

		entry->eax = eax.full;
		entry->ebx = kvm_pmu_cap.events_mask;
		entry->ecx = 0;
		entry->edx = edx.full;
		break;
	}
	/*
	 * Per Intel's SDM, the 0x1f is a superset of 0xb,
	 * thus they can be handled by common code.
	 */
	case 0x1f:
	case 0xb:
		/*
		 * Populate entries until the level type (ECX[15:8]) of the
		 * previous entry is zero.  Note, CPUID EAX.{0x1f,0xb}.0 is
		 * the starting entry, filled by the primary do_host_cpuid().
		 */
		for (i = 1; entry->ecx & 0xff00; ++i) {
			entry = do_host_cpuid(array, function, i);
			if (!entry)
				goto out;
		}
		break;
	case 0xd: {
		u64 permitted_xcr0 = kvm_caps.supported_xcr0 & xstate_get_guest_group_perm();
		u64 permitted_xss = kvm_caps.supported_xss;

		entry->eax &= permitted_xcr0;
		entry->ebx = xstate_required_size(permitted_xcr0, false);
		entry->ecx = entry->ebx;
		entry->edx &= permitted_xcr0 >> 32;
		if (!permitted_xcr0)
			break;

		entry = do_host_cpuid(array, function, 1);
		if (!entry)
			goto out;

		cpuid_entry_override(entry, CPUID_D_1_EAX);
		if (entry->eax & (F(XSAVES)|F(XSAVEC)))
			entry->ebx = xstate_required_size(permitted_xcr0 | permitted_xss,
							  true);
		else {
			WARN_ON_ONCE(permitted_xss != 0);
			entry->ebx = 0;
		}
		entry->ecx &= permitted_xss;
		entry->edx &= permitted_xss >> 32;

		for (i = 2; i < 64; ++i) {
			bool s_state;
			if (permitted_xcr0 & BIT_ULL(i))
				s_state = false;
			else if (permitted_xss & BIT_ULL(i))
				s_state = true;
			else
				continue;

			entry = do_host_cpuid(array, function, i);
			if (!entry)
				goto out;

			/*
			 * The supported check above should have filtered out
			 * invalid sub-leafs.  Only valid sub-leafs should
			 * reach this point, and they should have a non-zero
			 * save state size.  Furthermore, check whether the
			 * processor agrees with permitted_xcr0/permitted_xss
			 * on whether this is an XCR0- or IA32_XSS-managed area.
			 */
			if (WARN_ON_ONCE(!entry->eax || (entry->ecx & 0x1) != s_state)) {
				--array->nent;
				continue;
			}

			if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
				entry->ecx &= ~BIT_ULL(2);
			entry->edx = 0;
		}
		break;
	}
	case 0x12:
		/* Intel SGX */
		if (!kvm_cpu_cap_has(X86_FEATURE_SGX)) {
			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
			break;
		}

		/*
		 * Index 0: Sub-features, MISCSELECT (a.k.a extended features)
		 * and max enclave sizes.   The SGX sub-features and MISCSELECT
		 * are restricted by kernel and KVM capabilities (like most
		 * feature flags), while enclave size is unrestricted.
		 */
		cpuid_entry_override(entry, CPUID_12_EAX);
		entry->ebx &= SGX_MISC_EXINFO;

		entry = do_host_cpuid(array, function, 1);
		if (!entry)
			goto out;

		/*
		 * Index 1: SECS.ATTRIBUTES.  ATTRIBUTES are restricted a la
		 * feature flags.  Advertise all supported flags, including
		 * privileged attributes that require explicit opt-in from
		 * userspace.  ATTRIBUTES.XFRM is not adjusted as userspace is
		 * expected to derive it from supported XCR0.
		 */
		entry->eax &= SGX_ATTR_DEBUG | SGX_ATTR_MODE64BIT |
			      SGX_ATTR_PROVISIONKEY | SGX_ATTR_EINITTOKENKEY |
			      SGX_ATTR_KSS;
		entry->ebx &= 0;
		break;
	/* Intel PT */
	case 0x14:
		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) {
			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
			break;
		}

		for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
			if (!do_host_cpuid(array, function, i))
				goto out;
		}
		break;
	/* Intel AMX TILE */
	case 0x1d:
		if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) {
			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
			break;
		}

		for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
			if (!do_host_cpuid(array, function, i))
				goto out;
		}
		break;
	case 0x1e: /* TMUL information */
		if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) {
			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
			break;
		}
		break;
	case KVM_CPUID_SIGNATURE: {
		const u32 *sigptr = (const u32 *)KVM_SIGNATURE;
		entry->eax = KVM_CPUID_FEATURES;
		entry->ebx = sigptr[0];
		entry->ecx = sigptr[1];
		entry->edx = sigptr[2];
		break;
	}
	case KVM_CPUID_FEATURES:
		entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
			     (1 << KVM_FEATURE_NOP_IO_DELAY) |
			     (1 << KVM_FEATURE_CLOCKSOURCE2) |
			     (1 << KVM_FEATURE_ASYNC_PF) |
			     (1 << KVM_FEATURE_PV_EOI) |
			     (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
			     (1 << KVM_FEATURE_PV_UNHALT) |
			     (1 << KVM_FEATURE_PV_TLB_FLUSH) |
			     (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
			     (1 << KVM_FEATURE_PV_SEND_IPI) |
			     (1 << KVM_FEATURE_POLL_CONTROL) |
			     (1 << KVM_FEATURE_PV_SCHED_YIELD) |
			     (1 << KVM_FEATURE_ASYNC_PF_INT);

		if (sched_info_on())
			entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);

		entry->ebx = 0;
		entry->ecx = 0;
		entry->edx = 0;
		break;
	case 0x80000000:
		entry->eax = min(entry->eax, 0x80000021);
		/*
		 * Serializing LFENCE is reported in a multitude of ways, and
		 * NullSegClearsBase is not reported in CPUID on Zen2; help
		 * userspace by providing the CPUID leaf ourselves.
		 *
		 * However, only do it if the host has CPUID leaf 0x8000001d.
		 * QEMU thinks that it can query the host blindly for that
		 * CPUID leaf if KVM reports that it supports 0x8000001d or
		 * above.  The processor merrily returns values from the
		 * highest Intel leaf which QEMU tries to use as the guest's
		 * 0x8000001d.  Even worse, this can result in an infinite
		 * loop if said highest leaf has no subleaves indexed by ECX.
		 */
		if (entry->eax >= 0x8000001d &&
		    (static_cpu_has(X86_FEATURE_LFENCE_RDTSC)
		     || !static_cpu_has_bug(X86_BUG_NULL_SEG)))
			entry->eax = max(entry->eax, 0x80000021);
		break;
	case 0x80000001:
		cpuid_entry_override(entry, CPUID_8000_0001_EDX);
		cpuid_entry_override(entry, CPUID_8000_0001_ECX);
		break;
	case 0x80000006:
		/* L2 cache and TLB: pass through host info. */
		break;
	case 0x80000007: /* Advanced power management */
		/* invariant TSC is CPUID.80000007H:EDX[8] */
		entry->edx &= (1 << 8);
		/* mask against host */
		entry->edx &= boot_cpu_data.x86_power;
		entry->eax = entry->ebx = entry->ecx = 0;
		break;
	case 0x80000008: {
		unsigned g_phys_as = (entry->eax >> 16) & 0xff;
		unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
		unsigned phys_as = entry->eax & 0xff;

		/*
		 * If TDP (NPT) is disabled use the adjusted host MAXPHYADDR as
		 * the guest operates in the same PA space as the host, i.e.
		 * reductions in MAXPHYADDR for memory encryption affect shadow
		 * paging, too.
		 *
		 * If TDP is enabled but an explicit guest MAXPHYADDR is not
		 * provided, use the raw bare metal MAXPHYADDR as reductions to
		 * the HPAs do not affect GPAs.
		 */
		if (!tdp_enabled)
			g_phys_as = boot_cpu_data.x86_phys_bits;
		else if (!g_phys_as)
			g_phys_as = phys_as;

		entry->eax = g_phys_as | (virt_as << 8);
		entry->edx = 0;
		cpuid_entry_override(entry, CPUID_8000_0008_EBX);
		break;
	}
	case 0x8000000A:
		if (!kvm_cpu_cap_has(X86_FEATURE_SVM)) {
			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
			break;
		}
		entry->eax = 1; /* SVM revision 1 */
		entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
				   ASID emulation to nested SVM */
		entry->ecx = 0; /* Reserved */
		cpuid_entry_override(entry, CPUID_8000_000A_EDX);
		break;
	case 0x80000019:
		entry->ecx = entry->edx = 0;
		break;
	case 0x8000001a:
	case 0x8000001e:
		break;
	case 0x8000001F:
		if (!kvm_cpu_cap_has(X86_FEATURE_SEV)) {
			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
		} else {
			cpuid_entry_override(entry, CPUID_8000_001F_EAX);

			/*
			 * Enumerate '0' for "PA bits reduction", the adjusted
			 * MAXPHYADDR is enumerated directly (see 0x80000008).
			 */
			entry->ebx &= ~GENMASK(11, 6);
		}
		break;
	case 0x80000020:
		entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
		break;
	case 0x80000021:
		entry->ebx = entry->ecx = entry->edx = 0;
		/*
		 * Pass down these bits:
		 *    EAX      0      NNDBP, Processor ignores nested data breakpoints
		 *    EAX      2      LAS, LFENCE always serializing
		 *    EAX      6      NSCB, Null selector clear base
		 *
		 * Other defined bits are for MSRs that KVM does not expose:
		 *   EAX      3      SPCL, SMM page configuration lock
		 *   EAX      13     PCMSR, Prefetch control MSR
		 */
		entry->eax &= BIT(0) | BIT(2) | BIT(6);
		if (static_cpu_has(X86_FEATURE_LFENCE_RDTSC))
			entry->eax |= BIT(2);
		if (!static_cpu_has_bug(X86_BUG_NULL_SEG))
			entry->eax |= BIT(6);
		break;
	/*Add support for Centaur's CPUID instruction*/
	case 0xC0000000:
		/*Just support up to 0xC0000004 now*/
		entry->eax = min(entry->eax, 0xC0000004);
		break;
	case 0xC0000001:
		cpuid_entry_override(entry, CPUID_C000_0001_EDX);
		break;
	case 3: /* Processor serial number */
	case 5: /* MONITOR/MWAIT */
	case 0xC0000002:
	case 0xC0000003:
	case 0xC0000004:
	default:
		entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
		break;
	}

	r = 0;

out:
	put_cpu();

	return r;
}

static int do_cpuid_func(struct kvm_cpuid_array *array, u32 func,
			 unsigned int type)
{
	if (type == KVM_GET_EMULATED_CPUID)
		return __do_cpuid_func_emulated(array, func);

	return __do_cpuid_func(array, func);
}

#define CENTAUR_CPUID_SIGNATURE 0xC0000000

static int get_cpuid_func(struct kvm_cpuid_array *array, u32 func,
			  unsigned int type)
{
	u32 limit;
	int r;

	if (func == CENTAUR_CPUID_SIGNATURE &&
	    boot_cpu_data.x86_vendor != X86_VENDOR_CENTAUR)
		return 0;

	r = do_cpuid_func(array, func, type);
	if (r)
		return r;

	limit = array->entries[array->nent - 1].eax;
	for (func = func + 1; func <= limit; ++func) {
		r = do_cpuid_func(array, func, type);
		if (r)
			break;
	}

	return r;
}

static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
				 __u32 num_entries, unsigned int ioctl_type)
{
	int i;
	__u32 pad[3];

	if (ioctl_type != KVM_GET_EMULATED_CPUID)
		return false;

	/*
	 * We want to make sure that ->padding is being passed clean from
	 * userspace in case we want to use it for something in the future.
	 *
	 * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
	 * have to give ourselves satisfied only with the emulated side. /me
	 * sheds a tear.
	 */
	for (i = 0; i < num_entries; i++) {
		if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
			return true;

		if (pad[0] || pad[1] || pad[2])
			return true;
	}
	return false;
}

int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
			    struct kvm_cpuid_entry2 __user *entries,
			    unsigned int type)
{
	static const u32 funcs[] = {
		0, 0x80000000, CENTAUR_CPUID_SIGNATURE, KVM_CPUID_SIGNATURE,
	};

	struct kvm_cpuid_array array = {
		.nent = 0,
	};
	int r, i;

	if (cpuid->nent < 1)
		return -E2BIG;
	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
		cpuid->nent = KVM_MAX_CPUID_ENTRIES;

	if (sanity_check_entries(entries, cpuid->nent, type))
		return -EINVAL;

	array.entries = kvcalloc(sizeof(struct kvm_cpuid_entry2), cpuid->nent, GFP_KERNEL);
	if (!array.entries)
		return -ENOMEM;

	array.maxnent = cpuid->nent;

	for (i = 0; i < ARRAY_SIZE(funcs); i++) {
		r = get_cpuid_func(&array, funcs[i], type);
		if (r)
			goto out_free;
	}
	cpuid->nent = array.nent;

	if (copy_to_user(entries, array.entries,
			 array.nent * sizeof(struct kvm_cpuid_entry2)))
		r = -EFAULT;

out_free:
	kvfree(array.entries);
	return r;
}

struct kvm_cpuid_entry2 *kvm_find_cpuid_entry_index(struct kvm_vcpu *vcpu,
						    u32 function, u32 index)
{
	return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent,
				 function, index);
}
EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry_index);

struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
					      u32 function)
{
	return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent,
				 function, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
}
EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);

/*
 * Intel CPUID semantics treats any query for an out-of-range leaf as if the
 * highest basic leaf (i.e. CPUID.0H:EAX) were requested.  AMD CPUID semantics
 * returns all zeroes for any undefined leaf, whether or not the leaf is in
 * range.  Centaur/VIA follows Intel semantics.
 *
 * A leaf is considered out-of-range if its function is higher than the maximum
 * supported leaf of its associated class or if its associated class does not
 * exist.
 *
 * There are three primary classes to be considered, with their respective
 * ranges described as "<base> - <top>[,<base2> - <top2>] inclusive.  A primary
 * class exists if a guest CPUID entry for its <base> leaf exists.  For a given
 * class, CPUID.<base>.EAX contains the max supported leaf for the class.
 *
 *  - Basic:      0x00000000 - 0x3fffffff, 0x50000000 - 0x7fffffff
 *  - Hypervisor: 0x40000000 - 0x4fffffff
 *  - Extended:   0x80000000 - 0xbfffffff
 *  - Centaur:    0xc0000000 - 0xcfffffff
 *
 * The Hypervisor class is further subdivided into sub-classes that each act as
 * their own independent class associated with a 0x100 byte range.  E.g. if Qemu
 * is advertising support for both HyperV and KVM, the resulting Hypervisor
 * CPUID sub-classes are:
 *
 *  - HyperV:     0x40000000 - 0x400000ff
 *  - KVM:        0x40000100 - 0x400001ff
 */
static struct kvm_cpuid_entry2 *
get_out_of_range_cpuid_entry(struct kvm_vcpu *vcpu, u32 *fn_ptr, u32 index)
{
	struct kvm_cpuid_entry2 *basic, *class;
	u32 function = *fn_ptr;

	basic = kvm_find_cpuid_entry(vcpu, 0);
	if (!basic)
		return NULL;

	if (is_guest_vendor_amd(basic->ebx, basic->ecx, basic->edx) ||
	    is_guest_vendor_hygon(basic->ebx, basic->ecx, basic->edx))
		return NULL;

	if (function >= 0x40000000 && function <= 0x4fffffff)
		class = kvm_find_cpuid_entry(vcpu, function & 0xffffff00);
	else if (function >= 0xc0000000)
		class = kvm_find_cpuid_entry(vcpu, 0xc0000000);
	else
		class = kvm_find_cpuid_entry(vcpu, function & 0x80000000);

	if (class && function <= class->eax)
		return NULL;

	/*
	 * Leaf specific adjustments are also applied when redirecting to the
	 * max basic entry, e.g. if the max basic leaf is 0xb but there is no
	 * entry for CPUID.0xb.index (see below), then the output value for EDX
	 * needs to be pulled from CPUID.0xb.1.
	 */
	*fn_ptr = basic->eax;

	/*
	 * The class does not exist or the requested function is out of range;
	 * the effective CPUID entry is the max basic leaf.  Note, the index of
	 * the original requested leaf is observed!
	 */
	return kvm_find_cpuid_entry_index(vcpu, basic->eax, index);
}

bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
	       u32 *ecx, u32 *edx, bool exact_only)
{
	u32 orig_function = *eax, function = *eax, index = *ecx;
	struct kvm_cpuid_entry2 *entry;
	bool exact, used_max_basic = false;

	entry = kvm_find_cpuid_entry_index(vcpu, function, index);
	exact = !!entry;

	if (!entry && !exact_only) {
		entry = get_out_of_range_cpuid_entry(vcpu, &function, index);
		used_max_basic = !!entry;
	}

	if (entry) {
		*eax = entry->eax;
		*ebx = entry->ebx;
		*ecx = entry->ecx;
		*edx = entry->edx;
		if (function == 7 && index == 0) {
			u64 data;
		        if (!__kvm_get_msr(vcpu, MSR_IA32_TSX_CTRL, &data, true) &&
			    (data & TSX_CTRL_CPUID_CLEAR))
				*ebx &= ~(F(RTM) | F(HLE));
		}
	} else {
		*eax = *ebx = *ecx = *edx = 0;
		/*
		 * When leaf 0BH or 1FH is defined, CL is pass-through
		 * and EDX is always the x2APIC ID, even for undefined
		 * subleaves. Index 1 will exist iff the leaf is
		 * implemented, so we pass through CL iff leaf 1
		 * exists. EDX can be copied from any existing index.
		 */
		if (function == 0xb || function == 0x1f) {
			entry = kvm_find_cpuid_entry_index(vcpu, function, 1);
			if (entry) {
				*ecx = index & 0xff;
				*edx = entry->edx;
			}
		}
	}
	trace_kvm_cpuid(orig_function, index, *eax, *ebx, *ecx, *edx, exact,
			used_max_basic);
	return exact;
}
EXPORT_SYMBOL_GPL(kvm_cpuid);

int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
{
	u32 eax, ebx, ecx, edx;

	if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
		return 1;

	eax = kvm_rax_read(vcpu);
	ecx = kvm_rcx_read(vcpu);
	kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, false);
	kvm_rax_write(vcpu, eax);
	kvm_rbx_write(vcpu, ebx);
	kvm_rcx_write(vcpu, ecx);
	kvm_rdx_write(vcpu, edx);
	return kvm_skip_emulated_instruction(vcpu);
}
EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);