1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
|
#define pr_fmt(fmt) "SVM: " fmt
#include <linux/kvm_host.h>
#include "irq.h"
#include "mmu.h"
#include "kvm_cache_regs.h"
#include "x86.h"
#include "cpuid.h"
#include "pmu.h"
#include <linux/module.h>
#include <linux/mod_devicetable.h>
#include <linux/kernel.h>
#include <linux/vmalloc.h>
#include <linux/highmem.h>
#include <linux/amd-iommu.h>
#include <linux/sched.h>
#include <linux/trace_events.h>
#include <linux/slab.h>
#include <linux/hashtable.h>
#include <linux/frame.h>
#include <linux/psp-sev.h>
#include <linux/file.h>
#include <linux/pagemap.h>
#include <linux/swap.h>
#include <linux/rwsem.h>
#include <asm/apic.h>
#include <asm/perf_event.h>
#include <asm/tlbflush.h>
#include <asm/desc.h>
#include <asm/debugreg.h>
#include <asm/kvm_para.h>
#include <asm/irq_remapping.h>
#include <asm/mce.h>
#include <asm/spec-ctrl.h>
#include <asm/cpu_device_id.h>
#include <asm/virtext.h>
#include "trace.h"
#include "svm.h"
#define __ex(x) __kvm_handle_fault_on_reboot(x)
MODULE_AUTHOR("Qumranet");
MODULE_LICENSE("GPL");
#ifdef MODULE
static const struct x86_cpu_id svm_cpu_id[] = {
X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL),
{}
};
MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
#endif
#define IOPM_ALLOC_ORDER 2
#define MSRPM_ALLOC_ORDER 1
#define SEG_TYPE_LDT 2
#define SEG_TYPE_BUSY_TSS16 3
#define SVM_FEATURE_LBRV (1 << 1)
#define SVM_FEATURE_SVML (1 << 2)
#define SVM_FEATURE_TSC_RATE (1 << 4)
#define SVM_FEATURE_VMCB_CLEAN (1 << 5)
#define SVM_FEATURE_FLUSH_ASID (1 << 6)
#define SVM_FEATURE_DECODE_ASSIST (1 << 7)
#define SVM_FEATURE_PAUSE_FILTER (1 << 10)
#define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
#define TSC_RATIO_RSVD 0xffffff0000000000ULL
#define TSC_RATIO_MIN 0x0000000000000001ULL
#define TSC_RATIO_MAX 0x000000ffffffffffULL
static bool erratum_383_found __read_mostly;
u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
/*
* Set osvw_len to higher value when updated Revision Guides
* are published and we know what the new status bits are
*/
static uint64_t osvw_len = 4, osvw_status;
static DEFINE_PER_CPU(u64, current_tsc_ratio);
#define TSC_RATIO_DEFAULT 0x0100000000ULL
static const struct svm_direct_access_msrs {
u32 index; /* Index of the MSR */
bool always; /* True if intercept is always on */
} direct_access_msrs[] = {
{ .index = MSR_STAR, .always = true },
{ .index = MSR_IA32_SYSENTER_CS, .always = true },
#ifdef CONFIG_X86_64
{ .index = MSR_GS_BASE, .always = true },
{ .index = MSR_FS_BASE, .always = true },
{ .index = MSR_KERNEL_GS_BASE, .always = true },
{ .index = MSR_LSTAR, .always = true },
{ .index = MSR_CSTAR, .always = true },
{ .index = MSR_SYSCALL_MASK, .always = true },
#endif
{ .index = MSR_IA32_SPEC_CTRL, .always = false },
{ .index = MSR_IA32_PRED_CMD, .always = false },
{ .index = MSR_IA32_LASTBRANCHFROMIP, .always = false },
{ .index = MSR_IA32_LASTBRANCHTOIP, .always = false },
{ .index = MSR_IA32_LASTINTFROMIP, .always = false },
{ .index = MSR_IA32_LASTINTTOIP, .always = false },
{ .index = MSR_INVALID, .always = false },
};
/* enable NPT for AMD64 and X86 with PAE */
#if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
bool npt_enabled = true;
#else
bool npt_enabled;
#endif
/*
* These 2 parameters are used to config the controls for Pause-Loop Exiting:
* pause_filter_count: On processors that support Pause filtering(indicated
* by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
* count value. On VMRUN this value is loaded into an internal counter.
* Each time a pause instruction is executed, this counter is decremented
* until it reaches zero at which time a #VMEXIT is generated if pause
* intercept is enabled. Refer to AMD APM Vol 2 Section 15.14.4 Pause
* Intercept Filtering for more details.
* This also indicate if ple logic enabled.
*
* pause_filter_thresh: In addition, some processor families support advanced
* pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
* the amount of time a guest is allowed to execute in a pause loop.
* In this mode, a 16-bit pause filter threshold field is added in the
* VMCB. The threshold value is a cycle count that is used to reset the
* pause counter. As with simple pause filtering, VMRUN loads the pause
* count value from VMCB into an internal counter. Then, on each pause
* instruction the hardware checks the elapsed number of cycles since
* the most recent pause instruction against the pause filter threshold.
* If the elapsed cycle count is greater than the pause filter threshold,
* then the internal pause count is reloaded from the VMCB and execution
* continues. If the elapsed cycle count is less than the pause filter
* threshold, then the internal pause count is decremented. If the count
* value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
* triggered. If advanced pause filtering is supported and pause filter
* threshold field is set to zero, the filter will operate in the simpler,
* count only mode.
*/
static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
module_param(pause_filter_thresh, ushort, 0444);
static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
module_param(pause_filter_count, ushort, 0444);
/* Default doubles per-vcpu window every exit. */
static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
module_param(pause_filter_count_grow, ushort, 0444);
/* Default resets per-vcpu window every exit to pause_filter_count. */
static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
module_param(pause_filter_count_shrink, ushort, 0444);
/* Default is to compute the maximum so we can never overflow. */
static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
module_param(pause_filter_count_max, ushort, 0444);
/* allow nested paging (virtualized MMU) for all guests */
static int npt = true;
module_param(npt, int, S_IRUGO);
/* allow nested virtualization in KVM/SVM */
static int nested = true;
module_param(nested, int, S_IRUGO);
/* enable/disable Next RIP Save */
static int nrips = true;
module_param(nrips, int, 0444);
/* enable/disable Virtual VMLOAD VMSAVE */
static int vls = true;
module_param(vls, int, 0444);
/* enable/disable Virtual GIF */
static int vgif = true;
module_param(vgif, int, 0444);
/* enable/disable SEV support */
static int sev = IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT);
module_param(sev, int, 0444);
static bool __read_mostly dump_invalid_vmcb = 0;
module_param(dump_invalid_vmcb, bool, 0644);
static u8 rsm_ins_bytes[] = "\x0f\xaa";
static void svm_complete_interrupts(struct vcpu_svm *svm);
static unsigned long iopm_base;
struct kvm_ldttss_desc {
u16 limit0;
u16 base0;
unsigned base1:8, type:5, dpl:2, p:1;
unsigned limit1:4, zero0:3, g:1, base2:8;
u32 base3;
u32 zero1;
} __attribute__((packed));
DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
#define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
#define MSRS_RANGE_SIZE 2048
#define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
u32 svm_msrpm_offset(u32 msr)
{
u32 offset;
int i;
for (i = 0; i < NUM_MSR_MAPS; i++) {
if (msr < msrpm_ranges[i] ||
msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
continue;
offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
offset += (i * MSRS_RANGE_SIZE); /* add range offset */
/* Now we have the u8 offset - but need the u32 offset */
return offset / 4;
}
/* MSR not in any range */
return MSR_INVALID;
}
#define MAX_INST_SIZE 15
static inline void clgi(void)
{
asm volatile (__ex("clgi"));
}
static inline void stgi(void)
{
asm volatile (__ex("stgi"));
}
static inline void invlpga(unsigned long addr, u32 asid)
{
asm volatile (__ex("invlpga %1, %0") : : "c"(asid), "a"(addr));
}
static int get_npt_level(struct kvm_vcpu *vcpu)
{
#ifdef CONFIG_X86_64
return PT64_ROOT_4LEVEL;
#else
return PT32E_ROOT_LEVEL;
#endif
}
void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
{
struct vcpu_svm *svm = to_svm(vcpu);
vcpu->arch.efer = efer;
if (!npt_enabled) {
/* Shadow paging assumes NX to be available. */
efer |= EFER_NX;
if (!(efer & EFER_LMA))
efer &= ~EFER_LME;
}
if (!(efer & EFER_SVME)) {
svm_leave_nested(svm);
svm_set_gif(svm, true);
}
svm->vmcb->save.efer = efer | EFER_SVME;
mark_dirty(svm->vmcb, VMCB_CR);
}
static int is_external_interrupt(u32 info)
{
info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
}
static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
u32 ret = 0;
if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
return ret;
}
static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
{
struct vcpu_svm *svm = to_svm(vcpu);
if (mask == 0)
svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
else
svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
}
static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
if (nrips && svm->vmcb->control.next_rip != 0) {
WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
svm->next_rip = svm->vmcb->control.next_rip;
}
if (!svm->next_rip) {
if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
return 0;
} else {
kvm_rip_write(vcpu, svm->next_rip);
}
svm_set_interrupt_shadow(vcpu, 0);
return 1;
}
static void svm_queue_exception(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
unsigned nr = vcpu->arch.exception.nr;
bool has_error_code = vcpu->arch.exception.has_error_code;
u32 error_code = vcpu->arch.exception.error_code;
kvm_deliver_exception_payload(&svm->vcpu);
if (nr == BP_VECTOR && !nrips) {
unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
/*
* For guest debugging where we have to reinject #BP if some
* INT3 is guest-owned:
* Emulate nRIP by moving RIP forward. Will fail if injection
* raises a fault that is not intercepted. Still better than
* failing in all cases.
*/
(void)skip_emulated_instruction(&svm->vcpu);
rip = kvm_rip_read(&svm->vcpu);
svm->int3_rip = rip + svm->vmcb->save.cs.base;
svm->int3_injected = rip - old_rip;
}
svm->vmcb->control.event_inj = nr
| SVM_EVTINJ_VALID
| (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
| SVM_EVTINJ_TYPE_EXEPT;
svm->vmcb->control.event_inj_err = error_code;
}
static void svm_init_erratum_383(void)
{
u32 low, high;
int err;
u64 val;
if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
return;
/* Use _safe variants to not break nested virtualization */
val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
if (err)
return;
val |= (1ULL << 47);
low = lower_32_bits(val);
high = upper_32_bits(val);
native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
erratum_383_found = true;
}
static void svm_init_osvw(struct kvm_vcpu *vcpu)
{
/*
* Guests should see errata 400 and 415 as fixed (assuming that
* HLT and IO instructions are intercepted).
*/
vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
vcpu->arch.osvw.status = osvw_status & ~(6ULL);
/*
* By increasing VCPU's osvw.length to 3 we are telling the guest that
* all osvw.status bits inside that length, including bit 0 (which is
* reserved for erratum 298), are valid. However, if host processor's
* osvw_len is 0 then osvw_status[0] carries no information. We need to
* be conservative here and therefore we tell the guest that erratum 298
* is present (because we really don't know).
*/
if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
vcpu->arch.osvw.status |= 1;
}
static int has_svm(void)
{
const char *msg;
if (!cpu_has_svm(&msg)) {
printk(KERN_INFO "has_svm: %s\n", msg);
return 0;
}
return 1;
}
static void svm_hardware_disable(void)
{
/* Make sure we clean up behind us */
if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
cpu_svm_disable();
amd_pmu_disable_virt();
}
static int svm_hardware_enable(void)
{
struct svm_cpu_data *sd;
uint64_t efer;
struct desc_struct *gdt;
int me = raw_smp_processor_id();
rdmsrl(MSR_EFER, efer);
if (efer & EFER_SVME)
return -EBUSY;
if (!has_svm()) {
pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
return -EINVAL;
}
sd = per_cpu(svm_data, me);
if (!sd) {
pr_err("%s: svm_data is NULL on %d\n", __func__, me);
return -EINVAL;
}
sd->asid_generation = 1;
sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
sd->next_asid = sd->max_asid + 1;
sd->min_asid = max_sev_asid + 1;
gdt = get_current_gdt_rw();
sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
wrmsrl(MSR_EFER, efer | EFER_SVME);
wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
__this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
}
/*
* Get OSVW bits.
*
* Note that it is possible to have a system with mixed processor
* revisions and therefore different OSVW bits. If bits are not the same
* on different processors then choose the worst case (i.e. if erratum
* is present on one processor and not on another then assume that the
* erratum is present everywhere).
*/
if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
uint64_t len, status = 0;
int err;
len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
if (!err)
status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
&err);
if (err)
osvw_status = osvw_len = 0;
else {
if (len < osvw_len)
osvw_len = len;
osvw_status |= status;
osvw_status &= (1ULL << osvw_len) - 1;
}
} else
osvw_status = osvw_len = 0;
svm_init_erratum_383();
amd_pmu_enable_virt();
return 0;
}
static void svm_cpu_uninit(int cpu)
{
struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
if (!sd)
return;
per_cpu(svm_data, raw_smp_processor_id()) = NULL;
kfree(sd->sev_vmcbs);
__free_page(sd->save_area);
kfree(sd);
}
static int svm_cpu_init(int cpu)
{
struct svm_cpu_data *sd;
sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
if (!sd)
return -ENOMEM;
sd->cpu = cpu;
sd->save_area = alloc_page(GFP_KERNEL);
if (!sd->save_area)
goto free_cpu_data;
if (svm_sev_enabled()) {
sd->sev_vmcbs = kmalloc_array(max_sev_asid + 1,
sizeof(void *),
GFP_KERNEL);
if (!sd->sev_vmcbs)
goto free_save_area;
}
per_cpu(svm_data, cpu) = sd;
return 0;
free_save_area:
__free_page(sd->save_area);
free_cpu_data:
kfree(sd);
return -ENOMEM;
}
static bool valid_msr_intercept(u32 index)
{
int i;
for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
if (direct_access_msrs[i].index == index)
return true;
return false;
}
static bool msr_write_intercepted(struct kvm_vcpu *vcpu, unsigned msr)
{
u8 bit_write;
unsigned long tmp;
u32 offset;
u32 *msrpm;
msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
to_svm(vcpu)->msrpm;
offset = svm_msrpm_offset(msr);
bit_write = 2 * (msr & 0x0f) + 1;
tmp = msrpm[offset];
BUG_ON(offset == MSR_INVALID);
return !!test_bit(bit_write, &tmp);
}
static void set_msr_interception(u32 *msrpm, unsigned msr,
int read, int write)
{
u8 bit_read, bit_write;
unsigned long tmp;
u32 offset;
/*
* If this warning triggers extend the direct_access_msrs list at the
* beginning of the file
*/
WARN_ON(!valid_msr_intercept(msr));
offset = svm_msrpm_offset(msr);
bit_read = 2 * (msr & 0x0f);
bit_write = 2 * (msr & 0x0f) + 1;
tmp = msrpm[offset];
BUG_ON(offset == MSR_INVALID);
read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp);
write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
msrpm[offset] = tmp;
}
static void svm_vcpu_init_msrpm(u32 *msrpm)
{
int i;
memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
if (!direct_access_msrs[i].always)
continue;
set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
}
}
static void add_msr_offset(u32 offset)
{
int i;
for (i = 0; i < MSRPM_OFFSETS; ++i) {
/* Offset already in list? */
if (msrpm_offsets[i] == offset)
return;
/* Slot used by another offset? */
if (msrpm_offsets[i] != MSR_INVALID)
continue;
/* Add offset to list */
msrpm_offsets[i] = offset;
return;
}
/*
* If this BUG triggers the msrpm_offsets table has an overflow. Just
* increase MSRPM_OFFSETS in this case.
*/
BUG();
}
static void init_msrpm_offsets(void)
{
int i;
memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
u32 offset;
offset = svm_msrpm_offset(direct_access_msrs[i].index);
BUG_ON(offset == MSR_INVALID);
add_msr_offset(offset);
}
}
static void svm_enable_lbrv(struct vcpu_svm *svm)
{
u32 *msrpm = svm->msrpm;
svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
}
static void svm_disable_lbrv(struct vcpu_svm *svm)
{
u32 *msrpm = svm->msrpm;
svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
}
void disable_nmi_singlestep(struct vcpu_svm *svm)
{
svm->nmi_singlestep = false;
if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
/* Clear our flags if they were not set by the guest */
if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
}
}
static void grow_ple_window(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
struct vmcb_control_area *control = &svm->vmcb->control;
int old = control->pause_filter_count;
control->pause_filter_count = __grow_ple_window(old,
pause_filter_count,
pause_filter_count_grow,
pause_filter_count_max);
if (control->pause_filter_count != old) {
mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
trace_kvm_ple_window_update(vcpu->vcpu_id,
control->pause_filter_count, old);
}
}
static void shrink_ple_window(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
struct vmcb_control_area *control = &svm->vmcb->control;
int old = control->pause_filter_count;
control->pause_filter_count =
__shrink_ple_window(old,
pause_filter_count,
pause_filter_count_shrink,
pause_filter_count);
if (control->pause_filter_count != old) {
mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
trace_kvm_ple_window_update(vcpu->vcpu_id,
control->pause_filter_count, old);
}
}
/*
* The default MMIO mask is a single bit (excluding the present bit),
* which could conflict with the memory encryption bit. Check for
* memory encryption support and override the default MMIO mask if
* memory encryption is enabled.
*/
static __init void svm_adjust_mmio_mask(void)
{
unsigned int enc_bit, mask_bit;
u64 msr, mask;
/* If there is no memory encryption support, use existing mask */
if (cpuid_eax(0x80000000) < 0x8000001f)
return;
/* If memory encryption is not enabled, use existing mask */
rdmsrl(MSR_K8_SYSCFG, msr);
if (!(msr & MSR_K8_SYSCFG_MEM_ENCRYPT))
return;
enc_bit = cpuid_ebx(0x8000001f) & 0x3f;
mask_bit = boot_cpu_data.x86_phys_bits;
/* Increment the mask bit if it is the same as the encryption bit */
if (enc_bit == mask_bit)
mask_bit++;
/*
* If the mask bit location is below 52, then some bits above the
* physical addressing limit will always be reserved, so use the
* rsvd_bits() function to generate the mask. This mask, along with
* the present bit, will be used to generate a page fault with
* PFER.RSV = 1.
*
* If the mask bit location is 52 (or above), then clear the mask.
*/
mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0;
kvm_mmu_set_mmio_spte_mask(mask, PT_WRITABLE_MASK | PT_USER_MASK);
}
static void svm_hardware_teardown(void)
{
int cpu;
if (svm_sev_enabled())
sev_hardware_teardown();
for_each_possible_cpu(cpu)
svm_cpu_uninit(cpu);
__free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
iopm_base = 0;
}
static __init void svm_set_cpu_caps(void)
{
kvm_set_cpu_caps();
supported_xss = 0;
/* CPUID 0x80000001 and 0x8000000A (SVM features) */
if (nested) {
kvm_cpu_cap_set(X86_FEATURE_SVM);
if (nrips)
kvm_cpu_cap_set(X86_FEATURE_NRIPS);
if (npt_enabled)
kvm_cpu_cap_set(X86_FEATURE_NPT);
}
/* CPUID 0x80000008 */
if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) ||
boot_cpu_has(X86_FEATURE_AMD_SSBD))
kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
}
static __init int svm_hardware_setup(void)
{
int cpu;
struct page *iopm_pages;
void *iopm_va;
int r;
iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
if (!iopm_pages)
return -ENOMEM;
iopm_va = page_address(iopm_pages);
memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
init_msrpm_offsets();
supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
if (boot_cpu_has(X86_FEATURE_NX))
kvm_enable_efer_bits(EFER_NX);
if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
kvm_enable_efer_bits(EFER_FFXSR);
if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
kvm_has_tsc_control = true;
kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX;
kvm_tsc_scaling_ratio_frac_bits = 32;
}
/* Check for pause filtering support */
if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
pause_filter_count = 0;
pause_filter_thresh = 0;
} else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
pause_filter_thresh = 0;
}
if (nested) {
printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
}
if (sev) {
if (boot_cpu_has(X86_FEATURE_SEV) &&
IS_ENABLED(CONFIG_KVM_AMD_SEV)) {
r = sev_hardware_setup();
if (r)
sev = false;
} else {
sev = false;
}
}
svm_adjust_mmio_mask();
for_each_possible_cpu(cpu) {
r = svm_cpu_init(cpu);
if (r)
goto err;
}
if (!boot_cpu_has(X86_FEATURE_NPT))
npt_enabled = false;
if (npt_enabled && !npt)
npt_enabled = false;
kvm_configure_mmu(npt_enabled, PG_LEVEL_1G);
pr_info("kvm: Nested Paging %sabled\n", npt_enabled ? "en" : "dis");
if (nrips) {
if (!boot_cpu_has(X86_FEATURE_NRIPS))
nrips = false;
}
if (avic) {
if (!npt_enabled ||
!boot_cpu_has(X86_FEATURE_AVIC) ||
!IS_ENABLED(CONFIG_X86_LOCAL_APIC)) {
avic = false;
} else {
pr_info("AVIC enabled\n");
amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
}
}
if (vls) {
if (!npt_enabled ||
!boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
!IS_ENABLED(CONFIG_X86_64)) {
vls = false;
} else {
pr_info("Virtual VMLOAD VMSAVE supported\n");
}
}
if (vgif) {
if (!boot_cpu_has(X86_FEATURE_VGIF))
vgif = false;
else
pr_info("Virtual GIF supported\n");
}
svm_set_cpu_caps();
return 0;
err:
svm_hardware_teardown();
return r;
}
static void init_seg(struct vmcb_seg *seg)
{
seg->selector = 0;
seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
seg->limit = 0xffff;
seg->base = 0;
}
static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
{
seg->selector = 0;
seg->attrib = SVM_SELECTOR_P_MASK | type;
seg->limit = 0xffff;
seg->base = 0;
}
static u64 svm_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
{
struct vcpu_svm *svm = to_svm(vcpu);
u64 g_tsc_offset = 0;
if (is_guest_mode(vcpu)) {
/* Write L1's TSC offset. */
g_tsc_offset = svm->vmcb->control.tsc_offset -
svm->nested.hsave->control.tsc_offset;
svm->nested.hsave->control.tsc_offset = offset;
}
trace_kvm_write_tsc_offset(vcpu->vcpu_id,
svm->vmcb->control.tsc_offset - g_tsc_offset,
offset);
svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
return svm->vmcb->control.tsc_offset;
}
static void init_vmcb(struct vcpu_svm *svm)
{
struct vmcb_control_area *control = &svm->vmcb->control;
struct vmcb_save_area *save = &svm->vmcb->save;
svm->vcpu.arch.hflags = 0;
set_cr_intercept(svm, INTERCEPT_CR0_READ);
set_cr_intercept(svm, INTERCEPT_CR3_READ);
set_cr_intercept(svm, INTERCEPT_CR4_READ);
set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
if (!kvm_vcpu_apicv_active(&svm->vcpu))
set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
set_dr_intercepts(svm);
set_exception_intercept(svm, PF_VECTOR);
set_exception_intercept(svm, UD_VECTOR);
set_exception_intercept(svm, MC_VECTOR);
set_exception_intercept(svm, AC_VECTOR);
set_exception_intercept(svm, DB_VECTOR);
/*
* Guest access to VMware backdoor ports could legitimately
* trigger #GP because of TSS I/O permission bitmap.
* We intercept those #GP and allow access to them anyway
* as VMware does.
*/
if (enable_vmware_backdoor)
set_exception_intercept(svm, GP_VECTOR);
set_intercept(svm, INTERCEPT_INTR);
set_intercept(svm, INTERCEPT_NMI);
set_intercept(svm, INTERCEPT_SMI);
set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
set_intercept(svm, INTERCEPT_RDPMC);
set_intercept(svm, INTERCEPT_CPUID);
set_intercept(svm, INTERCEPT_INVD);
set_intercept(svm, INTERCEPT_INVLPG);
set_intercept(svm, INTERCEPT_INVLPGA);
set_intercept(svm, INTERCEPT_IOIO_PROT);
set_intercept(svm, INTERCEPT_MSR_PROT);
set_intercept(svm, INTERCEPT_TASK_SWITCH);
set_intercept(svm, INTERCEPT_SHUTDOWN);
set_intercept(svm, INTERCEPT_VMRUN);
set_intercept(svm, INTERCEPT_VMMCALL);
set_intercept(svm, INTERCEPT_VMLOAD);
set_intercept(svm, INTERCEPT_VMSAVE);
set_intercept(svm, INTERCEPT_STGI);
set_intercept(svm, INTERCEPT_CLGI);
set_intercept(svm, INTERCEPT_SKINIT);
set_intercept(svm, INTERCEPT_WBINVD);
set_intercept(svm, INTERCEPT_XSETBV);
set_intercept(svm, INTERCEPT_RDPRU);
set_intercept(svm, INTERCEPT_RSM);
if (!kvm_mwait_in_guest(svm->vcpu.kvm)) {
set_intercept(svm, INTERCEPT_MONITOR);
set_intercept(svm, INTERCEPT_MWAIT);
}
if (!kvm_hlt_in_guest(svm->vcpu.kvm))
set_intercept(svm, INTERCEPT_HLT);
control->iopm_base_pa = __sme_set(iopm_base);
control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
control->int_ctl = V_INTR_MASKING_MASK;
init_seg(&save->es);
init_seg(&save->ss);
init_seg(&save->ds);
init_seg(&save->fs);
init_seg(&save->gs);
save->cs.selector = 0xf000;
save->cs.base = 0xffff0000;
/* Executable/Readable Code Segment */
save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
save->cs.limit = 0xffff;
save->gdtr.limit = 0xffff;
save->idtr.limit = 0xffff;
init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
svm_set_efer(&svm->vcpu, 0);
save->dr6 = 0xffff0ff0;
kvm_set_rflags(&svm->vcpu, 2);
save->rip = 0x0000fff0;
svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
/*
* svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
* It also updates the guest-visible cr0 value.
*/
svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
kvm_mmu_reset_context(&svm->vcpu);
save->cr4 = X86_CR4_PAE;
/* rdx = ?? */
if (npt_enabled) {
/* Setup VMCB for Nested Paging */
control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
clr_intercept(svm, INTERCEPT_INVLPG);
clr_exception_intercept(svm, PF_VECTOR);
clr_cr_intercept(svm, INTERCEPT_CR3_READ);
clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
save->g_pat = svm->vcpu.arch.pat;
save->cr3 = 0;
save->cr4 = 0;
}
svm->asid_generation = 0;
svm->nested.vmcb = 0;
svm->vcpu.arch.hflags = 0;
if (pause_filter_count) {
control->pause_filter_count = pause_filter_count;
if (pause_filter_thresh)
control->pause_filter_thresh = pause_filter_thresh;
set_intercept(svm, INTERCEPT_PAUSE);
} else {
clr_intercept(svm, INTERCEPT_PAUSE);
}
if (kvm_vcpu_apicv_active(&svm->vcpu))
avic_init_vmcb(svm);
/*
* If hardware supports Virtual VMLOAD VMSAVE then enable it
* in VMCB and clear intercepts to avoid #VMEXIT.
*/
if (vls) {
clr_intercept(svm, INTERCEPT_VMLOAD);
clr_intercept(svm, INTERCEPT_VMSAVE);
svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
}
if (vgif) {
clr_intercept(svm, INTERCEPT_STGI);
clr_intercept(svm, INTERCEPT_CLGI);
svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
}
if (sev_guest(svm->vcpu.kvm)) {
svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
clr_exception_intercept(svm, UD_VECTOR);
}
mark_all_dirty(svm->vmcb);
enable_gif(svm);
}
static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
{
struct vcpu_svm *svm = to_svm(vcpu);
u32 dummy;
u32 eax = 1;
svm->spec_ctrl = 0;
svm->virt_spec_ctrl = 0;
if (!init_event) {
svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
MSR_IA32_APICBASE_ENABLE;
if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
}
init_vmcb(svm);
kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, false);
kvm_rdx_write(vcpu, eax);
if (kvm_vcpu_apicv_active(vcpu) && !init_event)
avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE);
}
static int svm_create_vcpu(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm;
struct page *page;
struct page *msrpm_pages;
struct page *hsave_page;
struct page *nested_msrpm_pages;
int err;
BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0);
svm = to_svm(vcpu);
err = -ENOMEM;
page = alloc_page(GFP_KERNEL_ACCOUNT);
if (!page)
goto out;
msrpm_pages = alloc_pages(GFP_KERNEL_ACCOUNT, MSRPM_ALLOC_ORDER);
if (!msrpm_pages)
goto free_page1;
nested_msrpm_pages = alloc_pages(GFP_KERNEL_ACCOUNT, MSRPM_ALLOC_ORDER);
if (!nested_msrpm_pages)
goto free_page2;
hsave_page = alloc_page(GFP_KERNEL_ACCOUNT);
if (!hsave_page)
goto free_page3;
err = avic_init_vcpu(svm);
if (err)
goto free_page4;
/* We initialize this flag to true to make sure that the is_running
* bit would be set the first time the vcpu is loaded.
*/
if (irqchip_in_kernel(vcpu->kvm) && kvm_apicv_activated(vcpu->kvm))
svm->avic_is_running = true;
svm->nested.hsave = page_address(hsave_page);
clear_page(svm->nested.hsave);
svm->msrpm = page_address(msrpm_pages);
svm_vcpu_init_msrpm(svm->msrpm);
svm->nested.msrpm = page_address(nested_msrpm_pages);
svm_vcpu_init_msrpm(svm->nested.msrpm);
svm->vmcb = page_address(page);
clear_page(svm->vmcb);
svm->vmcb_pa = __sme_set(page_to_pfn(page) << PAGE_SHIFT);
svm->asid_generation = 0;
init_vmcb(svm);
svm_init_osvw(vcpu);
vcpu->arch.microcode_version = 0x01000065;
return 0;
free_page4:
__free_page(hsave_page);
free_page3:
__free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
free_page2:
__free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
free_page1:
__free_page(page);
out:
return err;
}
static void svm_clear_current_vmcb(struct vmcb *vmcb)
{
int i;
for_each_online_cpu(i)
cmpxchg(&per_cpu(svm_data, i)->current_vmcb, vmcb, NULL);
}
static void svm_free_vcpu(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
/*
* The vmcb page can be recycled, causing a false negative in
* svm_vcpu_load(). So, ensure that no logical CPU has this
* vmcb page recorded as its current vmcb.
*/
svm_clear_current_vmcb(svm->vmcb);
__free_page(pfn_to_page(__sme_clr(svm->vmcb_pa) >> PAGE_SHIFT));
__free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
__free_page(virt_to_page(svm->nested.hsave));
__free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
}
static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
int i;
if (unlikely(cpu != vcpu->cpu)) {
svm->asid_generation = 0;
mark_all_dirty(svm->vmcb);
}
#ifdef CONFIG_X86_64
rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
#endif
savesegment(fs, svm->host.fs);
savesegment(gs, svm->host.gs);
svm->host.ldt = kvm_read_ldt();
for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
__this_cpu_write(current_tsc_ratio, tsc_ratio);
wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
}
}
/* This assumes that the kernel never uses MSR_TSC_AUX */
if (static_cpu_has(X86_FEATURE_RDTSCP))
wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
if (sd->current_vmcb != svm->vmcb) {
sd->current_vmcb = svm->vmcb;
indirect_branch_prediction_barrier();
}
avic_vcpu_load(vcpu, cpu);
}
static void svm_vcpu_put(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
int i;
avic_vcpu_put(vcpu);
++vcpu->stat.host_state_reload;
kvm_load_ldt(svm->host.ldt);
#ifdef CONFIG_X86_64
loadsegment(fs, svm->host.fs);
wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gsbase);
load_gs_index(svm->host.gs);
#else
#ifdef CONFIG_X86_32_LAZY_GS
loadsegment(gs, svm->host.gs);
#endif
#endif
for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
}
static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
unsigned long rflags = svm->vmcb->save.rflags;
if (svm->nmi_singlestep) {
/* Hide our flags if they were not set by the guest */
if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
rflags &= ~X86_EFLAGS_TF;
if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
rflags &= ~X86_EFLAGS_RF;
}
return rflags;
}
static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
{
if (to_svm(vcpu)->nmi_singlestep)
rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
/*
* Any change of EFLAGS.VM is accompanied by a reload of SS
* (caused by either a task switch or an inter-privilege IRET),
* so we do not need to update the CPL here.
*/
to_svm(vcpu)->vmcb->save.rflags = rflags;
}
static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
{
switch (reg) {
case VCPU_EXREG_PDPTR:
BUG_ON(!npt_enabled);
load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
break;
default:
WARN_ON_ONCE(1);
}
}
static void svm_set_vintr(struct vcpu_svm *svm)
{
struct vmcb_control_area *control;
/* The following fields are ignored when AVIC is enabled */
WARN_ON(kvm_vcpu_apicv_active(&svm->vcpu));
set_intercept(svm, INTERCEPT_VINTR);
/*
* This is just a dummy VINTR to actually cause a vmexit to happen.
* Actual injection of virtual interrupts happens through EVENTINJ.
*/
control = &svm->vmcb->control;
control->int_vector = 0x0;
control->int_ctl &= ~V_INTR_PRIO_MASK;
control->int_ctl |= V_IRQ_MASK |
((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
mark_dirty(svm->vmcb, VMCB_INTR);
}
static void svm_clear_vintr(struct vcpu_svm *svm)
{
const u32 mask = V_TPR_MASK | V_GIF_ENABLE_MASK | V_GIF_MASK | V_INTR_MASKING_MASK;
clr_intercept(svm, INTERCEPT_VINTR);
/* Drop int_ctl fields related to VINTR injection. */
svm->vmcb->control.int_ctl &= mask;
if (is_guest_mode(&svm->vcpu)) {
WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) !=
(svm->nested.ctl.int_ctl & V_TPR_MASK));
svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl & ~mask;
}
mark_dirty(svm->vmcb, VMCB_INTR);
}
static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
{
struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
switch (seg) {
case VCPU_SREG_CS: return &save->cs;
case VCPU_SREG_DS: return &save->ds;
case VCPU_SREG_ES: return &save->es;
case VCPU_SREG_FS: return &save->fs;
case VCPU_SREG_GS: return &save->gs;
case VCPU_SREG_SS: return &save->ss;
case VCPU_SREG_TR: return &save->tr;
case VCPU_SREG_LDTR: return &save->ldtr;
}
BUG();
return NULL;
}
static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
{
struct vmcb_seg *s = svm_seg(vcpu, seg);
return s->base;
}
static void svm_get_segment(struct kvm_vcpu *vcpu,
struct kvm_segment *var, int seg)
{
struct vmcb_seg *s = svm_seg(vcpu, seg);
var->base = s->base;
var->limit = s->limit;
var->selector = s->selector;
var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
/*
* AMD CPUs circa 2014 track the G bit for all segments except CS.
* However, the SVM spec states that the G bit is not observed by the
* CPU, and some VMware virtual CPUs drop the G bit for all segments.
* So let's synthesize a legal G bit for all segments, this helps
* running KVM nested. It also helps cross-vendor migration, because
* Intel's vmentry has a check on the 'G' bit.
*/
var->g = s->limit > 0xfffff;
/*
* AMD's VMCB does not have an explicit unusable field, so emulate it
* for cross vendor migration purposes by "not present"
*/
var->unusable = !var->present;
switch (seg) {
case VCPU_SREG_TR:
/*
* Work around a bug where the busy flag in the tr selector
* isn't exposed
*/
var->type |= 0x2;
break;
case VCPU_SREG_DS:
case VCPU_SREG_ES:
case VCPU_SREG_FS:
case VCPU_SREG_GS:
/*
* The accessed bit must always be set in the segment
* descriptor cache, although it can be cleared in the
* descriptor, the cached bit always remains at 1. Since
* Intel has a check on this, set it here to support
* cross-vendor migration.
*/
if (!var->unusable)
var->type |= 0x1;
break;
case VCPU_SREG_SS:
/*
* On AMD CPUs sometimes the DB bit in the segment
* descriptor is left as 1, although the whole segment has
* been made unusable. Clear it here to pass an Intel VMX
* entry check when cross vendor migrating.
*/
if (var->unusable)
var->db = 0;
/* This is symmetric with svm_set_segment() */
var->dpl = to_svm(vcpu)->vmcb->save.cpl;
break;
}
}
static int svm_get_cpl(struct kvm_vcpu *vcpu)
{
struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
return save->cpl;
}
static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
{
struct vcpu_svm *svm = to_svm(vcpu);
dt->size = svm->vmcb->save.idtr.limit;
dt->address = svm->vmcb->save.idtr.base;
}
static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
{
struct vcpu_svm *svm = to_svm(vcpu);
svm->vmcb->save.idtr.limit = dt->size;
svm->vmcb->save.idtr.base = dt->address ;
mark_dirty(svm->vmcb, VMCB_DT);
}
static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
{
struct vcpu_svm *svm = to_svm(vcpu);
dt->size = svm->vmcb->save.gdtr.limit;
dt->address = svm->vmcb->save.gdtr.base;
}
static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
{
struct vcpu_svm *svm = to_svm(vcpu);
svm->vmcb->save.gdtr.limit = dt->size;
svm->vmcb->save.gdtr.base = dt->address ;
mark_dirty(svm->vmcb, VMCB_DT);
}
static void update_cr0_intercept(struct vcpu_svm *svm)
{
ulong gcr0 = svm->vcpu.arch.cr0;
u64 *hcr0 = &svm->vmcb->save.cr0;
*hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
| (gcr0 & SVM_CR0_SELECTIVE_MASK);
mark_dirty(svm->vmcb, VMCB_CR);
if (gcr0 == *hcr0) {
clr_cr_intercept(svm, INTERCEPT_CR0_READ);
clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
} else {
set_cr_intercept(svm, INTERCEPT_CR0_READ);
set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
}
}
void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
{
struct vcpu_svm *svm = to_svm(vcpu);
#ifdef CONFIG_X86_64
if (vcpu->arch.efer & EFER_LME) {
if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
vcpu->arch.efer |= EFER_LMA;
svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
}
if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
vcpu->arch.efer &= ~EFER_LMA;
svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
}
}
#endif
vcpu->arch.cr0 = cr0;
if (!npt_enabled)
cr0 |= X86_CR0_PG | X86_CR0_WP;
/*
* re-enable caching here because the QEMU bios
* does not do it - this results in some delay at
* reboot
*/
if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
svm->vmcb->save.cr0 = cr0;
mark_dirty(svm->vmcb, VMCB_CR);
update_cr0_intercept(svm);
}
int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
{
unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
if (cr4 & X86_CR4_VMXE)
return 1;
if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
svm_flush_tlb(vcpu);
vcpu->arch.cr4 = cr4;
if (!npt_enabled)
cr4 |= X86_CR4_PAE;
cr4 |= host_cr4_mce;
to_svm(vcpu)->vmcb->save.cr4 = cr4;
mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
return 0;
}
static void svm_set_segment(struct kvm_vcpu *vcpu,
struct kvm_segment *var, int seg)
{
struct vcpu_svm *svm = to_svm(vcpu);
struct vmcb_seg *s = svm_seg(vcpu, seg);
s->base = var->base;
s->limit = var->limit;
s->selector = var->selector;
s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
/*
* This is always accurate, except if SYSRET returned to a segment
* with SS.DPL != 3. Intel does not have this quirk, and always
* forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
* would entail passing the CPL to userspace and back.
*/
if (seg == VCPU_SREG_SS)
/* This is symmetric with svm_get_segment() */
svm->vmcb->save.cpl = (var->dpl & 3);
mark_dirty(svm->vmcb, VMCB_SEG);
}
static void update_bp_intercept(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
clr_exception_intercept(svm, BP_VECTOR);
if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
set_exception_intercept(svm, BP_VECTOR);
} else
vcpu->guest_debug = 0;
}
static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
{
if (sd->next_asid > sd->max_asid) {
++sd->asid_generation;
sd->next_asid = sd->min_asid;
svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
}
svm->asid_generation = sd->asid_generation;
svm->vmcb->control.asid = sd->next_asid++;
mark_dirty(svm->vmcb, VMCB_ASID);
}
static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value)
{
struct vmcb *vmcb = svm->vmcb;
if (unlikely(value != vmcb->save.dr6)) {
vmcb->save.dr6 = value;
mark_dirty(vmcb, VMCB_DR);
}
}
static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
get_debugreg(vcpu->arch.db[0], 0);
get_debugreg(vcpu->arch.db[1], 1);
get_debugreg(vcpu->arch.db[2], 2);
get_debugreg(vcpu->arch.db[3], 3);
/*
* We cannot reset svm->vmcb->save.dr6 to DR6_FIXED_1|DR6_RTM here,
* because db_interception might need it. We can do it before vmentry.
*/
vcpu->arch.dr6 = svm->vmcb->save.dr6;
vcpu->arch.dr7 = svm->vmcb->save.dr7;
vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
set_dr_intercepts(svm);
}
static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
{
struct vcpu_svm *svm = to_svm(vcpu);
svm->vmcb->save.dr7 = value;
mark_dirty(svm->vmcb, VMCB_DR);
}
static int pf_interception(struct vcpu_svm *svm)
{
u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
u64 error_code = svm->vmcb->control.exit_info_1;
return kvm_handle_page_fault(&svm->vcpu, error_code, fault_address,
static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
svm->vmcb->control.insn_bytes : NULL,
svm->vmcb->control.insn_len);
}
static int npf_interception(struct vcpu_svm *svm)
{
u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
u64 error_code = svm->vmcb->control.exit_info_1;
trace_kvm_page_fault(fault_address, error_code);
return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
svm->vmcb->control.insn_bytes : NULL,
svm->vmcb->control.insn_len);
}
static int db_interception(struct vcpu_svm *svm)
{
struct kvm_run *kvm_run = svm->vcpu.run;
struct kvm_vcpu *vcpu = &svm->vcpu;
if (!(svm->vcpu.guest_debug &
(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
!svm->nmi_singlestep) {
u32 payload = (svm->vmcb->save.dr6 ^ DR6_RTM) & ~DR6_FIXED_1;
kvm_queue_exception_p(&svm->vcpu, DB_VECTOR, payload);
return 1;
}
if (svm->nmi_singlestep) {
disable_nmi_singlestep(svm);
/* Make sure we check for pending NMIs upon entry */
kvm_make_request(KVM_REQ_EVENT, vcpu);
}
if (svm->vcpu.guest_debug &
(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
kvm_run->exit_reason = KVM_EXIT_DEBUG;
kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6;
kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7;
kvm_run->debug.arch.pc =
svm->vmcb->save.cs.base + svm->vmcb->save.rip;
kvm_run->debug.arch.exception = DB_VECTOR;
return 0;
}
return 1;
}
static int bp_interception(struct vcpu_svm *svm)
{
struct kvm_run *kvm_run = svm->vcpu.run;
kvm_run->exit_reason = KVM_EXIT_DEBUG;
kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
kvm_run->debug.arch.exception = BP_VECTOR;
return 0;
}
static int ud_interception(struct vcpu_svm *svm)
{
return handle_ud(&svm->vcpu);
}
static int ac_interception(struct vcpu_svm *svm)
{
kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0);
return 1;
}
static int gp_interception(struct vcpu_svm *svm)
{
struct kvm_vcpu *vcpu = &svm->vcpu;
u32 error_code = svm->vmcb->control.exit_info_1;
WARN_ON_ONCE(!enable_vmware_backdoor);
/*
* VMware backdoor emulation on #GP interception only handles IN{S},
* OUT{S}, and RDPMC, none of which generate a non-zero error code.
*/
if (error_code) {
kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
return 1;
}
return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
}
static bool is_erratum_383(void)
{
int err, i;
u64 value;
if (!erratum_383_found)
return false;
value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
if (err)
return false;
/* Bit 62 may or may not be set for this mce */
value &= ~(1ULL << 62);
if (value != 0xb600000000010015ULL)
return false;
/* Clear MCi_STATUS registers */
for (i = 0; i < 6; ++i)
native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
if (!err) {
u32 low, high;
value &= ~(1ULL << 2);
low = lower_32_bits(value);
high = upper_32_bits(value);
native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
}
/* Flush tlb to evict multi-match entries */
__flush_tlb_all();
return true;
}
/*
* Trigger machine check on the host. We assume all the MSRs are already set up
* by the CPU and that we still run on the same CPU as the MCE occurred on.
* We pass a fake environment to the machine check handler because we want
* the guest to be always treated like user space, no matter what context
* it used internally.
*/
static void kvm_machine_check(void)
{
#if defined(CONFIG_X86_MCE)
struct pt_regs regs = {
.cs = 3, /* Fake ring 3 no matter what the guest ran on */
.flags = X86_EFLAGS_IF,
};
do_machine_check(®s, 0);
#endif
}
static void svm_handle_mce(struct vcpu_svm *svm)
{
if (is_erratum_383()) {
/*
* Erratum 383 triggered. Guest state is corrupt so kill the
* guest.
*/
pr_err("KVM: Guest triggered AMD Erratum 383\n");
kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
return;
}
/*
* On an #MC intercept the MCE handler is not called automatically in
* the host. So do it by hand here.
*/
kvm_machine_check();
}
static int mc_interception(struct vcpu_svm *svm)
{
return 1;
}
static int shutdown_interception(struct vcpu_svm *svm)
{
struct kvm_run *kvm_run = svm->vcpu.run;
/*
* VMCB is undefined after a SHUTDOWN intercept
* so reinitialize it.
*/
clear_page(svm->vmcb);
init_vmcb(svm);
kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
return 0;
}
static int io_interception(struct vcpu_svm *svm)
{
struct kvm_vcpu *vcpu = &svm->vcpu;
u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
int size, in, string;
unsigned port;
++svm->vcpu.stat.io_exits;
string = (io_info & SVM_IOIO_STR_MASK) != 0;
in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
if (string)
return kvm_emulate_instruction(vcpu, 0);
port = io_info >> 16;
size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
svm->next_rip = svm->vmcb->control.exit_info_2;
return kvm_fast_pio(&svm->vcpu, size, port, in);
}
static int nmi_interception(struct vcpu_svm *svm)
{
return 1;
}
static int intr_interception(struct vcpu_svm *svm)
{
++svm->vcpu.stat.irq_exits;
return 1;
}
static int nop_on_interception(struct vcpu_svm *svm)
{
return 1;
}
static int halt_interception(struct vcpu_svm *svm)
{
return kvm_emulate_halt(&svm->vcpu);
}
static int vmmcall_interception(struct vcpu_svm *svm)
{
return kvm_emulate_hypercall(&svm->vcpu);
}
static int vmload_interception(struct vcpu_svm *svm)
{
struct vmcb *nested_vmcb;
struct kvm_host_map map;
int ret;
if (nested_svm_check_permissions(svm))
return 1;
ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
if (ret) {
if (ret == -EINVAL)
kvm_inject_gp(&svm->vcpu, 0);
return 1;
}
nested_vmcb = map.hva;
ret = kvm_skip_emulated_instruction(&svm->vcpu);
nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
kvm_vcpu_unmap(&svm->vcpu, &map, true);
return ret;
}
static int vmsave_interception(struct vcpu_svm *svm)
{
struct vmcb *nested_vmcb;
struct kvm_host_map map;
int ret;
if (nested_svm_check_permissions(svm))
return 1;
ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
if (ret) {
if (ret == -EINVAL)
kvm_inject_gp(&svm->vcpu, 0);
return 1;
}
nested_vmcb = map.hva;
ret = kvm_skip_emulated_instruction(&svm->vcpu);
nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
kvm_vcpu_unmap(&svm->vcpu, &map, true);
return ret;
}
static int vmrun_interception(struct vcpu_svm *svm)
{
if (nested_svm_check_permissions(svm))
return 1;
return nested_svm_vmrun(svm);
}
void svm_set_gif(struct vcpu_svm *svm, bool value)
{
if (value) {
/*
* If VGIF is enabled, the STGI intercept is only added to
* detect the opening of the SMI/NMI window; remove it now.
* Likewise, clear the VINTR intercept, we will set it
* again while processing KVM_REQ_EVENT if needed.
*/
if (vgif_enabled(svm))
clr_intercept(svm, INTERCEPT_STGI);
if (is_intercept(svm, SVM_EXIT_VINTR))
svm_clear_vintr(svm);
enable_gif(svm);
if (svm->vcpu.arch.smi_pending ||
svm->vcpu.arch.nmi_pending ||
kvm_cpu_has_injectable_intr(&svm->vcpu))
kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
} else {
disable_gif(svm);
/*
* After a CLGI no interrupts should come. But if vGIF is
* in use, we still rely on the VINTR intercept (rather than
* STGI) to detect an open interrupt window.
*/
if (!vgif_enabled(svm))
svm_clear_vintr(svm);
}
}
static int stgi_interception(struct vcpu_svm *svm)
{
int ret;
if (nested_svm_check_permissions(svm))
return 1;
ret = kvm_skip_emulated_instruction(&svm->vcpu);
svm_set_gif(svm, true);
return ret;
}
static int clgi_interception(struct vcpu_svm *svm)
{
int ret;
if (nested_svm_check_permissions(svm))
return 1;
ret = kvm_skip_emulated_instruction(&svm->vcpu);
svm_set_gif(svm, false);
return ret;
}
static int invlpga_interception(struct vcpu_svm *svm)
{
struct kvm_vcpu *vcpu = &svm->vcpu;
trace_kvm_invlpga(svm->vmcb->save.rip, kvm_rcx_read(&svm->vcpu),
kvm_rax_read(&svm->vcpu));
/* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
kvm_mmu_invlpg(vcpu, kvm_rax_read(&svm->vcpu));
return kvm_skip_emulated_instruction(&svm->vcpu);
}
static int skinit_interception(struct vcpu_svm *svm)
{
trace_kvm_skinit(svm->vmcb->save.rip, kvm_rax_read(&svm->vcpu));
kvm_queue_exception(&svm->vcpu, UD_VECTOR);
return 1;
}
static int wbinvd_interception(struct vcpu_svm *svm)
{
return kvm_emulate_wbinvd(&svm->vcpu);
}
static int xsetbv_interception(struct vcpu_svm *svm)
{
u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
u32 index = kvm_rcx_read(&svm->vcpu);
if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
return kvm_skip_emulated_instruction(&svm->vcpu);
}
return 1;
}
static int rdpru_interception(struct vcpu_svm *svm)
{
kvm_queue_exception(&svm->vcpu, UD_VECTOR);
return 1;
}
static int task_switch_interception(struct vcpu_svm *svm)
{
u16 tss_selector;
int reason;
int int_type = svm->vmcb->control.exit_int_info &
SVM_EXITINTINFO_TYPE_MASK;
int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
uint32_t type =
svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
uint32_t idt_v =
svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
bool has_error_code = false;
u32 error_code = 0;
tss_selector = (u16)svm->vmcb->control.exit_info_1;
if (svm->vmcb->control.exit_info_2 &
(1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
reason = TASK_SWITCH_IRET;
else if (svm->vmcb->control.exit_info_2 &
(1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
reason = TASK_SWITCH_JMP;
else if (idt_v)
reason = TASK_SWITCH_GATE;
else
reason = TASK_SWITCH_CALL;
if (reason == TASK_SWITCH_GATE) {
switch (type) {
case SVM_EXITINTINFO_TYPE_NMI:
svm->vcpu.arch.nmi_injected = false;
break;
case SVM_EXITINTINFO_TYPE_EXEPT:
if (svm->vmcb->control.exit_info_2 &
(1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
has_error_code = true;
error_code =
(u32)svm->vmcb->control.exit_info_2;
}
kvm_clear_exception_queue(&svm->vcpu);
break;
case SVM_EXITINTINFO_TYPE_INTR:
kvm_clear_interrupt_queue(&svm->vcpu);
break;
default:
break;
}
}
if (reason != TASK_SWITCH_GATE ||
int_type == SVM_EXITINTINFO_TYPE_SOFT ||
(int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
(int_vec == OF_VECTOR || int_vec == BP_VECTOR))) {
if (!skip_emulated_instruction(&svm->vcpu))
return 0;
}
if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
int_vec = -1;
return kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
has_error_code, error_code);
}
static int cpuid_interception(struct vcpu_svm *svm)
{
return kvm_emulate_cpuid(&svm->vcpu);
}
static int iret_interception(struct vcpu_svm *svm)
{
++svm->vcpu.stat.nmi_window_exits;
clr_intercept(svm, INTERCEPT_IRET);
svm->vcpu.arch.hflags |= HF_IRET_MASK;
svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
return 1;
}
static int invlpg_interception(struct vcpu_svm *svm)
{
if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
return kvm_emulate_instruction(&svm->vcpu, 0);
kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
return kvm_skip_emulated_instruction(&svm->vcpu);
}
static int emulate_on_interception(struct vcpu_svm *svm)
{
return kvm_emulate_instruction(&svm->vcpu, 0);
}
static int rsm_interception(struct vcpu_svm *svm)
{
return kvm_emulate_instruction_from_buffer(&svm->vcpu, rsm_ins_bytes, 2);
}
static int rdpmc_interception(struct vcpu_svm *svm)
{
int err;
if (!nrips)
return emulate_on_interception(svm);
err = kvm_rdpmc(&svm->vcpu);
return kvm_complete_insn_gp(&svm->vcpu, err);
}
static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
unsigned long val)
{
unsigned long cr0 = svm->vcpu.arch.cr0;
bool ret = false;
u64 intercept;
intercept = svm->nested.ctl.intercept;
if (!is_guest_mode(&svm->vcpu) ||
(!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
return false;
cr0 &= ~SVM_CR0_SELECTIVE_MASK;
val &= ~SVM_CR0_SELECTIVE_MASK;
if (cr0 ^ val) {
svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
}
return ret;
}
#define CR_VALID (1ULL << 63)
static int cr_interception(struct vcpu_svm *svm)
{
int reg, cr;
unsigned long val;
int err;
if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
return emulate_on_interception(svm);
if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
return emulate_on_interception(svm);
reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
else
cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
err = 0;
if (cr >= 16) { /* mov to cr */
cr -= 16;
val = kvm_register_read(&svm->vcpu, reg);
switch (cr) {
case 0:
if (!check_selective_cr0_intercepted(svm, val))
err = kvm_set_cr0(&svm->vcpu, val);
else
return 1;
break;
case 3:
err = kvm_set_cr3(&svm->vcpu, val);
break;
case 4:
err = kvm_set_cr4(&svm->vcpu, val);
break;
case 8:
err = kvm_set_cr8(&svm->vcpu, val);
break;
default:
WARN(1, "unhandled write to CR%d", cr);
kvm_queue_exception(&svm->vcpu, UD_VECTOR);
return 1;
}
} else { /* mov from cr */
switch (cr) {
case 0:
val = kvm_read_cr0(&svm->vcpu);
break;
case 2:
val = svm->vcpu.arch.cr2;
break;
case 3:
val = kvm_read_cr3(&svm->vcpu);
break;
case 4:
val = kvm_read_cr4(&svm->vcpu);
break;
case 8:
val = kvm_get_cr8(&svm->vcpu);
break;
default:
WARN(1, "unhandled read from CR%d", cr);
kvm_queue_exception(&svm->vcpu, UD_VECTOR);
return 1;
}
kvm_register_write(&svm->vcpu, reg, val);
}
return kvm_complete_insn_gp(&svm->vcpu, err);
}
static int dr_interception(struct vcpu_svm *svm)
{
int reg, dr;
unsigned long val;
if (svm->vcpu.guest_debug == 0) {
/*
* No more DR vmexits; force a reload of the debug registers
* and reenter on this instruction. The next vmexit will
* retrieve the full state of the debug registers.
*/
clr_dr_intercepts(svm);
svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
return 1;
}
if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
return emulate_on_interception(svm);
reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
if (dr >= 16) { /* mov to DRn */
if (!kvm_require_dr(&svm->vcpu, dr - 16))
return 1;
val = kvm_register_read(&svm->vcpu, reg);
kvm_set_dr(&svm->vcpu, dr - 16, val);
} else {
if (!kvm_require_dr(&svm->vcpu, dr))
return 1;
kvm_get_dr(&svm->vcpu, dr, &val);
kvm_register_write(&svm->vcpu, reg, val);
}
return kvm_skip_emulated_instruction(&svm->vcpu);
}
static int cr8_write_interception(struct vcpu_svm *svm)
{
struct kvm_run *kvm_run = svm->vcpu.run;
int r;
u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
/* instruction emulation calls kvm_set_cr8() */
r = cr_interception(svm);
if (lapic_in_kernel(&svm->vcpu))
return r;
if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
return r;
kvm_run->exit_reason = KVM_EXIT_SET_TPR;
return 0;
}
static int svm_get_msr_feature(struct kvm_msr_entry *msr)
{
msr->data = 0;
switch (msr->index) {
case MSR_F10H_DECFG:
if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC))
msr->data |= MSR_F10H_DECFG_LFENCE_SERIALIZE;
break;
default:
return 1;
}
return 0;
}
static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
{
struct vcpu_svm *svm = to_svm(vcpu);
switch (msr_info->index) {
case MSR_STAR:
msr_info->data = svm->vmcb->save.star;
break;
#ifdef CONFIG_X86_64
case MSR_LSTAR:
msr_info->data = svm->vmcb->save.lstar;
break;
case MSR_CSTAR:
msr_info->data = svm->vmcb->save.cstar;
break;
case MSR_KERNEL_GS_BASE:
msr_info->data = svm->vmcb->save.kernel_gs_base;
break;
case MSR_SYSCALL_MASK:
msr_info->data = svm->vmcb->save.sfmask;
break;
#endif
case MSR_IA32_SYSENTER_CS:
msr_info->data = svm->vmcb->save.sysenter_cs;
break;
case MSR_IA32_SYSENTER_EIP:
msr_info->data = svm->sysenter_eip;
break;
case MSR_IA32_SYSENTER_ESP:
msr_info->data = svm->sysenter_esp;
break;
case MSR_TSC_AUX:
if (!boot_cpu_has(X86_FEATURE_RDTSCP))
return 1;
msr_info->data = svm->tsc_aux;
break;
/*
* Nobody will change the following 5 values in the VMCB so we can
* safely return them on rdmsr. They will always be 0 until LBRV is
* implemented.
*/
case MSR_IA32_DEBUGCTLMSR:
msr_info->data = svm->vmcb->save.dbgctl;
break;
case MSR_IA32_LASTBRANCHFROMIP:
msr_info->data = svm->vmcb->save.br_from;
break;
case MSR_IA32_LASTBRANCHTOIP:
msr_info->data = svm->vmcb->save.br_to;
break;
case MSR_IA32_LASTINTFROMIP:
msr_info->data = svm->vmcb->save.last_excp_from;
break;
case MSR_IA32_LASTINTTOIP:
msr_info->data = svm->vmcb->save.last_excp_to;
break;
case MSR_VM_HSAVE_PA:
msr_info->data = svm->nested.hsave_msr;
break;
case MSR_VM_CR:
msr_info->data = svm->nested.vm_cr_msr;
break;
case MSR_IA32_SPEC_CTRL:
if (!msr_info->host_initiated &&
!guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) &&
!guest_cpuid_has(vcpu, X86_FEATURE_AMD_STIBP) &&
!guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) &&
!guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD))
return 1;
msr_info->data = svm->spec_ctrl;
break;
case MSR_AMD64_VIRT_SPEC_CTRL:
if (!msr_info->host_initiated &&
!guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
return 1;
msr_info->data = svm->virt_spec_ctrl;
break;
case MSR_F15H_IC_CFG: {
int family, model;
family = guest_cpuid_family(vcpu);
model = guest_cpuid_model(vcpu);
if (family < 0 || model < 0)
return kvm_get_msr_common(vcpu, msr_info);
msr_info->data = 0;
if (family == 0x15 &&
(model >= 0x2 && model < 0x20))
msr_info->data = 0x1E;
}
break;
case MSR_F10H_DECFG:
msr_info->data = svm->msr_decfg;
break;
default:
return kvm_get_msr_common(vcpu, msr_info);
}
return 0;
}
static int rdmsr_interception(struct vcpu_svm *svm)
{
return kvm_emulate_rdmsr(&svm->vcpu);
}
static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
{
struct vcpu_svm *svm = to_svm(vcpu);
int svm_dis, chg_mask;
if (data & ~SVM_VM_CR_VALID_MASK)
return 1;
chg_mask = SVM_VM_CR_VALID_MASK;
if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
svm->nested.vm_cr_msr &= ~chg_mask;
svm->nested.vm_cr_msr |= (data & chg_mask);
svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
/* check for svm_disable while efer.svme is set */
if (svm_dis && (vcpu->arch.efer & EFER_SVME))
return 1;
return 0;
}
static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
{
struct vcpu_svm *svm = to_svm(vcpu);
u32 ecx = msr->index;
u64 data = msr->data;
switch (ecx) {
case MSR_IA32_CR_PAT:
if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
return 1;
vcpu->arch.pat = data;
svm->vmcb->save.g_pat = data;
mark_dirty(svm->vmcb, VMCB_NPT);
break;
case MSR_IA32_SPEC_CTRL:
if (!msr->host_initiated &&
!guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) &&
!guest_cpuid_has(vcpu, X86_FEATURE_AMD_STIBP) &&
!guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) &&
!guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD))
return 1;
if (data & ~kvm_spec_ctrl_valid_bits(vcpu))
return 1;
svm->spec_ctrl = data;
if (!data)
break;
/*
* For non-nested:
* When it's written (to non-zero) for the first time, pass
* it through.
*
* For nested:
* The handling of the MSR bitmap for L2 guests is done in
* nested_svm_vmrun_msrpm.
* We update the L1 MSR bit as well since it will end up
* touching the MSR anyway now.
*/
set_msr_interception(svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
break;
case MSR_IA32_PRED_CMD:
if (!msr->host_initiated &&
!guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB))
return 1;
if (data & ~PRED_CMD_IBPB)
return 1;
if (!boot_cpu_has(X86_FEATURE_AMD_IBPB))
return 1;
if (!data)
break;
wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
set_msr_interception(svm->msrpm, MSR_IA32_PRED_CMD, 0, 1);
break;
case MSR_AMD64_VIRT_SPEC_CTRL:
if (!msr->host_initiated &&
!guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
return 1;
if (data & ~SPEC_CTRL_SSBD)
return 1;
svm->virt_spec_ctrl = data;
break;
case MSR_STAR:
svm->vmcb->save.star = data;
break;
#ifdef CONFIG_X86_64
case MSR_LSTAR:
svm->vmcb->save.lstar = data;
break;
case MSR_CSTAR:
svm->vmcb->save.cstar = data;
break;
case MSR_KERNEL_GS_BASE:
svm->vmcb->save.kernel_gs_base = data;
break;
case MSR_SYSCALL_MASK:
svm->vmcb->save.sfmask = data;
break;
#endif
case MSR_IA32_SYSENTER_CS:
svm->vmcb->save.sysenter_cs = data;
break;
case MSR_IA32_SYSENTER_EIP:
svm->sysenter_eip = data;
svm->vmcb->save.sysenter_eip = data;
break;
case MSR_IA32_SYSENTER_ESP:
svm->sysenter_esp = data;
svm->vmcb->save.sysenter_esp = data;
break;
case MSR_TSC_AUX:
if (!boot_cpu_has(X86_FEATURE_RDTSCP))
return 1;
/*
* This is rare, so we update the MSR here instead of using
* direct_access_msrs. Doing that would require a rdmsr in
* svm_vcpu_put.
*/
svm->tsc_aux = data;
wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
break;
case MSR_IA32_DEBUGCTLMSR:
if (!boot_cpu_has(X86_FEATURE_LBRV)) {
vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
__func__, data);
break;
}
if (data & DEBUGCTL_RESERVED_BITS)
return 1;
svm->vmcb->save.dbgctl = data;
mark_dirty(svm->vmcb, VMCB_LBR);
if (data & (1ULL<<0))
svm_enable_lbrv(svm);
else
svm_disable_lbrv(svm);
break;
case MSR_VM_HSAVE_PA:
svm->nested.hsave_msr = data;
break;
case MSR_VM_CR:
return svm_set_vm_cr(vcpu, data);
case MSR_VM_IGNNE:
vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
break;
case MSR_F10H_DECFG: {
struct kvm_msr_entry msr_entry;
msr_entry.index = msr->index;
if (svm_get_msr_feature(&msr_entry))
return 1;
/* Check the supported bits */
if (data & ~msr_entry.data)
return 1;
/* Don't allow the guest to change a bit, #GP */
if (!msr->host_initiated && (data ^ msr_entry.data))
return 1;
svm->msr_decfg = data;
break;
}
case MSR_IA32_APICBASE:
if (kvm_vcpu_apicv_active(vcpu))
avic_update_vapic_bar(to_svm(vcpu), data);
/* Fall through */
default:
return kvm_set_msr_common(vcpu, msr);
}
return 0;
}
static int wrmsr_interception(struct vcpu_svm *svm)
{
return kvm_emulate_wrmsr(&svm->vcpu);
}
static int msr_interception(struct vcpu_svm *svm)
{
if (svm->vmcb->control.exit_info_1)
return wrmsr_interception(svm);
else
return rdmsr_interception(svm);
}
static int interrupt_window_interception(struct vcpu_svm *svm)
{
kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
svm_clear_vintr(svm);
/*
* For AVIC, the only reason to end up here is ExtINTs.
* In this case AVIC was temporarily disabled for
* requesting the IRQ window and we have to re-enable it.
*/
svm_toggle_avic_for_irq_window(&svm->vcpu, true);
++svm->vcpu.stat.irq_window_exits;
return 1;
}
static int pause_interception(struct vcpu_svm *svm)
{
struct kvm_vcpu *vcpu = &svm->vcpu;
bool in_kernel = (svm_get_cpl(vcpu) == 0);
if (pause_filter_thresh)
grow_ple_window(vcpu);
kvm_vcpu_on_spin(vcpu, in_kernel);
return 1;
}
static int nop_interception(struct vcpu_svm *svm)
{
return kvm_skip_emulated_instruction(&(svm->vcpu));
}
static int monitor_interception(struct vcpu_svm *svm)
{
printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
return nop_interception(svm);
}
static int mwait_interception(struct vcpu_svm *svm)
{
printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
return nop_interception(svm);
}
static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
[SVM_EXIT_READ_CR0] = cr_interception,
[SVM_EXIT_READ_CR3] = cr_interception,
[SVM_EXIT_READ_CR4] = cr_interception,
[SVM_EXIT_READ_CR8] = cr_interception,
[SVM_EXIT_CR0_SEL_WRITE] = cr_interception,
[SVM_EXIT_WRITE_CR0] = cr_interception,
[SVM_EXIT_WRITE_CR3] = cr_interception,
[SVM_EXIT_WRITE_CR4] = cr_interception,
[SVM_EXIT_WRITE_CR8] = cr8_write_interception,
[SVM_EXIT_READ_DR0] = dr_interception,
[SVM_EXIT_READ_DR1] = dr_interception,
[SVM_EXIT_READ_DR2] = dr_interception,
[SVM_EXIT_READ_DR3] = dr_interception,
[SVM_EXIT_READ_DR4] = dr_interception,
[SVM_EXIT_READ_DR5] = dr_interception,
[SVM_EXIT_READ_DR6] = dr_interception,
[SVM_EXIT_READ_DR7] = dr_interception,
[SVM_EXIT_WRITE_DR0] = dr_interception,
[SVM_EXIT_WRITE_DR1] = dr_interception,
[SVM_EXIT_WRITE_DR2] = dr_interception,
[SVM_EXIT_WRITE_DR3] = dr_interception,
[SVM_EXIT_WRITE_DR4] = dr_interception,
[SVM_EXIT_WRITE_DR5] = dr_interception,
[SVM_EXIT_WRITE_DR6] = dr_interception,
[SVM_EXIT_WRITE_DR7] = dr_interception,
[SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception,
[SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
[SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
[SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
[SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
[SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception,
[SVM_EXIT_EXCP_BASE + GP_VECTOR] = gp_interception,
[SVM_EXIT_INTR] = intr_interception,
[SVM_EXIT_NMI] = nmi_interception,
[SVM_EXIT_SMI] = nop_on_interception,
[SVM_EXIT_INIT] = nop_on_interception,
[SVM_EXIT_VINTR] = interrupt_window_interception,
[SVM_EXIT_RDPMC] = rdpmc_interception,
[SVM_EXIT_CPUID] = cpuid_interception,
[SVM_EXIT_IRET] = iret_interception,
[SVM_EXIT_INVD] = emulate_on_interception,
[SVM_EXIT_PAUSE] = pause_interception,
[SVM_EXIT_HLT] = halt_interception,
[SVM_EXIT_INVLPG] = invlpg_interception,
[SVM_EXIT_INVLPGA] = invlpga_interception,
[SVM_EXIT_IOIO] = io_interception,
[SVM_EXIT_MSR] = msr_interception,
[SVM_EXIT_TASK_SWITCH] = task_switch_interception,
[SVM_EXIT_SHUTDOWN] = shutdown_interception,
[SVM_EXIT_VMRUN] = vmrun_interception,
[SVM_EXIT_VMMCALL] = vmmcall_interception,
[SVM_EXIT_VMLOAD] = vmload_interception,
[SVM_EXIT_VMSAVE] = vmsave_interception,
[SVM_EXIT_STGI] = stgi_interception,
[SVM_EXIT_CLGI] = clgi_interception,
[SVM_EXIT_SKINIT] = skinit_interception,
[SVM_EXIT_WBINVD] = wbinvd_interception,
[SVM_EXIT_MONITOR] = monitor_interception,
[SVM_EXIT_MWAIT] = mwait_interception,
[SVM_EXIT_XSETBV] = xsetbv_interception,
[SVM_EXIT_RDPRU] = rdpru_interception,
[SVM_EXIT_NPF] = npf_interception,
[SVM_EXIT_RSM] = rsm_interception,
[SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception,
[SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception,
};
static void dump_vmcb(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
struct vmcb_control_area *control = &svm->vmcb->control;
struct vmcb_save_area *save = &svm->vmcb->save;
if (!dump_invalid_vmcb) {
pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
return;
}
pr_err("VMCB Control Area:\n");
pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
pr_err("%-20s%d\n", "pause filter threshold:",
control->pause_filter_thresh);
pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
pr_err("%-20s%d\n", "asid:", control->asid);
pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
pr_err("%-20s%08x\n", "int_state:", control->int_state);
pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
pr_err("VMCB State Save Area:\n");
pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
"es:",
save->es.selector, save->es.attrib,
save->es.limit, save->es.base);
pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
"cs:",
save->cs.selector, save->cs.attrib,
save->cs.limit, save->cs.base);
pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
"ss:",
save->ss.selector, save->ss.attrib,
save->ss.limit, save->ss.base);
pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
"ds:",
save->ds.selector, save->ds.attrib,
save->ds.limit, save->ds.base);
pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
"fs:",
save->fs.selector, save->fs.attrib,
save->fs.limit, save->fs.base);
pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
"gs:",
save->gs.selector, save->gs.attrib,
save->gs.limit, save->gs.base);
pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
"gdtr:",
save->gdtr.selector, save->gdtr.attrib,
save->gdtr.limit, save->gdtr.base);
pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
"ldtr:",
save->ldtr.selector, save->ldtr.attrib,
save->ldtr.limit, save->ldtr.base);
pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
"idtr:",
save->idtr.selector, save->idtr.attrib,
save->idtr.limit, save->idtr.base);
pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
"tr:",
save->tr.selector, save->tr.attrib,
save->tr.limit, save->tr.base);
pr_err("cpl: %d efer: %016llx\n",
save->cpl, save->efer);
pr_err("%-15s %016llx %-13s %016llx\n",
"cr0:", save->cr0, "cr2:", save->cr2);
pr_err("%-15s %016llx %-13s %016llx\n",
"cr3:", save->cr3, "cr4:", save->cr4);
pr_err("%-15s %016llx %-13s %016llx\n",
"dr6:", save->dr6, "dr7:", save->dr7);
pr_err("%-15s %016llx %-13s %016llx\n",
"rip:", save->rip, "rflags:", save->rflags);
pr_err("%-15s %016llx %-13s %016llx\n",
"rsp:", save->rsp, "rax:", save->rax);
pr_err("%-15s %016llx %-13s %016llx\n",
"star:", save->star, "lstar:", save->lstar);
pr_err("%-15s %016llx %-13s %016llx\n",
"cstar:", save->cstar, "sfmask:", save->sfmask);
pr_err("%-15s %016llx %-13s %016llx\n",
"kernel_gs_base:", save->kernel_gs_base,
"sysenter_cs:", save->sysenter_cs);
pr_err("%-15s %016llx %-13s %016llx\n",
"sysenter_esp:", save->sysenter_esp,
"sysenter_eip:", save->sysenter_eip);
pr_err("%-15s %016llx %-13s %016llx\n",
"gpat:", save->g_pat, "dbgctl:", save->dbgctl);
pr_err("%-15s %016llx %-13s %016llx\n",
"br_from:", save->br_from, "br_to:", save->br_to);
pr_err("%-15s %016llx %-13s %016llx\n",
"excp_from:", save->last_excp_from,
"excp_to:", save->last_excp_to);
}
static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
{
struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
*info1 = control->exit_info_1;
*info2 = control->exit_info_2;
}
static int handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
{
struct vcpu_svm *svm = to_svm(vcpu);
struct kvm_run *kvm_run = vcpu->run;
u32 exit_code = svm->vmcb->control.exit_code;
trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
vcpu->arch.cr0 = svm->vmcb->save.cr0;
if (npt_enabled)
vcpu->arch.cr3 = svm->vmcb->save.cr3;
svm_complete_interrupts(svm);
if (is_guest_mode(vcpu)) {
int vmexit;
trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
svm->vmcb->control.exit_info_1,
svm->vmcb->control.exit_info_2,
svm->vmcb->control.exit_int_info,
svm->vmcb->control.exit_int_info_err,
KVM_ISA_SVM);
vmexit = nested_svm_exit_special(svm);
if (vmexit == NESTED_EXIT_CONTINUE)
vmexit = nested_svm_exit_handled(svm);
if (vmexit == NESTED_EXIT_DONE)
return 1;
}
if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
kvm_run->fail_entry.hardware_entry_failure_reason
= svm->vmcb->control.exit_code;
dump_vmcb(vcpu);
return 0;
}
if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
"exit_code 0x%x\n",
__func__, svm->vmcb->control.exit_int_info,
exit_code);
if (exit_fastpath != EXIT_FASTPATH_NONE)
return 1;
if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
|| !svm_exit_handlers[exit_code]) {
vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%x\n", exit_code);
dump_vmcb(vcpu);
vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
vcpu->run->internal.suberror =
KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
vcpu->run->internal.ndata = 1;
vcpu->run->internal.data[0] = exit_code;
return 0;
}
#ifdef CONFIG_RETPOLINE
if (exit_code == SVM_EXIT_MSR)
return msr_interception(svm);
else if (exit_code == SVM_EXIT_VINTR)
return interrupt_window_interception(svm);
else if (exit_code == SVM_EXIT_INTR)
return intr_interception(svm);
else if (exit_code == SVM_EXIT_HLT)
return halt_interception(svm);
else if (exit_code == SVM_EXIT_NPF)
return npf_interception(svm);
#endif
return svm_exit_handlers[exit_code](svm);
}
static void reload_tss(struct kvm_vcpu *vcpu)
{
int cpu = raw_smp_processor_id();
struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
sd->tss_desc->type = 9; /* available 32/64-bit TSS */
load_TR_desc();
}
static void pre_svm_run(struct vcpu_svm *svm)
{
int cpu = raw_smp_processor_id();
struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
if (sev_guest(svm->vcpu.kvm))
return pre_sev_run(svm, cpu);
/* FIXME: handle wraparound of asid_generation */
if (svm->asid_generation != sd->asid_generation)
new_asid(svm, sd);
}
static void svm_inject_nmi(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
vcpu->arch.hflags |= HF_NMI_MASK;
set_intercept(svm, INTERCEPT_IRET);
++vcpu->stat.nmi_injections;
}
static void svm_set_irq(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
BUG_ON(!(gif_set(svm)));
trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
++vcpu->stat.irq_injections;
svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
}
static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
{
struct vcpu_svm *svm = to_svm(vcpu);
if (svm_nested_virtualize_tpr(vcpu))
return;
clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
if (irr == -1)
return;
if (tpr >= irr)
set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
}
bool svm_nmi_blocked(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
struct vmcb *vmcb = svm->vmcb;
bool ret;
if (!gif_set(svm))
return true;
if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
return false;
ret = (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) ||
(svm->vcpu.arch.hflags & HF_NMI_MASK);
return ret;
}
static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
{
struct vcpu_svm *svm = to_svm(vcpu);
if (svm->nested.nested_run_pending)
return -EBUSY;
/* An NMI must not be injected into L2 if it's supposed to VM-Exit. */
if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
return -EBUSY;
return !svm_nmi_blocked(vcpu);
}
static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
}
static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
{
struct vcpu_svm *svm = to_svm(vcpu);
if (masked) {
svm->vcpu.arch.hflags |= HF_NMI_MASK;
set_intercept(svm, INTERCEPT_IRET);
} else {
svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
clr_intercept(svm, INTERCEPT_IRET);
}
}
bool svm_interrupt_blocked(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
struct vmcb *vmcb = svm->vmcb;
if (!gif_set(svm))
return true;
if (is_guest_mode(vcpu)) {
/* As long as interrupts are being delivered... */
if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK)
? !(svm->nested.hsave->save.rflags & X86_EFLAGS_IF)
: !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
return true;
/* ... vmexits aren't blocked by the interrupt shadow */
if (nested_exit_on_intr(svm))
return false;
} else {
if (!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
return true;
}
return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK);
}
static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
{
struct vcpu_svm *svm = to_svm(vcpu);
if (svm->nested.nested_run_pending)
return -EBUSY;
/*
* An IRQ must not be injected into L2 if it's supposed to VM-Exit,
* e.g. if the IRQ arrived asynchronously after checking nested events.
*/
if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm))
return -EBUSY;
return !svm_interrupt_blocked(vcpu);
}
static void enable_irq_window(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
/*
* In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
* 1, because that's a separate STGI/VMRUN intercept. The next time we
* get that intercept, this function will be called again though and
* we'll get the vintr intercept. However, if the vGIF feature is
* enabled, the STGI interception will not occur. Enable the irq
* window under the assumption that the hardware will set the GIF.
*/
if (vgif_enabled(svm) || gif_set(svm)) {
/*
* IRQ window is not needed when AVIC is enabled,
* unless we have pending ExtINT since it cannot be injected
* via AVIC. In such case, we need to temporarily disable AVIC,
* and fallback to injecting IRQ via V_IRQ.
*/
svm_toggle_avic_for_irq_window(vcpu, false);
svm_set_vintr(svm);
}
}
static void enable_nmi_window(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
== HF_NMI_MASK)
return; /* IRET will cause a vm exit */
if (!gif_set(svm)) {
if (vgif_enabled(svm))
set_intercept(svm, INTERCEPT_STGI);
return; /* STGI will cause a vm exit */
}
/*
* Something prevents NMI from been injected. Single step over possible
* problem (IRET or exception injection or interrupt shadow)
*/
svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
svm->nmi_singlestep = true;
svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
}
static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
{
return 0;
}
static int svm_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
{
return 0;
}
void svm_flush_tlb(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
/*
* Flush only the current ASID even if the TLB flush was invoked via
* kvm_flush_remote_tlbs(). Although flushing remote TLBs requires all
* ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and
* unconditionally does a TLB flush on both nested VM-Enter and nested
* VM-Exit (via kvm_mmu_reset_context()).
*/
if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
else
svm->asid_generation--;
}
static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
{
struct vcpu_svm *svm = to_svm(vcpu);
invlpga(gva, svm->vmcb->control.asid);
}
static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
{
}
static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
if (svm_nested_virtualize_tpr(vcpu))
return;
if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
kvm_set_cr8(vcpu, cr8);
}
}
static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
u64 cr8;
if (svm_nested_virtualize_tpr(vcpu) ||
kvm_vcpu_apicv_active(vcpu))
return;
cr8 = kvm_get_cr8(vcpu);
svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
}
static void svm_complete_interrupts(struct vcpu_svm *svm)
{
u8 vector;
int type;
u32 exitintinfo = svm->vmcb->control.exit_int_info;
unsigned int3_injected = svm->int3_injected;
svm->int3_injected = 0;
/*
* If we've made progress since setting HF_IRET_MASK, we've
* executed an IRET and can allow NMI injection.
*/
if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
&& kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
}
svm->vcpu.arch.nmi_injected = false;
kvm_clear_exception_queue(&svm->vcpu);
kvm_clear_interrupt_queue(&svm->vcpu);
if (!(exitintinfo & SVM_EXITINTINFO_VALID))
return;
kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
switch (type) {
case SVM_EXITINTINFO_TYPE_NMI:
svm->vcpu.arch.nmi_injected = true;
break;
case SVM_EXITINTINFO_TYPE_EXEPT:
/*
* In case of software exceptions, do not reinject the vector,
* but re-execute the instruction instead. Rewind RIP first
* if we emulated INT3 before.
*/
if (kvm_exception_is_soft(vector)) {
if (vector == BP_VECTOR && int3_injected &&
kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
kvm_rip_write(&svm->vcpu,
kvm_rip_read(&svm->vcpu) -
int3_injected);
break;
}
if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
u32 err = svm->vmcb->control.exit_int_info_err;
kvm_requeue_exception_e(&svm->vcpu, vector, err);
} else
kvm_requeue_exception(&svm->vcpu, vector);
break;
case SVM_EXITINTINFO_TYPE_INTR:
kvm_queue_interrupt(&svm->vcpu, vector, false);
break;
default:
break;
}
}
static void svm_cancel_injection(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
struct vmcb_control_area *control = &svm->vmcb->control;
control->exit_int_info = control->event_inj;
control->exit_int_info_err = control->event_inj_err;
control->event_inj = 0;
svm_complete_interrupts(svm);
}
static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
{
if (!is_guest_mode(vcpu) &&
to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_MSR &&
to_svm(vcpu)->vmcb->control.exit_info_1)
return handle_fastpath_set_msr_irqoff(vcpu);
return EXIT_FASTPATH_NONE;
}
void __svm_vcpu_run(unsigned long vmcb_pa, unsigned long *regs);
static fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu)
{
fastpath_t exit_fastpath;
struct vcpu_svm *svm = to_svm(vcpu);
svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
/*
* Disable singlestep if we're injecting an interrupt/exception.
* We don't want our modified rflags to be pushed on the stack where
* we might not be able to easily reset them if we disabled NMI
* singlestep later.
*/
if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
/*
* Event injection happens before external interrupts cause a
* vmexit and interrupts are disabled here, so smp_send_reschedule
* is enough to force an immediate vmexit.
*/
disable_nmi_singlestep(svm);
smp_send_reschedule(vcpu->cpu);
}
pre_svm_run(svm);
sync_lapic_to_cr8(vcpu);
svm->vmcb->save.cr2 = vcpu->arch.cr2;
/*
* Run with all-zero DR6 unless needed, so that we can get the exact cause
* of a #DB.
*/
if (unlikely(svm->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
svm_set_dr6(svm, vcpu->arch.dr6);
else
svm_set_dr6(svm, DR6_FIXED_1 | DR6_RTM);
clgi();
kvm_load_guest_xsave_state(vcpu);
if (lapic_in_kernel(vcpu) &&
vcpu->arch.apic->lapic_timer.timer_advance_ns)
kvm_wait_lapic_expire(vcpu);
/*
* If this vCPU has touched SPEC_CTRL, restore the guest's value if
* it's non-zero. Since vmentry is serialising on affected CPUs, there
* is no need to worry about the conditional branch over the wrmsr
* being speculatively taken.
*/
x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl);
__svm_vcpu_run(svm->vmcb_pa, (unsigned long *)&svm->vcpu.arch.regs);
#ifdef CONFIG_X86_64
wrmsrl(MSR_GS_BASE, svm->host.gs_base);
#else
loadsegment(fs, svm->host.fs);
#ifndef CONFIG_X86_32_LAZY_GS
loadsegment(gs, svm->host.gs);
#endif
#endif
/*
* We do not use IBRS in the kernel. If this vCPU has used the
* SPEC_CTRL MSR it may have left it on; save the value and
* turn it off. This is much more efficient than blindly adding
* it to the atomic save/restore list. Especially as the former
* (Saving guest MSRs on vmexit) doesn't even exist in KVM.
*
* For non-nested case:
* If the L01 MSR bitmap does not intercept the MSR, then we need to
* save it.
*
* For nested case:
* If the L02 MSR bitmap does not intercept the MSR, then we need to
* save it.
*/
if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
reload_tss(vcpu);
x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl);
vcpu->arch.cr2 = svm->vmcb->save.cr2;
vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
kvm_before_interrupt(&svm->vcpu);
kvm_load_host_xsave_state(vcpu);
stgi();
/* Any pending NMI will happen here */
exit_fastpath = svm_exit_handlers_fastpath(vcpu);
if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
kvm_after_interrupt(&svm->vcpu);
sync_cr8_to_lapic(vcpu);
svm->next_rip = 0;
if (is_guest_mode(&svm->vcpu)) {
sync_nested_vmcb_control(svm);
svm->nested.nested_run_pending = 0;
}
svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
/* if exit due to PF check for async PF */
if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
svm->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
if (npt_enabled) {
vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
}
/*
* We need to handle MC intercepts here before the vcpu has a chance to
* change the physical cpu
*/
if (unlikely(svm->vmcb->control.exit_code ==
SVM_EXIT_EXCP_BASE + MC_VECTOR))
svm_handle_mce(svm);
mark_all_clean(svm->vmcb);
return exit_fastpath;
}
static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, unsigned long root)
{
struct vcpu_svm *svm = to_svm(vcpu);
unsigned long cr3;
cr3 = __sme_set(root);
if (npt_enabled) {
svm->vmcb->control.nested_cr3 = cr3;
mark_dirty(svm->vmcb, VMCB_NPT);
/* Loading L2's CR3 is handled by enter_svm_guest_mode. */
if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
return;
cr3 = vcpu->arch.cr3;
}
svm->vmcb->save.cr3 = cr3;
mark_dirty(svm->vmcb, VMCB_CR);
}
static int is_disabled(void)
{
u64 vm_cr;
rdmsrl(MSR_VM_CR, vm_cr);
if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
return 1;
return 0;
}
static void
svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
{
/*
* Patch in the VMMCALL instruction:
*/
hypercall[0] = 0x0f;
hypercall[1] = 0x01;
hypercall[2] = 0xd9;
}
static int __init svm_check_processor_compat(void)
{
return 0;
}
static bool svm_cpu_has_accelerated_tpr(void)
{
return false;
}
static bool svm_has_emulated_msr(u32 index)
{
switch (index) {
case MSR_IA32_MCG_EXT_CTL:
case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
return false;
default:
break;
}
return true;
}
static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
{
return 0;
}
static void svm_cpuid_update(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
vcpu->arch.xsaves_enabled = guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
boot_cpu_has(X86_FEATURE_XSAVE) &&
boot_cpu_has(X86_FEATURE_XSAVES);
/* Update nrips enabled cache */
svm->nrips_enabled = kvm_cpu_cap_has(X86_FEATURE_NRIPS) &&
guest_cpuid_has(&svm->vcpu, X86_FEATURE_NRIPS);
if (!kvm_vcpu_apicv_active(vcpu))
return;
/*
* AVIC does not work with an x2APIC mode guest. If the X2APIC feature
* is exposed to the guest, disable AVIC.
*/
if (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC))
kvm_request_apicv_update(vcpu->kvm, false,
APICV_INHIBIT_REASON_X2APIC);
/*
* Currently, AVIC does not work with nested virtualization.
* So, we disable AVIC when cpuid for SVM is set in the L1 guest.
*/
if (nested && guest_cpuid_has(vcpu, X86_FEATURE_SVM))
kvm_request_apicv_update(vcpu->kvm, false,
APICV_INHIBIT_REASON_NESTED);
}
static bool svm_has_wbinvd_exit(void)
{
return true;
}
#define PRE_EX(exit) { .exit_code = (exit), \
.stage = X86_ICPT_PRE_EXCEPT, }
#define POST_EX(exit) { .exit_code = (exit), \
.stage = X86_ICPT_POST_EXCEPT, }
#define POST_MEM(exit) { .exit_code = (exit), \
.stage = X86_ICPT_POST_MEMACCESS, }
static const struct __x86_intercept {
u32 exit_code;
enum x86_intercept_stage stage;
} x86_intercept_map[] = {
[x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0),
[x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0),
[x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0),
[x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0),
[x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0),
[x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0),
[x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0),
[x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ),
[x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ),
[x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE),
[x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE),
[x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ),
[x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ),
[x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE),
[x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE),
[x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN),
[x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL),
[x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD),
[x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE),
[x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI),
[x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI),
[x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT),
[x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA),
[x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP),
[x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR),
[x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT),
[x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG),
[x86_intercept_invd] = POST_EX(SVM_EXIT_INVD),
[x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD),
[x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR),
[x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC),
[x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR),
[x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC),
[x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID),
[x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM),
[x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE),
[x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF),
[x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF),
[x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT),
[x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET),
[x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP),
[x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT),
[x86_intercept_in] = POST_EX(SVM_EXIT_IOIO),
[x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO),
[x86_intercept_out] = POST_EX(SVM_EXIT_IOIO),
[x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO),
[x86_intercept_xsetbv] = PRE_EX(SVM_EXIT_XSETBV),
};
#undef PRE_EX
#undef POST_EX
#undef POST_MEM
static int svm_check_intercept(struct kvm_vcpu *vcpu,
struct x86_instruction_info *info,
enum x86_intercept_stage stage,
struct x86_exception *exception)
{
struct vcpu_svm *svm = to_svm(vcpu);
int vmexit, ret = X86EMUL_CONTINUE;
struct __x86_intercept icpt_info;
struct vmcb *vmcb = svm->vmcb;
if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
goto out;
icpt_info = x86_intercept_map[info->intercept];
if (stage != icpt_info.stage)
goto out;
switch (icpt_info.exit_code) {
case SVM_EXIT_READ_CR0:
if (info->intercept == x86_intercept_cr_read)
icpt_info.exit_code += info->modrm_reg;
break;
case SVM_EXIT_WRITE_CR0: {
unsigned long cr0, val;
u64 intercept;
if (info->intercept == x86_intercept_cr_write)
icpt_info.exit_code += info->modrm_reg;
if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
info->intercept == x86_intercept_clts)
break;
intercept = svm->nested.ctl.intercept;
if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
break;
cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
val = info->src_val & ~SVM_CR0_SELECTIVE_MASK;
if (info->intercept == x86_intercept_lmsw) {
cr0 &= 0xfUL;
val &= 0xfUL;
/* lmsw can't clear PE - catch this here */
if (cr0 & X86_CR0_PE)
val |= X86_CR0_PE;
}
if (cr0 ^ val)
icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
break;
}
case SVM_EXIT_READ_DR0:
case SVM_EXIT_WRITE_DR0:
icpt_info.exit_code += info->modrm_reg;
break;
case SVM_EXIT_MSR:
if (info->intercept == x86_intercept_wrmsr)
vmcb->control.exit_info_1 = 1;
else
vmcb->control.exit_info_1 = 0;
break;
case SVM_EXIT_PAUSE:
/*
* We get this for NOP only, but pause
* is rep not, check this here
*/
if (info->rep_prefix != REPE_PREFIX)
goto out;
break;
case SVM_EXIT_IOIO: {
u64 exit_info;
u32 bytes;
if (info->intercept == x86_intercept_in ||
info->intercept == x86_intercept_ins) {
exit_info = ((info->src_val & 0xffff) << 16) |
SVM_IOIO_TYPE_MASK;
bytes = info->dst_bytes;
} else {
exit_info = (info->dst_val & 0xffff) << 16;
bytes = info->src_bytes;
}
if (info->intercept == x86_intercept_outs ||
info->intercept == x86_intercept_ins)
exit_info |= SVM_IOIO_STR_MASK;
if (info->rep_prefix)
exit_info |= SVM_IOIO_REP_MASK;
bytes = min(bytes, 4u);
exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
vmcb->control.exit_info_1 = exit_info;
vmcb->control.exit_info_2 = info->next_rip;
break;
}
default:
break;
}
/* TODO: Advertise NRIPS to guest hypervisor unconditionally */
if (static_cpu_has(X86_FEATURE_NRIPS))
vmcb->control.next_rip = info->next_rip;
vmcb->control.exit_code = icpt_info.exit_code;
vmexit = nested_svm_exit_handled(svm);
ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
: X86EMUL_CONTINUE;
out:
return ret;
}
static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu)
{
}
static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
{
if (pause_filter_thresh)
shrink_ple_window(vcpu);
}
static void svm_setup_mce(struct kvm_vcpu *vcpu)
{
/* [63:9] are reserved. */
vcpu->arch.mcg_cap &= 0x1ff;
}
bool svm_smi_blocked(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
/* Per APM Vol.2 15.22.2 "Response to SMI" */
if (!gif_set(svm))
return true;
return is_smm(vcpu);
}
static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
{
struct vcpu_svm *svm = to_svm(vcpu);
if (svm->nested.nested_run_pending)
return -EBUSY;
/* An SMI must not be injected into L2 if it's supposed to VM-Exit. */
if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm))
return -EBUSY;
return !svm_smi_blocked(vcpu);
}
static int svm_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
{
struct vcpu_svm *svm = to_svm(vcpu);
int ret;
if (is_guest_mode(vcpu)) {
/* FED8h - SVM Guest */
put_smstate(u64, smstate, 0x7ed8, 1);
/* FEE0h - SVM Guest VMCB Physical Address */
put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb);
svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
ret = nested_svm_vmexit(svm);
if (ret)
return ret;
}
return 0;
}
static int svm_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
{
struct vcpu_svm *svm = to_svm(vcpu);
struct vmcb *nested_vmcb;
struct kvm_host_map map;
u64 guest;
u64 vmcb;
guest = GET_SMSTATE(u64, smstate, 0x7ed8);
vmcb = GET_SMSTATE(u64, smstate, 0x7ee0);
if (guest) {
if (kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(vmcb), &map) == -EINVAL)
return 1;
nested_vmcb = map.hva;
enter_svm_guest_mode(svm, vmcb, nested_vmcb);
kvm_vcpu_unmap(&svm->vcpu, &map, true);
}
return 0;
}
static void enable_smi_window(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
if (!gif_set(svm)) {
if (vgif_enabled(svm))
set_intercept(svm, INTERCEPT_STGI);
/* STGI will cause a vm exit */
} else {
/* We must be in SMM; RSM will cause a vmexit anyway. */
}
}
static bool svm_need_emulation_on_page_fault(struct kvm_vcpu *vcpu)
{
unsigned long cr4 = kvm_read_cr4(vcpu);
bool smep = cr4 & X86_CR4_SMEP;
bool smap = cr4 & X86_CR4_SMAP;
bool is_user = svm_get_cpl(vcpu) == 3;
/*
* If RIP is invalid, go ahead with emulation which will cause an
* internal error exit.
*/
if (!kvm_vcpu_gfn_to_memslot(vcpu, kvm_rip_read(vcpu) >> PAGE_SHIFT))
return true;
/*
* Detect and workaround Errata 1096 Fam_17h_00_0Fh.
*
* Errata:
* When CPU raise #NPF on guest data access and vCPU CR4.SMAP=1, it is
* possible that CPU microcode implementing DecodeAssist will fail
* to read bytes of instruction which caused #NPF. In this case,
* GuestIntrBytes field of the VMCB on a VMEXIT will incorrectly
* return 0 instead of the correct guest instruction bytes.
*
* This happens because CPU microcode reading instruction bytes
* uses a special opcode which attempts to read data using CPL=0
* priviledges. The microcode reads CS:RIP and if it hits a SMAP
* fault, it gives up and returns no instruction bytes.
*
* Detection:
* We reach here in case CPU supports DecodeAssist, raised #NPF and
* returned 0 in GuestIntrBytes field of the VMCB.
* First, errata can only be triggered in case vCPU CR4.SMAP=1.
* Second, if vCPU CR4.SMEP=1, errata could only be triggered
* in case vCPU CPL==3 (Because otherwise guest would have triggered
* a SMEP fault instead of #NPF).
* Otherwise, vCPU CR4.SMEP=0, errata could be triggered by any vCPU CPL.
* As most guests enable SMAP if they have also enabled SMEP, use above
* logic in order to attempt minimize false-positive of detecting errata
* while still preserving all cases semantic correctness.
*
* Workaround:
* To determine what instruction the guest was executing, the hypervisor
* will have to decode the instruction at the instruction pointer.
*
* In non SEV guest, hypervisor will be able to read the guest
* memory to decode the instruction pointer when insn_len is zero
* so we return true to indicate that decoding is possible.
*
* But in the SEV guest, the guest memory is encrypted with the
* guest specific key and hypervisor will not be able to decode the
* instruction pointer so we will not able to workaround it. Lets
* print the error and request to kill the guest.
*/
if (smap && (!smep || is_user)) {
if (!sev_guest(vcpu->kvm))
return true;
pr_err_ratelimited("KVM: SEV Guest triggered AMD Erratum 1096\n");
kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
}
return false;
}
static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
/*
* TODO: Last condition latch INIT signals on vCPU when
* vCPU is in guest-mode and vmcb12 defines intercept on INIT.
* To properly emulate the INIT intercept,
* svm_check_nested_events() should call nested_svm_vmexit()
* if an INIT signal is pending.
*/
return !gif_set(svm) ||
(svm->vmcb->control.intercept & (1ULL << INTERCEPT_INIT));
}
static void svm_vm_destroy(struct kvm *kvm)
{
avic_vm_destroy(kvm);
sev_vm_destroy(kvm);
}
static int svm_vm_init(struct kvm *kvm)
{
if (avic) {
int ret = avic_vm_init(kvm);
if (ret)
return ret;
}
kvm_apicv_init(kvm, avic);
return 0;
}
static struct kvm_x86_ops svm_x86_ops __initdata = {
.hardware_unsetup = svm_hardware_teardown,
.hardware_enable = svm_hardware_enable,
.hardware_disable = svm_hardware_disable,
.cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
.has_emulated_msr = svm_has_emulated_msr,
.vcpu_create = svm_create_vcpu,
.vcpu_free = svm_free_vcpu,
.vcpu_reset = svm_vcpu_reset,
.vm_size = sizeof(struct kvm_svm),
.vm_init = svm_vm_init,
.vm_destroy = svm_vm_destroy,
.prepare_guest_switch = svm_prepare_guest_switch,
.vcpu_load = svm_vcpu_load,
.vcpu_put = svm_vcpu_put,
.vcpu_blocking = svm_vcpu_blocking,
.vcpu_unblocking = svm_vcpu_unblocking,
.update_bp_intercept = update_bp_intercept,
.get_msr_feature = svm_get_msr_feature,
.get_msr = svm_get_msr,
.set_msr = svm_set_msr,
.get_segment_base = svm_get_segment_base,
.get_segment = svm_get_segment,
.set_segment = svm_set_segment,
.get_cpl = svm_get_cpl,
.get_cs_db_l_bits = kvm_get_cs_db_l_bits,
.set_cr0 = svm_set_cr0,
.set_cr4 = svm_set_cr4,
.set_efer = svm_set_efer,
.get_idt = svm_get_idt,
.set_idt = svm_set_idt,
.get_gdt = svm_get_gdt,
.set_gdt = svm_set_gdt,
.set_dr7 = svm_set_dr7,
.sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
.cache_reg = svm_cache_reg,
.get_rflags = svm_get_rflags,
.set_rflags = svm_set_rflags,
.tlb_flush_all = svm_flush_tlb,
.tlb_flush_current = svm_flush_tlb,
.tlb_flush_gva = svm_flush_tlb_gva,
.tlb_flush_guest = svm_flush_tlb,
.run = svm_vcpu_run,
.handle_exit = handle_exit,
.skip_emulated_instruction = skip_emulated_instruction,
.update_emulated_instruction = NULL,
.set_interrupt_shadow = svm_set_interrupt_shadow,
.get_interrupt_shadow = svm_get_interrupt_shadow,
.patch_hypercall = svm_patch_hypercall,
.set_irq = svm_set_irq,
.set_nmi = svm_inject_nmi,
.queue_exception = svm_queue_exception,
.cancel_injection = svm_cancel_injection,
.interrupt_allowed = svm_interrupt_allowed,
.nmi_allowed = svm_nmi_allowed,
.get_nmi_mask = svm_get_nmi_mask,
.set_nmi_mask = svm_set_nmi_mask,
.enable_nmi_window = enable_nmi_window,
.enable_irq_window = enable_irq_window,
.update_cr8_intercept = update_cr8_intercept,
.set_virtual_apic_mode = svm_set_virtual_apic_mode,
.refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl,
.check_apicv_inhibit_reasons = svm_check_apicv_inhibit_reasons,
.pre_update_apicv_exec_ctrl = svm_pre_update_apicv_exec_ctrl,
.load_eoi_exitmap = svm_load_eoi_exitmap,
.hwapic_irr_update = svm_hwapic_irr_update,
.hwapic_isr_update = svm_hwapic_isr_update,
.sync_pir_to_irr = kvm_lapic_find_highest_irr,
.apicv_post_state_restore = avic_post_state_restore,
.set_tss_addr = svm_set_tss_addr,
.set_identity_map_addr = svm_set_identity_map_addr,
.get_tdp_level = get_npt_level,
.get_mt_mask = svm_get_mt_mask,
.get_exit_info = svm_get_exit_info,
.cpuid_update = svm_cpuid_update,
.has_wbinvd_exit = svm_has_wbinvd_exit,
.write_l1_tsc_offset = svm_write_l1_tsc_offset,
.load_mmu_pgd = svm_load_mmu_pgd,
.check_intercept = svm_check_intercept,
.handle_exit_irqoff = svm_handle_exit_irqoff,
.request_immediate_exit = __kvm_request_immediate_exit,
.sched_in = svm_sched_in,
.pmu_ops = &amd_pmu_ops,
.nested_ops = &svm_nested_ops,
.deliver_posted_interrupt = svm_deliver_avic_intr,
.dy_apicv_has_pending_interrupt = svm_dy_apicv_has_pending_interrupt,
.update_pi_irte = svm_update_pi_irte,
.setup_mce = svm_setup_mce,
.smi_allowed = svm_smi_allowed,
.pre_enter_smm = svm_pre_enter_smm,
.pre_leave_smm = svm_pre_leave_smm,
.enable_smi_window = enable_smi_window,
.mem_enc_op = svm_mem_enc_op,
.mem_enc_reg_region = svm_register_enc_region,
.mem_enc_unreg_region = svm_unregister_enc_region,
.need_emulation_on_page_fault = svm_need_emulation_on_page_fault,
.apic_init_signal_blocked = svm_apic_init_signal_blocked,
};
static struct kvm_x86_init_ops svm_init_ops __initdata = {
.cpu_has_kvm_support = has_svm,
.disabled_by_bios = is_disabled,
.hardware_setup = svm_hardware_setup,
.check_processor_compatibility = svm_check_processor_compat,
.runtime_ops = &svm_x86_ops,
};
static int __init svm_init(void)
{
return kvm_init(&svm_init_ops, sizeof(struct vcpu_svm),
__alignof__(struct vcpu_svm), THIS_MODULE);
}
static void __exit svm_exit(void)
{
kvm_exit();
}
module_init(svm_init)
module_exit(svm_exit)
|