summaryrefslogtreecommitdiffstats
path: root/arch/x86/mm/mem_encrypt.c
blob: 391b13402e403041222ef8e6bd22f60edaeb9446 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
/*
 * AMD Memory Encryption Support
 *
 * Copyright (C) 2016 Advanced Micro Devices, Inc.
 *
 * Author: Tom Lendacky <thomas.lendacky@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#define DISABLE_BRANCH_PROFILING

#include <linux/linkage.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/dma-mapping.h>
#include <linux/swiotlb.h>
#include <linux/mem_encrypt.h>

#include <asm/tlbflush.h>
#include <asm/fixmap.h>
#include <asm/setup.h>
#include <asm/bootparam.h>
#include <asm/set_memory.h>
#include <asm/cacheflush.h>
#include <asm/sections.h>
#include <asm/processor-flags.h>
#include <asm/msr.h>
#include <asm/cmdline.h>

#include "mm_internal.h"

static char sme_cmdline_arg[] __initdata = "mem_encrypt";
static char sme_cmdline_on[]  __initdata = "on";
static char sme_cmdline_off[] __initdata = "off";

/*
 * Since SME related variables are set early in the boot process they must
 * reside in the .data section so as not to be zeroed out when the .bss
 * section is later cleared.
 */
u64 sme_me_mask __section(.data) = 0;
EXPORT_SYMBOL(sme_me_mask);
DEFINE_STATIC_KEY_FALSE(sev_enable_key);
EXPORT_SYMBOL_GPL(sev_enable_key);

static bool sev_enabled __section(.data);

/* Buffer used for early in-place encryption by BSP, no locking needed */
static char sme_early_buffer[PAGE_SIZE] __aligned(PAGE_SIZE);

/*
 * This routine does not change the underlying encryption setting of the
 * page(s) that map this memory. It assumes that eventually the memory is
 * meant to be accessed as either encrypted or decrypted but the contents
 * are currently not in the desired state.
 *
 * This routine follows the steps outlined in the AMD64 Architecture
 * Programmer's Manual Volume 2, Section 7.10.8 Encrypt-in-Place.
 */
static void __init __sme_early_enc_dec(resource_size_t paddr,
				       unsigned long size, bool enc)
{
	void *src, *dst;
	size_t len;

	if (!sme_me_mask)
		return;

	wbinvd();

	/*
	 * There are limited number of early mapping slots, so map (at most)
	 * one page at time.
	 */
	while (size) {
		len = min_t(size_t, sizeof(sme_early_buffer), size);

		/*
		 * Create mappings for the current and desired format of
		 * the memory. Use a write-protected mapping for the source.
		 */
		src = enc ? early_memremap_decrypted_wp(paddr, len) :
			    early_memremap_encrypted_wp(paddr, len);

		dst = enc ? early_memremap_encrypted(paddr, len) :
			    early_memremap_decrypted(paddr, len);

		/*
		 * If a mapping can't be obtained to perform the operation,
		 * then eventual access of that area in the desired mode
		 * will cause a crash.
		 */
		BUG_ON(!src || !dst);

		/*
		 * Use a temporary buffer, of cache-line multiple size, to
		 * avoid data corruption as documented in the APM.
		 */
		memcpy(sme_early_buffer, src, len);
		memcpy(dst, sme_early_buffer, len);

		early_memunmap(dst, len);
		early_memunmap(src, len);

		paddr += len;
		size -= len;
	}
}

void __init sme_early_encrypt(resource_size_t paddr, unsigned long size)
{
	__sme_early_enc_dec(paddr, size, true);
}

void __init sme_early_decrypt(resource_size_t paddr, unsigned long size)
{
	__sme_early_enc_dec(paddr, size, false);
}

static void __init __sme_early_map_unmap_mem(void *vaddr, unsigned long size,
					     bool map)
{
	unsigned long paddr = (unsigned long)vaddr - __PAGE_OFFSET;
	pmdval_t pmd_flags, pmd;

	/* Use early_pmd_flags but remove the encryption mask */
	pmd_flags = __sme_clr(early_pmd_flags);

	do {
		pmd = map ? (paddr & PMD_MASK) + pmd_flags : 0;
		__early_make_pgtable((unsigned long)vaddr, pmd);

		vaddr += PMD_SIZE;
		paddr += PMD_SIZE;
		size = (size <= PMD_SIZE) ? 0 : size - PMD_SIZE;
	} while (size);

	__native_flush_tlb();
}

void __init sme_unmap_bootdata(char *real_mode_data)
{
	struct boot_params *boot_data;
	unsigned long cmdline_paddr;

	if (!sme_active())
		return;

	/* Get the command line address before unmapping the real_mode_data */
	boot_data = (struct boot_params *)real_mode_data;
	cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32);

	__sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), false);

	if (!cmdline_paddr)
		return;

	__sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, false);
}

void __init sme_map_bootdata(char *real_mode_data)
{
	struct boot_params *boot_data;
	unsigned long cmdline_paddr;

	if (!sme_active())
		return;

	__sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), true);

	/* Get the command line address after mapping the real_mode_data */
	boot_data = (struct boot_params *)real_mode_data;
	cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32);

	if (!cmdline_paddr)
		return;

	__sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, true);
}

void __init sme_early_init(void)
{
	unsigned int i;

	if (!sme_me_mask)
		return;

	early_pmd_flags = __sme_set(early_pmd_flags);

	__supported_pte_mask = __sme_set(__supported_pte_mask);

	/* Update the protection map with memory encryption mask */
	for (i = 0; i < ARRAY_SIZE(protection_map); i++)
		protection_map[i] = pgprot_encrypted(protection_map[i]);

	if (sev_active())
		swiotlb_force = SWIOTLB_FORCE;
}

static void *sev_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle,
		       gfp_t gfp, unsigned long attrs)
{
	unsigned long dma_mask;
	unsigned int order;
	struct page *page;
	void *vaddr = NULL;

	dma_mask = dma_alloc_coherent_mask(dev, gfp);
	order = get_order(size);

	/*
	 * Memory will be memset to zero after marking decrypted, so don't
	 * bother clearing it before.
	 */
	gfp &= ~__GFP_ZERO;

	page = alloc_pages_node(dev_to_node(dev), gfp, order);
	if (page) {
		dma_addr_t addr;

		/*
		 * Since we will be clearing the encryption bit, check the
		 * mask with it already cleared.
		 */
		addr = __sme_clr(phys_to_dma(dev, page_to_phys(page)));
		if ((addr + size) > dma_mask) {
			__free_pages(page, get_order(size));
		} else {
			vaddr = page_address(page);
			*dma_handle = addr;
		}
	}

	if (!vaddr)
		vaddr = swiotlb_alloc_coherent(dev, size, dma_handle, gfp);

	if (!vaddr)
		return NULL;

	/* Clear the SME encryption bit for DMA use if not swiotlb area */
	if (!is_swiotlb_buffer(dma_to_phys(dev, *dma_handle))) {
		set_memory_decrypted((unsigned long)vaddr, 1 << order);
		memset(vaddr, 0, PAGE_SIZE << order);
		*dma_handle = __sme_clr(*dma_handle);
	}

	return vaddr;
}

static void sev_free(struct device *dev, size_t size, void *vaddr,
		     dma_addr_t dma_handle, unsigned long attrs)
{
	/* Set the SME encryption bit for re-use if not swiotlb area */
	if (!is_swiotlb_buffer(dma_to_phys(dev, dma_handle)))
		set_memory_encrypted((unsigned long)vaddr,
				     1 << get_order(size));

	swiotlb_free_coherent(dev, size, vaddr, dma_handle);
}

static void __init __set_clr_pte_enc(pte_t *kpte, int level, bool enc)
{
	pgprot_t old_prot, new_prot;
	unsigned long pfn, pa, size;
	pte_t new_pte;

	switch (level) {
	case PG_LEVEL_4K:
		pfn = pte_pfn(*kpte);
		old_prot = pte_pgprot(*kpte);
		break;
	case PG_LEVEL_2M:
		pfn = pmd_pfn(*(pmd_t *)kpte);
		old_prot = pmd_pgprot(*(pmd_t *)kpte);
		break;
	case PG_LEVEL_1G:
		pfn = pud_pfn(*(pud_t *)kpte);
		old_prot = pud_pgprot(*(pud_t *)kpte);
		break;
	default:
		return;
	}

	new_prot = old_prot;
	if (enc)
		pgprot_val(new_prot) |= _PAGE_ENC;
	else
		pgprot_val(new_prot) &= ~_PAGE_ENC;

	/* If prot is same then do nothing. */
	if (pgprot_val(old_prot) == pgprot_val(new_prot))
		return;

	pa = pfn << page_level_shift(level);
	size = page_level_size(level);

	/*
	 * We are going to perform in-place en-/decryption and change the
	 * physical page attribute from C=1 to C=0 or vice versa. Flush the
	 * caches to ensure that data gets accessed with the correct C-bit.
	 */
	clflush_cache_range(__va(pa), size);

	/* Encrypt/decrypt the contents in-place */
	if (enc)
		sme_early_encrypt(pa, size);
	else
		sme_early_decrypt(pa, size);

	/* Change the page encryption mask. */
	new_pte = pfn_pte(pfn, new_prot);
	set_pte_atomic(kpte, new_pte);
}

static int __init early_set_memory_enc_dec(unsigned long vaddr,
					   unsigned long size, bool enc)
{
	unsigned long vaddr_end, vaddr_next;
	unsigned long psize, pmask;
	int split_page_size_mask;
	int level, ret;
	pte_t *kpte;

	vaddr_next = vaddr;
	vaddr_end = vaddr + size;

	for (; vaddr < vaddr_end; vaddr = vaddr_next) {
		kpte = lookup_address(vaddr, &level);
		if (!kpte || pte_none(*kpte)) {
			ret = 1;
			goto out;
		}

		if (level == PG_LEVEL_4K) {
			__set_clr_pte_enc(kpte, level, enc);
			vaddr_next = (vaddr & PAGE_MASK) + PAGE_SIZE;
			continue;
		}

		psize = page_level_size(level);
		pmask = page_level_mask(level);

		/*
		 * Check whether we can change the large page in one go.
		 * We request a split when the address is not aligned and
		 * the number of pages to set/clear encryption bit is smaller
		 * than the number of pages in the large page.
		 */
		if (vaddr == (vaddr & pmask) &&
		    ((vaddr_end - vaddr) >= psize)) {
			__set_clr_pte_enc(kpte, level, enc);
			vaddr_next = (vaddr & pmask) + psize;
			continue;
		}

		/*
		 * The virtual address is part of a larger page, create the next
		 * level page table mapping (4K or 2M). If it is part of a 2M
		 * page then we request a split of the large page into 4K
		 * chunks. A 1GB large page is split into 2M pages, resp.
		 */
		if (level == PG_LEVEL_2M)
			split_page_size_mask = 0;
		else
			split_page_size_mask = 1 << PG_LEVEL_2M;

		kernel_physical_mapping_init(__pa(vaddr & pmask),
					     __pa((vaddr_end & pmask) + psize),
					     split_page_size_mask);
	}

	ret = 0;

out:
	__flush_tlb_all();
	return ret;
}

int __init early_set_memory_decrypted(unsigned long vaddr, unsigned long size)
{
	return early_set_memory_enc_dec(vaddr, size, false);
}

int __init early_set_memory_encrypted(unsigned long vaddr, unsigned long size)
{
	return early_set_memory_enc_dec(vaddr, size, true);
}

/*
 * SME and SEV are very similar but they are not the same, so there are
 * times that the kernel will need to distinguish between SME and SEV. The
 * sme_active() and sev_active() functions are used for this.  When a
 * distinction isn't needed, the mem_encrypt_active() function can be used.
 *
 * The trampoline code is a good example for this requirement.  Before
 * paging is activated, SME will access all memory as decrypted, but SEV
 * will access all memory as encrypted.  So, when APs are being brought
 * up under SME the trampoline area cannot be encrypted, whereas under SEV
 * the trampoline area must be encrypted.
 */
bool sme_active(void)
{
	return sme_me_mask && !sev_enabled;
}
EXPORT_SYMBOL(sme_active);

bool sev_active(void)
{
	return sme_me_mask && sev_enabled;
}
EXPORT_SYMBOL(sev_active);

static const struct dma_map_ops sev_dma_ops = {
	.alloc                  = sev_alloc,
	.free                   = sev_free,
	.map_page               = swiotlb_map_page,
	.unmap_page             = swiotlb_unmap_page,
	.map_sg                 = swiotlb_map_sg_attrs,
	.unmap_sg               = swiotlb_unmap_sg_attrs,
	.sync_single_for_cpu    = swiotlb_sync_single_for_cpu,
	.sync_single_for_device = swiotlb_sync_single_for_device,
	.sync_sg_for_cpu        = swiotlb_sync_sg_for_cpu,
	.sync_sg_for_device     = swiotlb_sync_sg_for_device,
	.mapping_error          = swiotlb_dma_mapping_error,
};

/* Architecture __weak replacement functions */
void __init mem_encrypt_init(void)
{
	if (!sme_me_mask)
		return;

	/* Call into SWIOTLB to update the SWIOTLB DMA buffers */
	swiotlb_update_mem_attributes();

	/*
	 * With SEV, DMA operations cannot use encryption. New DMA ops
	 * are required in order to mark the DMA areas as decrypted or
	 * to use bounce buffers.
	 */
	if (sev_active())
		dma_ops = &sev_dma_ops;

	/*
	 * With SEV, we need to unroll the rep string I/O instructions.
	 */
	if (sev_active())
		static_branch_enable(&sev_enable_key);

	pr_info("AMD %s active\n",
		sev_active() ? "Secure Encrypted Virtualization (SEV)"
			     : "Secure Memory Encryption (SME)");
}

void swiotlb_set_mem_attributes(void *vaddr, unsigned long size)
{
	WARN(PAGE_ALIGN(size) != size,
	     "size is not page-aligned (%#lx)\n", size);

	/* Make the SWIOTLB buffer area decrypted */
	set_memory_decrypted((unsigned long)vaddr, size >> PAGE_SHIFT);
}

static void __init sme_clear_pgd(pgd_t *pgd_base, unsigned long start,
				 unsigned long end)
{
	unsigned long pgd_start, pgd_end, pgd_size;
	pgd_t *pgd_p;

	pgd_start = start & PGDIR_MASK;
	pgd_end = end & PGDIR_MASK;

	pgd_size = (((pgd_end - pgd_start) / PGDIR_SIZE) + 1);
	pgd_size *= sizeof(pgd_t);

	pgd_p = pgd_base + pgd_index(start);

	memset(pgd_p, 0, pgd_size);
}

#define PGD_FLAGS	_KERNPG_TABLE_NOENC
#define P4D_FLAGS	_KERNPG_TABLE_NOENC
#define PUD_FLAGS	_KERNPG_TABLE_NOENC
#define PMD_FLAGS	(__PAGE_KERNEL_LARGE_EXEC & ~_PAGE_GLOBAL)

static void __init *sme_populate_pgd(pgd_t *pgd_base, void *pgtable_area,
				     unsigned long vaddr, pmdval_t pmd_val)
{
	pgd_t *pgd_p;
	p4d_t *p4d_p;
	pud_t *pud_p;
	pmd_t *pmd_p;

	pgd_p = pgd_base + pgd_index(vaddr);
	if (native_pgd_val(*pgd_p)) {
		if (IS_ENABLED(CONFIG_X86_5LEVEL))
			p4d_p = (p4d_t *)(native_pgd_val(*pgd_p) & ~PTE_FLAGS_MASK);
		else
			pud_p = (pud_t *)(native_pgd_val(*pgd_p) & ~PTE_FLAGS_MASK);
	} else {
		pgd_t pgd;

		if (IS_ENABLED(CONFIG_X86_5LEVEL)) {
			p4d_p = pgtable_area;
			memset(p4d_p, 0, sizeof(*p4d_p) * PTRS_PER_P4D);
			pgtable_area += sizeof(*p4d_p) * PTRS_PER_P4D;

			pgd = native_make_pgd((pgdval_t)p4d_p + PGD_FLAGS);
		} else {
			pud_p = pgtable_area;
			memset(pud_p, 0, sizeof(*pud_p) * PTRS_PER_PUD);
			pgtable_area += sizeof(*pud_p) * PTRS_PER_PUD;

			pgd = native_make_pgd((pgdval_t)pud_p + PGD_FLAGS);
		}
		native_set_pgd(pgd_p, pgd);
	}

	if (IS_ENABLED(CONFIG_X86_5LEVEL)) {
		p4d_p += p4d_index(vaddr);
		if (native_p4d_val(*p4d_p)) {
			pud_p = (pud_t *)(native_p4d_val(*p4d_p) & ~PTE_FLAGS_MASK);
		} else {
			p4d_t p4d;

			pud_p = pgtable_area;
			memset(pud_p, 0, sizeof(*pud_p) * PTRS_PER_PUD);
			pgtable_area += sizeof(*pud_p) * PTRS_PER_PUD;

			p4d = native_make_p4d((pudval_t)pud_p + P4D_FLAGS);
			native_set_p4d(p4d_p, p4d);
		}
	}

	pud_p += pud_index(vaddr);
	if (native_pud_val(*pud_p)) {
		if (native_pud_val(*pud_p) & _PAGE_PSE)
			goto out;

		pmd_p = (pmd_t *)(native_pud_val(*pud_p) & ~PTE_FLAGS_MASK);
	} else {
		pud_t pud;

		pmd_p = pgtable_area;
		memset(pmd_p, 0, sizeof(*pmd_p) * PTRS_PER_PMD);
		pgtable_area += sizeof(*pmd_p) * PTRS_PER_PMD;

		pud = native_make_pud((pmdval_t)pmd_p + PUD_FLAGS);
		native_set_pud(pud_p, pud);
	}

	pmd_p += pmd_index(vaddr);
	if (!native_pmd_val(*pmd_p) || !(native_pmd_val(*pmd_p) & _PAGE_PSE))
		native_set_pmd(pmd_p, native_make_pmd(pmd_val));

out:
	return pgtable_area;
}

static unsigned long __init sme_pgtable_calc(unsigned long len)
{
	unsigned long p4d_size, pud_size, pmd_size;
	unsigned long total;

	/*
	 * Perform a relatively simplistic calculation of the pagetable
	 * entries that are needed. That mappings will be covered by 2MB
	 * PMD entries so we can conservatively calculate the required
	 * number of P4D, PUD and PMD structures needed to perform the
	 * mappings. Incrementing the count for each covers the case where
	 * the addresses cross entries.
	 */
	if (IS_ENABLED(CONFIG_X86_5LEVEL)) {
		p4d_size = (ALIGN(len, PGDIR_SIZE) / PGDIR_SIZE) + 1;
		p4d_size *= sizeof(p4d_t) * PTRS_PER_P4D;
		pud_size = (ALIGN(len, P4D_SIZE) / P4D_SIZE) + 1;
		pud_size *= sizeof(pud_t) * PTRS_PER_PUD;
	} else {
		p4d_size = 0;
		pud_size = (ALIGN(len, PGDIR_SIZE) / PGDIR_SIZE) + 1;
		pud_size *= sizeof(pud_t) * PTRS_PER_PUD;
	}
	pmd_size = (ALIGN(len, PUD_SIZE) / PUD_SIZE) + 1;
	pmd_size *= sizeof(pmd_t) * PTRS_PER_PMD;

	total = p4d_size + pud_size + pmd_size;

	/*
	 * Now calculate the added pagetable structures needed to populate
	 * the new pagetables.
	 */
	if (IS_ENABLED(CONFIG_X86_5LEVEL)) {
		p4d_size = ALIGN(total, PGDIR_SIZE) / PGDIR_SIZE;
		p4d_size *= sizeof(p4d_t) * PTRS_PER_P4D;
		pud_size = ALIGN(total, P4D_SIZE) / P4D_SIZE;
		pud_size *= sizeof(pud_t) * PTRS_PER_PUD;
	} else {
		p4d_size = 0;
		pud_size = ALIGN(total, PGDIR_SIZE) / PGDIR_SIZE;
		pud_size *= sizeof(pud_t) * PTRS_PER_PUD;
	}
	pmd_size = ALIGN(total, PUD_SIZE) / PUD_SIZE;
	pmd_size *= sizeof(pmd_t) * PTRS_PER_PMD;

	total += p4d_size + pud_size + pmd_size;

	return total;
}

void __init sme_encrypt_kernel(void)
{
	unsigned long workarea_start, workarea_end, workarea_len;
	unsigned long execute_start, execute_end, execute_len;
	unsigned long kernel_start, kernel_end, kernel_len;
	unsigned long pgtable_area_len;
	unsigned long paddr, pmd_flags;
	unsigned long decrypted_base;
	void *pgtable_area;
	pgd_t *pgd;

	if (!sme_active())
		return;

	/*
	 * Prepare for encrypting the kernel by building new pagetables with
	 * the necessary attributes needed to encrypt the kernel in place.
	 *
	 *   One range of virtual addresses will map the memory occupied
	 *   by the kernel as encrypted.
	 *
	 *   Another range of virtual addresses will map the memory occupied
	 *   by the kernel as decrypted and write-protected.
	 *
	 *     The use of write-protect attribute will prevent any of the
	 *     memory from being cached.
	 */

	/* Physical addresses gives us the identity mapped virtual addresses */
	kernel_start = __pa_symbol(_text);
	kernel_end = ALIGN(__pa_symbol(_end), PMD_PAGE_SIZE);
	kernel_len = kernel_end - kernel_start;

	/* Set the encryption workarea to be immediately after the kernel */
	workarea_start = kernel_end;

	/*
	 * Calculate required number of workarea bytes needed:
	 *   executable encryption area size:
	 *     stack page (PAGE_SIZE)
	 *     encryption routine page (PAGE_SIZE)
	 *     intermediate copy buffer (PMD_PAGE_SIZE)
	 *   pagetable structures for the encryption of the kernel
	 *   pagetable structures for workarea (in case not currently mapped)
	 */
	execute_start = workarea_start;
	execute_end = execute_start + (PAGE_SIZE * 2) + PMD_PAGE_SIZE;
	execute_len = execute_end - execute_start;

	/*
	 * One PGD for both encrypted and decrypted mappings and a set of
	 * PUDs and PMDs for each of the encrypted and decrypted mappings.
	 */
	pgtable_area_len = sizeof(pgd_t) * PTRS_PER_PGD;
	pgtable_area_len += sme_pgtable_calc(execute_end - kernel_start) * 2;

	/* PUDs and PMDs needed in the current pagetables for the workarea */
	pgtable_area_len += sme_pgtable_calc(execute_len + pgtable_area_len);

	/*
	 * The total workarea includes the executable encryption area and
	 * the pagetable area.
	 */
	workarea_len = execute_len + pgtable_area_len;
	workarea_end = workarea_start + workarea_len;

	/*
	 * Set the address to the start of where newly created pagetable
	 * structures (PGDs, PUDs and PMDs) will be allocated. New pagetable
	 * structures are created when the workarea is added to the current
	 * pagetables and when the new encrypted and decrypted kernel
	 * mappings are populated.
	 */
	pgtable_area = (void *)execute_end;

	/*
	 * Make sure the current pagetable structure has entries for
	 * addressing the workarea.
	 */
	pgd = (pgd_t *)native_read_cr3_pa();
	paddr = workarea_start;
	while (paddr < workarea_end) {
		pgtable_area = sme_populate_pgd(pgd, pgtable_area,
						paddr,
						paddr + PMD_FLAGS);

		paddr += PMD_PAGE_SIZE;
	}

	/* Flush the TLB - no globals so cr3 is enough */
	native_write_cr3(__native_read_cr3());

	/*
	 * A new pagetable structure is being built to allow for the kernel
	 * to be encrypted. It starts with an empty PGD that will then be
	 * populated with new PUDs and PMDs as the encrypted and decrypted
	 * kernel mappings are created.
	 */
	pgd = pgtable_area;
	memset(pgd, 0, sizeof(*pgd) * PTRS_PER_PGD);
	pgtable_area += sizeof(*pgd) * PTRS_PER_PGD;

	/* Add encrypted kernel (identity) mappings */
	pmd_flags = PMD_FLAGS | _PAGE_ENC;
	paddr = kernel_start;
	while (paddr < kernel_end) {
		pgtable_area = sme_populate_pgd(pgd, pgtable_area,
						paddr,
						paddr + pmd_flags);

		paddr += PMD_PAGE_SIZE;
	}

	/*
	 * A different PGD index/entry must be used to get different
	 * pagetable entries for the decrypted mapping. Choose the next
	 * PGD index and convert it to a virtual address to be used as
	 * the base of the mapping.
	 */
	decrypted_base = (pgd_index(workarea_end) + 1) & (PTRS_PER_PGD - 1);
	decrypted_base <<= PGDIR_SHIFT;

	/* Add decrypted, write-protected kernel (non-identity) mappings */
	pmd_flags = (PMD_FLAGS & ~_PAGE_CACHE_MASK) | (_PAGE_PAT | _PAGE_PWT);
	paddr = kernel_start;
	while (paddr < kernel_end) {
		pgtable_area = sme_populate_pgd(pgd, pgtable_area,
						paddr + decrypted_base,
						paddr + pmd_flags);

		paddr += PMD_PAGE_SIZE;
	}

	/* Add decrypted workarea mappings to both kernel mappings */
	paddr = workarea_start;
	while (paddr < workarea_end) {
		pgtable_area = sme_populate_pgd(pgd, pgtable_area,
						paddr,
						paddr + PMD_FLAGS);

		pgtable_area = sme_populate_pgd(pgd, pgtable_area,
						paddr + decrypted_base,
						paddr + PMD_FLAGS);

		paddr += PMD_PAGE_SIZE;
	}

	/* Perform the encryption */
	sme_encrypt_execute(kernel_start, kernel_start + decrypted_base,
			    kernel_len, workarea_start, (unsigned long)pgd);

	/*
	 * At this point we are running encrypted.  Remove the mappings for
	 * the decrypted areas - all that is needed for this is to remove
	 * the PGD entry/entries.
	 */
	sme_clear_pgd(pgd, kernel_start + decrypted_base,
		      kernel_end + decrypted_base);

	sme_clear_pgd(pgd, workarea_start + decrypted_base,
		      workarea_end + decrypted_base);

	/* Flush the TLB - no globals so cr3 is enough */
	native_write_cr3(__native_read_cr3());
}

void __init __nostackprotector sme_enable(struct boot_params *bp)
{
	const char *cmdline_ptr, *cmdline_arg, *cmdline_on, *cmdline_off;
	unsigned int eax, ebx, ecx, edx;
	unsigned long feature_mask;
	bool active_by_default;
	unsigned long me_mask;
	char buffer[16];
	u64 msr;

	/* Check for the SME/SEV support leaf */
	eax = 0x80000000;
	ecx = 0;
	native_cpuid(&eax, &ebx, &ecx, &edx);
	if (eax < 0x8000001f)
		return;

#define AMD_SME_BIT	BIT(0)
#define AMD_SEV_BIT	BIT(1)
	/*
	 * Set the feature mask (SME or SEV) based on whether we are
	 * running under a hypervisor.
	 */
	eax = 1;
	ecx = 0;
	native_cpuid(&eax, &ebx, &ecx, &edx);
	feature_mask = (ecx & BIT(31)) ? AMD_SEV_BIT : AMD_SME_BIT;

	/*
	 * Check for the SME/SEV feature:
	 *   CPUID Fn8000_001F[EAX]
	 *   - Bit 0 - Secure Memory Encryption support
	 *   - Bit 1 - Secure Encrypted Virtualization support
	 *   CPUID Fn8000_001F[EBX]
	 *   - Bits 5:0 - Pagetable bit position used to indicate encryption
	 */
	eax = 0x8000001f;
	ecx = 0;
	native_cpuid(&eax, &ebx, &ecx, &edx);
	if (!(eax & feature_mask))
		return;

	me_mask = 1UL << (ebx & 0x3f);

	/* Check if memory encryption is enabled */
	if (feature_mask == AMD_SME_BIT) {
		/* For SME, check the SYSCFG MSR */
		msr = __rdmsr(MSR_K8_SYSCFG);
		if (!(msr & MSR_K8_SYSCFG_MEM_ENCRYPT))
			return;
	} else {
		/* For SEV, check the SEV MSR */
		msr = __rdmsr(MSR_AMD64_SEV);
		if (!(msr & MSR_AMD64_SEV_ENABLED))
			return;

		/* SEV state cannot be controlled by a command line option */
		sme_me_mask = me_mask;
		sev_enabled = true;
		return;
	}

	/*
	 * Fixups have not been applied to phys_base yet and we're running
	 * identity mapped, so we must obtain the address to the SME command
	 * line argument data using rip-relative addressing.
	 */
	asm ("lea sme_cmdline_arg(%%rip), %0"
	     : "=r" (cmdline_arg)
	     : "p" (sme_cmdline_arg));
	asm ("lea sme_cmdline_on(%%rip), %0"
	     : "=r" (cmdline_on)
	     : "p" (sme_cmdline_on));
	asm ("lea sme_cmdline_off(%%rip), %0"
	     : "=r" (cmdline_off)
	     : "p" (sme_cmdline_off));

	if (IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT))
		active_by_default = true;
	else
		active_by_default = false;

	cmdline_ptr = (const char *)((u64)bp->hdr.cmd_line_ptr |
				     ((u64)bp->ext_cmd_line_ptr << 32));

	cmdline_find_option(cmdline_ptr, cmdline_arg, buffer, sizeof(buffer));

	if (!strncmp(buffer, cmdline_on, sizeof(buffer)))
		sme_me_mask = me_mask;
	else if (!strncmp(buffer, cmdline_off, sizeof(buffer)))
		sme_me_mask = 0;
	else
		sme_me_mask = active_by_default ? me_mask : 0;
}