summaryrefslogtreecommitdiffstats
path: root/arch/x86/mm/numa.c
blob: b29ceb19e46ec3841d6ec3694cfec220e635b63c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
// SPDX-License-Identifier: GPL-2.0-only
/* Common code for 32 and 64-bit NUMA */
#include <linux/acpi.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/of.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/memblock.h>
#include <linux/mmzone.h>
#include <linux/ctype.h>
#include <linux/nodemask.h>
#include <linux/sched.h>
#include <linux/topology.h>
#include <linux/sort.h>

#include <asm/e820/api.h>
#include <asm/proto.h>
#include <asm/dma.h>
#include <asm/amd_nb.h>

#include "numa_internal.h"

int numa_off;
nodemask_t numa_nodes_parsed __initdata;

struct pglist_data *node_data[MAX_NUMNODES] __read_mostly;
EXPORT_SYMBOL(node_data);

static struct numa_meminfo numa_meminfo __initdata_or_meminfo;
static struct numa_meminfo numa_reserved_meminfo __initdata_or_meminfo;

static int numa_distance_cnt;
static u8 *numa_distance;

static __init int numa_setup(char *opt)
{
	if (!opt)
		return -EINVAL;
	if (!strncmp(opt, "off", 3))
		numa_off = 1;
	if (!strncmp(opt, "fake=", 5))
		return numa_emu_cmdline(opt + 5);
	if (!strncmp(opt, "noacpi", 6))
		disable_srat();
	if (!strncmp(opt, "nohmat", 6))
		disable_hmat();
	return 0;
}
early_param("numa", numa_setup);

/*
 * apicid, cpu, node mappings
 */
s16 __apicid_to_node[MAX_LOCAL_APIC] = {
	[0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE
};

int numa_cpu_node(int cpu)
{
	u32 apicid = early_per_cpu(x86_cpu_to_apicid, cpu);

	if (apicid != BAD_APICID)
		return __apicid_to_node[apicid];
	return NUMA_NO_NODE;
}

cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
EXPORT_SYMBOL(node_to_cpumask_map);

/*
 * Map cpu index to node index
 */
DEFINE_EARLY_PER_CPU(int, x86_cpu_to_node_map, NUMA_NO_NODE);
EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_node_map);

void numa_set_node(int cpu, int node)
{
	int *cpu_to_node_map = early_per_cpu_ptr(x86_cpu_to_node_map);

	/* early setting, no percpu area yet */
	if (cpu_to_node_map) {
		cpu_to_node_map[cpu] = node;
		return;
	}

#ifdef CONFIG_DEBUG_PER_CPU_MAPS
	if (cpu >= nr_cpu_ids || !cpu_possible(cpu)) {
		printk(KERN_ERR "numa_set_node: invalid cpu# (%d)\n", cpu);
		dump_stack();
		return;
	}
#endif
	per_cpu(x86_cpu_to_node_map, cpu) = node;

	set_cpu_numa_node(cpu, node);
}

void numa_clear_node(int cpu)
{
	numa_set_node(cpu, NUMA_NO_NODE);
}

/*
 * Allocate node_to_cpumask_map based on number of available nodes
 * Requires node_possible_map to be valid.
 *
 * Note: cpumask_of_node() is not valid until after this is done.
 * (Use CONFIG_DEBUG_PER_CPU_MAPS to check this.)
 */
void __init setup_node_to_cpumask_map(void)
{
	unsigned int node;

	/* setup nr_node_ids if not done yet */
	if (nr_node_ids == MAX_NUMNODES)
		setup_nr_node_ids();

	/* allocate the map */
	for (node = 0; node < nr_node_ids; node++)
		alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);

	/* cpumask_of_node() will now work */
	pr_debug("Node to cpumask map for %u nodes\n", nr_node_ids);
}

static int __init numa_add_memblk_to(int nid, u64 start, u64 end,
				     struct numa_meminfo *mi)
{
	/* ignore zero length blks */
	if (start == end)
		return 0;

	/* whine about and ignore invalid blks */
	if (start > end || nid < 0 || nid >= MAX_NUMNODES) {
		pr_warn("Warning: invalid memblk node %d [mem %#010Lx-%#010Lx]\n",
			nid, start, end - 1);
		return 0;
	}

	if (mi->nr_blks >= NR_NODE_MEMBLKS) {
		pr_err("too many memblk ranges\n");
		return -EINVAL;
	}

	mi->blk[mi->nr_blks].start = start;
	mi->blk[mi->nr_blks].end = end;
	mi->blk[mi->nr_blks].nid = nid;
	mi->nr_blks++;
	return 0;
}

/**
 * numa_remove_memblk_from - Remove one numa_memblk from a numa_meminfo
 * @idx: Index of memblk to remove
 * @mi: numa_meminfo to remove memblk from
 *
 * Remove @idx'th numa_memblk from @mi by shifting @mi->blk[] and
 * decrementing @mi->nr_blks.
 */
void __init numa_remove_memblk_from(int idx, struct numa_meminfo *mi)
{
	mi->nr_blks--;
	memmove(&mi->blk[idx], &mi->blk[idx + 1],
		(mi->nr_blks - idx) * sizeof(mi->blk[0]));
}

/**
 * numa_move_tail_memblk - Move a numa_memblk from one numa_meminfo to another
 * @dst: numa_meminfo to append block to
 * @idx: Index of memblk to remove
 * @src: numa_meminfo to remove memblk from
 */
static void __init numa_move_tail_memblk(struct numa_meminfo *dst, int idx,
					 struct numa_meminfo *src)
{
	dst->blk[dst->nr_blks++] = src->blk[idx];
	numa_remove_memblk_from(idx, src);
}

/**
 * numa_add_memblk - Add one numa_memblk to numa_meminfo
 * @nid: NUMA node ID of the new memblk
 * @start: Start address of the new memblk
 * @end: End address of the new memblk
 *
 * Add a new memblk to the default numa_meminfo.
 *
 * RETURNS:
 * 0 on success, -errno on failure.
 */
int __init numa_add_memblk(int nid, u64 start, u64 end)
{
	return numa_add_memblk_to(nid, start, end, &numa_meminfo);
}

/* Allocate NODE_DATA for a node on the local memory */
static void __init alloc_node_data(int nid)
{
	const size_t nd_size = roundup(sizeof(pg_data_t), PAGE_SIZE);
	u64 nd_pa;
	void *nd;
	int tnid;

	/*
	 * Allocate node data.  Try node-local memory and then any node.
	 * Never allocate in DMA zone.
	 */
	nd_pa = memblock_phys_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid);
	if (!nd_pa) {
		pr_err("Cannot find %zu bytes in any node (initial node: %d)\n",
		       nd_size, nid);
		return;
	}
	nd = __va(nd_pa);

	/* report and initialize */
	printk(KERN_INFO "NODE_DATA(%d) allocated [mem %#010Lx-%#010Lx]\n", nid,
	       nd_pa, nd_pa + nd_size - 1);
	tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT);
	if (tnid != nid)
		printk(KERN_INFO "    NODE_DATA(%d) on node %d\n", nid, tnid);

	node_data[nid] = nd;
	memset(NODE_DATA(nid), 0, sizeof(pg_data_t));

	node_set_online(nid);
}

/**
 * numa_cleanup_meminfo - Cleanup a numa_meminfo
 * @mi: numa_meminfo to clean up
 *
 * Sanitize @mi by merging and removing unnecessary memblks.  Also check for
 * conflicts and clear unused memblks.
 *
 * RETURNS:
 * 0 on success, -errno on failure.
 */
int __init numa_cleanup_meminfo(struct numa_meminfo *mi)
{
	const u64 low = 0;
	const u64 high = PFN_PHYS(max_pfn);
	int i, j, k;

	/* first, trim all entries */
	for (i = 0; i < mi->nr_blks; i++) {
		struct numa_memblk *bi = &mi->blk[i];

		/* move / save reserved memory ranges */
		if (!memblock_overlaps_region(&memblock.memory,
					bi->start, bi->end - bi->start)) {
			numa_move_tail_memblk(&numa_reserved_meminfo, i--, mi);
			continue;
		}

		/* make sure all non-reserved blocks are inside the limits */
		bi->start = max(bi->start, low);

		/* preserve info for non-RAM areas above 'max_pfn': */
		if (bi->end > high) {
			numa_add_memblk_to(bi->nid, high, bi->end,
					   &numa_reserved_meminfo);
			bi->end = high;
		}

		/* and there's no empty block */
		if (bi->start >= bi->end)
			numa_remove_memblk_from(i--, mi);
	}

	/* merge neighboring / overlapping entries */
	for (i = 0; i < mi->nr_blks; i++) {
		struct numa_memblk *bi = &mi->blk[i];

		for (j = i + 1; j < mi->nr_blks; j++) {
			struct numa_memblk *bj = &mi->blk[j];
			u64 start, end;

			/*
			 * See whether there are overlapping blocks.  Whine
			 * about but allow overlaps of the same nid.  They
			 * will be merged below.
			 */
			if (bi->end > bj->start && bi->start < bj->end) {
				if (bi->nid != bj->nid) {
					pr_err("node %d [mem %#010Lx-%#010Lx] overlaps with node %d [mem %#010Lx-%#010Lx]\n",
					       bi->nid, bi->start, bi->end - 1,
					       bj->nid, bj->start, bj->end - 1);
					return -EINVAL;
				}
				pr_warn("Warning: node %d [mem %#010Lx-%#010Lx] overlaps with itself [mem %#010Lx-%#010Lx]\n",
					bi->nid, bi->start, bi->end - 1,
					bj->start, bj->end - 1);
			}

			/*
			 * Join together blocks on the same node, holes
			 * between which don't overlap with memory on other
			 * nodes.
			 */
			if (bi->nid != bj->nid)
				continue;
			start = min(bi->start, bj->start);
			end = max(bi->end, bj->end);
			for (k = 0; k < mi->nr_blks; k++) {
				struct numa_memblk *bk = &mi->blk[k];

				if (bi->nid == bk->nid)
					continue;
				if (start < bk->end && end > bk->start)
					break;
			}
			if (k < mi->nr_blks)
				continue;
			printk(KERN_INFO "NUMA: Node %d [mem %#010Lx-%#010Lx] + [mem %#010Lx-%#010Lx] -> [mem %#010Lx-%#010Lx]\n",
			       bi->nid, bi->start, bi->end - 1, bj->start,
			       bj->end - 1, start, end - 1);
			bi->start = start;
			bi->end = end;
			numa_remove_memblk_from(j--, mi);
		}
	}

	/* clear unused ones */
	for (i = mi->nr_blks; i < ARRAY_SIZE(mi->blk); i++) {
		mi->blk[i].start = mi->blk[i].end = 0;
		mi->blk[i].nid = NUMA_NO_NODE;
	}

	return 0;
}

/*
 * Set nodes, which have memory in @mi, in *@nodemask.
 */
static void __init numa_nodemask_from_meminfo(nodemask_t *nodemask,
					      const struct numa_meminfo *mi)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(mi->blk); i++)
		if (mi->blk[i].start != mi->blk[i].end &&
		    mi->blk[i].nid != NUMA_NO_NODE)
			node_set(mi->blk[i].nid, *nodemask);
}

/**
 * numa_reset_distance - Reset NUMA distance table
 *
 * The current table is freed.  The next numa_set_distance() call will
 * create a new one.
 */
void __init numa_reset_distance(void)
{
	size_t size = numa_distance_cnt * numa_distance_cnt * sizeof(numa_distance[0]);

	/* numa_distance could be 1LU marking allocation failure, test cnt */
	if (numa_distance_cnt)
		memblock_free(numa_distance, size);
	numa_distance_cnt = 0;
	numa_distance = NULL;	/* enable table creation */
}

static int __init numa_alloc_distance(void)
{
	nodemask_t nodes_parsed;
	size_t size;
	int i, j, cnt = 0;
	u64 phys;

	/* size the new table and allocate it */
	nodes_parsed = numa_nodes_parsed;
	numa_nodemask_from_meminfo(&nodes_parsed, &numa_meminfo);

	for_each_node_mask(i, nodes_parsed)
		cnt = i;
	cnt++;
	size = cnt * cnt * sizeof(numa_distance[0]);

	phys = memblock_phys_alloc_range(size, PAGE_SIZE, 0,
					 PFN_PHYS(max_pfn_mapped));
	if (!phys) {
		pr_warn("Warning: can't allocate distance table!\n");
		/* don't retry until explicitly reset */
		numa_distance = (void *)1LU;
		return -ENOMEM;
	}

	numa_distance = __va(phys);
	numa_distance_cnt = cnt;

	/* fill with the default distances */
	for (i = 0; i < cnt; i++)
		for (j = 0; j < cnt; j++)
			numa_distance[i * cnt + j] = i == j ?
				LOCAL_DISTANCE : REMOTE_DISTANCE;
	printk(KERN_DEBUG "NUMA: Initialized distance table, cnt=%d\n", cnt);

	return 0;
}

/**
 * numa_set_distance - Set NUMA distance from one NUMA to another
 * @from: the 'from' node to set distance
 * @to: the 'to'  node to set distance
 * @distance: NUMA distance
 *
 * Set the distance from node @from to @to to @distance.  If distance table
 * doesn't exist, one which is large enough to accommodate all the currently
 * known nodes will be created.
 *
 * If such table cannot be allocated, a warning is printed and further
 * calls are ignored until the distance table is reset with
 * numa_reset_distance().
 *
 * If @from or @to is higher than the highest known node or lower than zero
 * at the time of table creation or @distance doesn't make sense, the call
 * is ignored.
 * This is to allow simplification of specific NUMA config implementations.
 */
void __init numa_set_distance(int from, int to, int distance)
{
	if (!numa_distance && numa_alloc_distance() < 0)
		return;

	if (from >= numa_distance_cnt || to >= numa_distance_cnt ||
			from < 0 || to < 0) {
		pr_warn_once("Warning: node ids are out of bound, from=%d to=%d distance=%d\n",
			     from, to, distance);
		return;
	}

	if ((u8)distance != distance ||
	    (from == to && distance != LOCAL_DISTANCE)) {
		pr_warn_once("Warning: invalid distance parameter, from=%d to=%d distance=%d\n",
			     from, to, distance);
		return;
	}

	numa_distance[from * numa_distance_cnt + to] = distance;
}

int __node_distance(int from, int to)
{
	if (from >= numa_distance_cnt || to >= numa_distance_cnt)
		return from == to ? LOCAL_DISTANCE : REMOTE_DISTANCE;
	return numa_distance[from * numa_distance_cnt + to];
}
EXPORT_SYMBOL(__node_distance);

/*
 * Sanity check to catch more bad NUMA configurations (they are amazingly
 * common).  Make sure the nodes cover all memory.
 */
static bool __init numa_meminfo_cover_memory(const struct numa_meminfo *mi)
{
	u64 numaram, e820ram;
	int i;

	numaram = 0;
	for (i = 0; i < mi->nr_blks; i++) {
		u64 s = mi->blk[i].start >> PAGE_SHIFT;
		u64 e = mi->blk[i].end >> PAGE_SHIFT;
		numaram += e - s;
		numaram -= __absent_pages_in_range(mi->blk[i].nid, s, e);
		if ((s64)numaram < 0)
			numaram = 0;
	}

	e820ram = max_pfn - absent_pages_in_range(0, max_pfn);

	/* We seem to lose 3 pages somewhere. Allow 1M of slack. */
	if ((s64)(e820ram - numaram) >= (1 << (20 - PAGE_SHIFT))) {
		printk(KERN_ERR "NUMA: nodes only cover %LuMB of your %LuMB e820 RAM. Not used.\n",
		       (numaram << PAGE_SHIFT) >> 20,
		       (e820ram << PAGE_SHIFT) >> 20);
		return false;
	}
	return true;
}

/*
 * Mark all currently memblock-reserved physical memory (which covers the
 * kernel's own memory ranges) as hot-unswappable.
 */
static void __init numa_clear_kernel_node_hotplug(void)
{
	nodemask_t reserved_nodemask = NODE_MASK_NONE;
	struct memblock_region *mb_region;
	int i;

	/*
	 * We have to do some preprocessing of memblock regions, to
	 * make them suitable for reservation.
	 *
	 * At this time, all memory regions reserved by memblock are
	 * used by the kernel, but those regions are not split up
	 * along node boundaries yet, and don't necessarily have their
	 * node ID set yet either.
	 *
	 * So iterate over all memory known to the x86 architecture,
	 * and use those ranges to set the nid in memblock.reserved.
	 * This will split up the memblock regions along node
	 * boundaries and will set the node IDs as well.
	 */
	for (i = 0; i < numa_meminfo.nr_blks; i++) {
		struct numa_memblk *mb = numa_meminfo.blk + i;
		int ret;

		ret = memblock_set_node(mb->start, mb->end - mb->start, &memblock.reserved, mb->nid);
		WARN_ON_ONCE(ret);
	}

	/*
	 * Now go over all reserved memblock regions, to construct a
	 * node mask of all kernel reserved memory areas.
	 *
	 * [ Note, when booting with mem=nn[kMG] or in a kdump kernel,
	 *   numa_meminfo might not include all memblock.reserved
	 *   memory ranges, because quirks such as trim_snb_memory()
	 *   reserve specific pages for Sandy Bridge graphics. ]
	 */
	for_each_reserved_mem_region(mb_region) {
		int nid = memblock_get_region_node(mb_region);

		if (nid != MAX_NUMNODES)
			node_set(nid, reserved_nodemask);
	}

	/*
	 * Finally, clear the MEMBLOCK_HOTPLUG flag for all memory
	 * belonging to the reserved node mask.
	 *
	 * Note that this will include memory regions that reside
	 * on nodes that contain kernel memory - entire nodes
	 * become hot-unpluggable:
	 */
	for (i = 0; i < numa_meminfo.nr_blks; i++) {
		struct numa_memblk *mb = numa_meminfo.blk + i;

		if (!node_isset(mb->nid, reserved_nodemask))
			continue;

		memblock_clear_hotplug(mb->start, mb->end - mb->start);
	}
}

static int __init numa_register_memblks(struct numa_meminfo *mi)
{
	int i, nid;

	/* Account for nodes with cpus and no memory */
	node_possible_map = numa_nodes_parsed;
	numa_nodemask_from_meminfo(&node_possible_map, mi);
	if (WARN_ON(nodes_empty(node_possible_map)))
		return -EINVAL;

	for (i = 0; i < mi->nr_blks; i++) {
		struct numa_memblk *mb = &mi->blk[i];
		memblock_set_node(mb->start, mb->end - mb->start,
				  &memblock.memory, mb->nid);
	}

	/*
	 * At very early time, the kernel have to use some memory such as
	 * loading the kernel image. We cannot prevent this anyway. So any
	 * node the kernel resides in should be un-hotpluggable.
	 *
	 * And when we come here, alloc node data won't fail.
	 */
	numa_clear_kernel_node_hotplug();

	/*
	 * If sections array is gonna be used for pfn -> nid mapping, check
	 * whether its granularity is fine enough.
	 */
	if (IS_ENABLED(NODE_NOT_IN_PAGE_FLAGS)) {
		unsigned long pfn_align = node_map_pfn_alignment();

		if (pfn_align && pfn_align < PAGES_PER_SECTION) {
			pr_warn("Node alignment %LuMB < min %LuMB, rejecting NUMA config\n",
				PFN_PHYS(pfn_align) >> 20,
				PFN_PHYS(PAGES_PER_SECTION) >> 20);
			return -EINVAL;
		}
	}
	if (!numa_meminfo_cover_memory(mi))
		return -EINVAL;

	/* Finally register nodes. */
	for_each_node_mask(nid, node_possible_map) {
		u64 start = PFN_PHYS(max_pfn);
		u64 end = 0;

		for (i = 0; i < mi->nr_blks; i++) {
			if (nid != mi->blk[i].nid)
				continue;
			start = min(mi->blk[i].start, start);
			end = max(mi->blk[i].end, end);
		}

		if (start >= end)
			continue;

		alloc_node_data(nid);
	}

	/* Dump memblock with node info and return. */
	memblock_dump_all();
	return 0;
}

/*
 * There are unfortunately some poorly designed mainboards around that
 * only connect memory to a single CPU. This breaks the 1:1 cpu->node
 * mapping. To avoid this fill in the mapping for all possible CPUs,
 * as the number of CPUs is not known yet. We round robin the existing
 * nodes.
 */
static void __init numa_init_array(void)
{
	int rr, i;

	rr = first_node(node_online_map);
	for (i = 0; i < nr_cpu_ids; i++) {
		if (early_cpu_to_node(i) != NUMA_NO_NODE)
			continue;
		numa_set_node(i, rr);
		rr = next_node_in(rr, node_online_map);
	}
}

static int __init numa_init(int (*init_func)(void))
{
	int i;
	int ret;

	for (i = 0; i < MAX_LOCAL_APIC; i++)
		set_apicid_to_node(i, NUMA_NO_NODE);

	nodes_clear(numa_nodes_parsed);
	nodes_clear(node_possible_map);
	nodes_clear(node_online_map);
	memset(&numa_meminfo, 0, sizeof(numa_meminfo));
	WARN_ON(memblock_set_node(0, ULLONG_MAX, &memblock.memory,
				  MAX_NUMNODES));
	WARN_ON(memblock_set_node(0, ULLONG_MAX, &memblock.reserved,
				  MAX_NUMNODES));
	/* In case that parsing SRAT failed. */
	WARN_ON(memblock_clear_hotplug(0, ULLONG_MAX));
	numa_reset_distance();

	ret = init_func();
	if (ret < 0)
		return ret;

	/*
	 * We reset memblock back to the top-down direction
	 * here because if we configured ACPI_NUMA, we have
	 * parsed SRAT in init_func(). It is ok to have the
	 * reset here even if we did't configure ACPI_NUMA
	 * or acpi numa init fails and fallbacks to dummy
	 * numa init.
	 */
	memblock_set_bottom_up(false);

	ret = numa_cleanup_meminfo(&numa_meminfo);
	if (ret < 0)
		return ret;

	numa_emulation(&numa_meminfo, numa_distance_cnt);

	ret = numa_register_memblks(&numa_meminfo);
	if (ret < 0)
		return ret;

	for (i = 0; i < nr_cpu_ids; i++) {
		int nid = early_cpu_to_node(i);

		if (nid == NUMA_NO_NODE)
			continue;
		if (!node_online(nid))
			numa_clear_node(i);
	}
	numa_init_array();

	return 0;
}

/**
 * dummy_numa_init - Fallback dummy NUMA init
 *
 * Used if there's no underlying NUMA architecture, NUMA initialization
 * fails, or NUMA is disabled on the command line.
 *
 * Must online at least one node and add memory blocks that cover all
 * allowed memory.  This function must not fail.
 */
static int __init dummy_numa_init(void)
{
	printk(KERN_INFO "%s\n",
	       numa_off ? "NUMA turned off" : "No NUMA configuration found");
	printk(KERN_INFO "Faking a node at [mem %#018Lx-%#018Lx]\n",
	       0LLU, PFN_PHYS(max_pfn) - 1);

	node_set(0, numa_nodes_parsed);
	numa_add_memblk(0, 0, PFN_PHYS(max_pfn));

	return 0;
}

/**
 * x86_numa_init - Initialize NUMA
 *
 * Try each configured NUMA initialization method until one succeeds.  The
 * last fallback is dummy single node config encompassing whole memory and
 * never fails.
 */
void __init x86_numa_init(void)
{
	if (!numa_off) {
#ifdef CONFIG_ACPI_NUMA
		if (!numa_init(x86_acpi_numa_init))
			return;
#endif
#ifdef CONFIG_AMD_NUMA
		if (!numa_init(amd_numa_init))
			return;
#endif
		if (acpi_disabled && !numa_init(of_numa_init))
			return;
	}

	numa_init(dummy_numa_init);
}


/*
 * A node may exist which has one or more Generic Initiators but no CPUs and no
 * memory.
 *
 * This function must be called after init_cpu_to_node(), to ensure that any
 * memoryless CPU nodes have already been brought online, and before the
 * node_data[nid] is needed for zone list setup in build_all_zonelists().
 *
 * When this function is called, any nodes containing either memory and/or CPUs
 * will already be online and there is no need to do anything extra, even if
 * they also contain one or more Generic Initiators.
 */
void __init init_gi_nodes(void)
{
	int nid;

	/*
	 * Exclude this node from
	 * bringup_nonboot_cpus
	 *  cpu_up
	 *   __try_online_node
	 *    register_one_node
	 * because node_subsys is not initialized yet.
	 * TODO remove dependency on node_online
	 */
	for_each_node_state(nid, N_GENERIC_INITIATOR)
		if (!node_online(nid))
			node_set_online(nid);
}

/*
 * Setup early cpu_to_node.
 *
 * Populate cpu_to_node[] only if x86_cpu_to_apicid[],
 * and apicid_to_node[] tables have valid entries for a CPU.
 * This means we skip cpu_to_node[] initialisation for NUMA
 * emulation and faking node case (when running a kernel compiled
 * for NUMA on a non NUMA box), which is OK as cpu_to_node[]
 * is already initialized in a round robin manner at numa_init_array,
 * prior to this call, and this initialization is good enough
 * for the fake NUMA cases.
 *
 * Called before the per_cpu areas are setup.
 */
void __init init_cpu_to_node(void)
{
	int cpu;
	u32 *cpu_to_apicid = early_per_cpu_ptr(x86_cpu_to_apicid);

	BUG_ON(cpu_to_apicid == NULL);

	for_each_possible_cpu(cpu) {
		int node = numa_cpu_node(cpu);

		if (node == NUMA_NO_NODE)
			continue;

		/*
		 * Exclude this node from
		 * bringup_nonboot_cpus
		 *  cpu_up
		 *   __try_online_node
		 *    register_one_node
		 * because node_subsys is not initialized yet.
		 * TODO remove dependency on node_online
		 */
		if (!node_online(node))
			node_set_online(node);

		numa_set_node(cpu, node);
	}
}

#ifndef CONFIG_DEBUG_PER_CPU_MAPS

# ifndef CONFIG_NUMA_EMU
void numa_add_cpu(int cpu)
{
	cpumask_set_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]);
}

void numa_remove_cpu(int cpu)
{
	cpumask_clear_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]);
}
# endif	/* !CONFIG_NUMA_EMU */

#else	/* !CONFIG_DEBUG_PER_CPU_MAPS */

int __cpu_to_node(int cpu)
{
	if (early_per_cpu_ptr(x86_cpu_to_node_map)) {
		printk(KERN_WARNING
			"cpu_to_node(%d): usage too early!\n", cpu);
		dump_stack();
		return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu];
	}
	return per_cpu(x86_cpu_to_node_map, cpu);
}
EXPORT_SYMBOL(__cpu_to_node);

/*
 * Same function as cpu_to_node() but used if called before the
 * per_cpu areas are setup.
 */
int early_cpu_to_node(int cpu)
{
	if (early_per_cpu_ptr(x86_cpu_to_node_map))
		return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu];

	if (!cpu_possible(cpu)) {
		printk(KERN_WARNING
			"early_cpu_to_node(%d): no per_cpu area!\n", cpu);
		dump_stack();
		return NUMA_NO_NODE;
	}
	return per_cpu(x86_cpu_to_node_map, cpu);
}

void debug_cpumask_set_cpu(int cpu, int node, bool enable)
{
	struct cpumask *mask;

	if (node == NUMA_NO_NODE) {
		/* early_cpu_to_node() already emits a warning and trace */
		return;
	}
	mask = node_to_cpumask_map[node];
	if (!cpumask_available(mask)) {
		pr_err("node_to_cpumask_map[%i] NULL\n", node);
		dump_stack();
		return;
	}

	if (enable)
		cpumask_set_cpu(cpu, mask);
	else
		cpumask_clear_cpu(cpu, mask);

	printk(KERN_DEBUG "%s cpu %d node %d: mask now %*pbl\n",
		enable ? "numa_add_cpu" : "numa_remove_cpu",
		cpu, node, cpumask_pr_args(mask));
	return;
}

# ifndef CONFIG_NUMA_EMU
static void numa_set_cpumask(int cpu, bool enable)
{
	debug_cpumask_set_cpu(cpu, early_cpu_to_node(cpu), enable);
}

void numa_add_cpu(int cpu)
{
	numa_set_cpumask(cpu, true);
}

void numa_remove_cpu(int cpu)
{
	numa_set_cpumask(cpu, false);
}
# endif	/* !CONFIG_NUMA_EMU */

/*
 * Returns a pointer to the bitmask of CPUs on Node 'node'.
 */
const struct cpumask *cpumask_of_node(int node)
{
	if ((unsigned)node >= nr_node_ids) {
		printk(KERN_WARNING
			"cpumask_of_node(%d): (unsigned)node >= nr_node_ids(%u)\n",
			node, nr_node_ids);
		dump_stack();
		return cpu_none_mask;
	}
	if (!cpumask_available(node_to_cpumask_map[node])) {
		printk(KERN_WARNING
			"cpumask_of_node(%d): no node_to_cpumask_map!\n",
			node);
		dump_stack();
		return cpu_online_mask;
	}
	return node_to_cpumask_map[node];
}
EXPORT_SYMBOL(cpumask_of_node);

#endif	/* !CONFIG_DEBUG_PER_CPU_MAPS */

#ifdef CONFIG_NUMA_KEEP_MEMINFO
static int meminfo_to_nid(struct numa_meminfo *mi, u64 start)
{
	int i;

	for (i = 0; i < mi->nr_blks; i++)
		if (mi->blk[i].start <= start && mi->blk[i].end > start)
			return mi->blk[i].nid;
	return NUMA_NO_NODE;
}

int phys_to_target_node(phys_addr_t start)
{
	int nid = meminfo_to_nid(&numa_meminfo, start);

	/*
	 * Prefer online nodes, but if reserved memory might be
	 * hot-added continue the search with reserved ranges.
	 */
	if (nid != NUMA_NO_NODE)
		return nid;

	return meminfo_to_nid(&numa_reserved_meminfo, start);
}
EXPORT_SYMBOL_GPL(phys_to_target_node);

int memory_add_physaddr_to_nid(u64 start)
{
	int nid = meminfo_to_nid(&numa_meminfo, start);

	if (nid == NUMA_NO_NODE)
		nid = numa_meminfo.blk[0].nid;
	return nid;
}
EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);

static int __init cmp_memblk(const void *a, const void *b)
{
	const struct numa_memblk *ma = *(const struct numa_memblk **)a;
	const struct numa_memblk *mb = *(const struct numa_memblk **)b;

	return ma->start - mb->start;
}

static struct numa_memblk *numa_memblk_list[NR_NODE_MEMBLKS] __initdata;

/**
 * numa_fill_memblks - Fill gaps in numa_meminfo memblks
 * @start: address to begin fill
 * @end: address to end fill
 *
 * Find and extend numa_meminfo memblks to cover the @start-@end
 * physical address range, such that the first memblk includes
 * @start, the last memblk includes @end, and any gaps in between
 * are filled.
 *
 * RETURNS:
 * 0		  : Success
 * NUMA_NO_MEMBLK : No memblk exists in @start-@end range
 */

int __init numa_fill_memblks(u64 start, u64 end)
{
	struct numa_memblk **blk = &numa_memblk_list[0];
	struct numa_meminfo *mi = &numa_meminfo;
	int count = 0;
	u64 prev_end;

	/*
	 * Create a list of pointers to numa_meminfo memblks that
	 * overlap start, end. Exclude (start == bi->end) since
	 * end addresses in both a CFMWS range and a memblk range
	 * are exclusive.
	 *
	 * This list of pointers is used to make in-place changes
	 * that fill out the numa_meminfo memblks.
	 */
	for (int i = 0; i < mi->nr_blks; i++) {
		struct numa_memblk *bi = &mi->blk[i];

		if (start < bi->end && end >= bi->start) {
			blk[count] = &mi->blk[i];
			count++;
		}
	}
	if (!count)
		return NUMA_NO_MEMBLK;

	/* Sort the list of pointers in memblk->start order */
	sort(&blk[0], count, sizeof(blk[0]), cmp_memblk, NULL);

	/* Make sure the first/last memblks include start/end */
	blk[0]->start = min(blk[0]->start, start);
	blk[count - 1]->end = max(blk[count - 1]->end, end);

	/*
	 * Fill any gaps by tracking the previous memblks
	 * end address and backfilling to it if needed.
	 */
	prev_end = blk[0]->end;
	for (int i = 1; i < count; i++) {
		struct numa_memblk *curr = blk[i];

		if (prev_end >= curr->start) {
			if (prev_end < curr->end)
				prev_end = curr->end;
		} else {
			curr->start = prev_end;
			prev_end = curr->end;
		}
	}
	return 0;
}

#endif