1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
|
/*
* Written by: Patricia Gaughen <gone@us.ibm.com>, IBM Corporation
* August 2002: added remote node KVA remap - Martin J. Bligh
*
* Copyright (C) 2002, IBM Corp.
*
* All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/bootmem.h>
#include <linux/memblock.h>
#include <linux/module.h>
#include "numa_internal.h"
#ifdef CONFIG_DISCONTIGMEM
/*
* 4) physnode_map - the mapping between a pfn and owning node
* physnode_map keeps track of the physical memory layout of a generic
* numa node on a 64Mb break (each element of the array will
* represent 64Mb of memory and will be marked by the node id. so,
* if the first gig is on node 0, and the second gig is on node 1
* physnode_map will contain:
*
* physnode_map[0-15] = 0;
* physnode_map[16-31] = 1;
* physnode_map[32- ] = -1;
*/
s8 physnode_map[MAX_SECTIONS] __read_mostly = { [0 ... (MAX_SECTIONS - 1)] = -1};
EXPORT_SYMBOL(physnode_map);
void memory_present(int nid, unsigned long start, unsigned long end)
{
unsigned long pfn;
printk(KERN_INFO "Node: %d, start_pfn: %lx, end_pfn: %lx\n",
nid, start, end);
printk(KERN_DEBUG " Setting physnode_map array to node %d for pfns:\n", nid);
printk(KERN_DEBUG " ");
for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
physnode_map[pfn / PAGES_PER_SECTION] = nid;
printk(KERN_CONT "%lx ", pfn);
}
printk(KERN_CONT "\n");
}
unsigned long node_memmap_size_bytes(int nid, unsigned long start_pfn,
unsigned long end_pfn)
{
unsigned long nr_pages = end_pfn - start_pfn;
if (!nr_pages)
return 0;
return (nr_pages + 1) * sizeof(struct page);
}
#endif
extern unsigned long highend_pfn, highstart_pfn;
#define LARGE_PAGE_BYTES (PTRS_PER_PTE * PAGE_SIZE)
static void *node_remap_start_vaddr[MAX_NUMNODES];
void set_pmd_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags);
/*
* Remap memory allocator
*/
static unsigned long node_remap_start_pfn[MAX_NUMNODES];
static void *node_remap_end_vaddr[MAX_NUMNODES];
static void *node_remap_alloc_vaddr[MAX_NUMNODES];
/**
* alloc_remap - Allocate remapped memory
* @nid: NUMA node to allocate memory from
* @size: The size of allocation
*
* Allocate @size bytes from the remap area of NUMA node @nid. The
* size of the remap area is predetermined by init_alloc_remap() and
* only the callers considered there should call this function. For
* more info, please read the comment on top of init_alloc_remap().
*
* The caller must be ready to handle allocation failure from this
* function and fall back to regular memory allocator in such cases.
*
* CONTEXT:
* Single CPU early boot context.
*
* RETURNS:
* Pointer to the allocated memory on success, %NULL on failure.
*/
void *alloc_remap(int nid, unsigned long size)
{
void *allocation = node_remap_alloc_vaddr[nid];
size = ALIGN(size, L1_CACHE_BYTES);
if (!allocation || (allocation + size) > node_remap_end_vaddr[nid])
return NULL;
node_remap_alloc_vaddr[nid] += size;
memset(allocation, 0, size);
return allocation;
}
#ifdef CONFIG_HIBERNATION
/**
* resume_map_numa_kva - add KVA mapping to the temporary page tables created
* during resume from hibernation
* @pgd_base - temporary resume page directory
*/
void resume_map_numa_kva(pgd_t *pgd_base)
{
int node;
for_each_online_node(node) {
unsigned long start_va, start_pfn, nr_pages, pfn;
start_va = (unsigned long)node_remap_start_vaddr[node];
start_pfn = node_remap_start_pfn[node];
nr_pages = (node_remap_end_vaddr[node] -
node_remap_start_vaddr[node]) >> PAGE_SHIFT;
printk(KERN_DEBUG "%s: node %d\n", __func__, node);
for (pfn = 0; pfn < nr_pages; pfn += PTRS_PER_PTE) {
unsigned long vaddr = start_va + (pfn << PAGE_SHIFT);
pgd_t *pgd = pgd_base + pgd_index(vaddr);
pud_t *pud = pud_offset(pgd, vaddr);
pmd_t *pmd = pmd_offset(pud, vaddr);
set_pmd(pmd, pfn_pmd(start_pfn + pfn,
PAGE_KERNEL_LARGE_EXEC));
printk(KERN_DEBUG "%s: %08lx -> pfn %08lx\n",
__func__, vaddr, start_pfn + pfn);
}
}
}
#endif
/**
* init_alloc_remap - Initialize remap allocator for a NUMA node
* @nid: NUMA node to initizlie remap allocator for
*
* NUMA nodes may end up without any lowmem. As allocating pgdat and
* memmap on a different node with lowmem is inefficient, a special
* remap allocator is implemented which can be used by alloc_remap().
*
* For each node, the amount of memory which will be necessary for
* pgdat and memmap is calculated and two memory areas of the size are
* allocated - one in the node and the other in lowmem; then, the area
* in the node is remapped to the lowmem area.
*
* As pgdat and memmap must be allocated in lowmem anyway, this
* doesn't waste lowmem address space; however, the actual lowmem
* which gets remapped over is wasted. The amount shouldn't be
* problematic on machines this feature will be used.
*
* Initialization failure isn't fatal. alloc_remap() is used
* opportunistically and the callers will fall back to other memory
* allocation mechanisms on failure.
*/
void __init init_alloc_remap(int nid, u64 start, u64 end)
{
unsigned long start_pfn = start >> PAGE_SHIFT;
unsigned long end_pfn = end >> PAGE_SHIFT;
unsigned long size, pfn;
u64 node_pa, remap_pa;
void *remap_va;
/*
* The acpi/srat node info can show hot-add memroy zones where
* memory could be added but not currently present.
*/
printk(KERN_DEBUG "node %d pfn: [%lx - %lx]\n",
nid, start_pfn, end_pfn);
/* calculate the necessary space aligned to large page size */
size = node_memmap_size_bytes(nid, start_pfn, end_pfn);
size += ALIGN(sizeof(pg_data_t), PAGE_SIZE);
size = ALIGN(size, LARGE_PAGE_BYTES);
/* allocate node memory and the lowmem remap area */
node_pa = memblock_find_in_range(start, end, size, LARGE_PAGE_BYTES);
if (!node_pa) {
pr_warning("remap_alloc: failed to allocate %lu bytes for node %d\n",
size, nid);
return;
}
memblock_x86_reserve_range(node_pa, node_pa + size, "KVA RAM");
remap_pa = memblock_find_in_range(min_low_pfn << PAGE_SHIFT,
max_low_pfn << PAGE_SHIFT,
size, LARGE_PAGE_BYTES);
if (!remap_pa) {
pr_warning("remap_alloc: failed to allocate %lu bytes remap area for node %d\n",
size, nid);
memblock_x86_free_range(node_pa, node_pa + size);
return;
}
memblock_x86_reserve_range(remap_pa, remap_pa + size, "KVA PG");
remap_va = phys_to_virt(remap_pa);
/* perform actual remap */
for (pfn = 0; pfn < size >> PAGE_SHIFT; pfn += PTRS_PER_PTE)
set_pmd_pfn((unsigned long)remap_va + (pfn << PAGE_SHIFT),
(node_pa >> PAGE_SHIFT) + pfn,
PAGE_KERNEL_LARGE);
/* initialize remap allocator parameters */
node_remap_start_pfn[nid] = node_pa >> PAGE_SHIFT;
node_remap_start_vaddr[nid] = remap_va;
node_remap_end_vaddr[nid] = remap_va + size;
node_remap_alloc_vaddr[nid] = remap_va;
printk(KERN_DEBUG "remap_alloc: node %d [%08llx-%08llx) -> [%p-%p)\n",
nid, node_pa, node_pa + size, remap_va, remap_va + size);
}
void __init initmem_init(void)
{
x86_numa_init();
#ifdef CONFIG_HIGHMEM
highstart_pfn = highend_pfn = max_pfn;
if (max_pfn > max_low_pfn)
highstart_pfn = max_low_pfn;
printk(KERN_NOTICE "%ldMB HIGHMEM available.\n",
pages_to_mb(highend_pfn - highstart_pfn));
num_physpages = highend_pfn;
high_memory = (void *) __va(highstart_pfn * PAGE_SIZE - 1) + 1;
#else
num_physpages = max_low_pfn;
high_memory = (void *) __va(max_low_pfn * PAGE_SIZE - 1) + 1;
#endif
printk(KERN_NOTICE "%ldMB LOWMEM available.\n",
pages_to_mb(max_low_pfn));
printk(KERN_DEBUG "max_low_pfn = %lx, highstart_pfn = %lx\n",
max_low_pfn, highstart_pfn);
printk(KERN_DEBUG "Low memory ends at vaddr %08lx\n",
(ulong) pfn_to_kaddr(max_low_pfn));
printk(KERN_DEBUG "High memory starts at vaddr %08lx\n",
(ulong) pfn_to_kaddr(highstart_pfn));
setup_bootmem_allocator();
}
|