summaryrefslogtreecommitdiffstats
path: root/crypto/algif_skcipher.c
blob: a51ba22fef58f09c87a79c297d73c48980702bf5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * algif_skcipher: User-space interface for skcipher algorithms
 *
 * This file provides the user-space API for symmetric key ciphers.
 *
 * Copyright (c) 2010 Herbert Xu <herbert@gondor.apana.org.au>
 *
 * The following concept of the memory management is used:
 *
 * The kernel maintains two SGLs, the TX SGL and the RX SGL. The TX SGL is
 * filled by user space with the data submitted via sendpage/sendmsg. Filling
 * up the TX SGL does not cause a crypto operation -- the data will only be
 * tracked by the kernel. Upon receipt of one recvmsg call, the caller must
 * provide a buffer which is tracked with the RX SGL.
 *
 * During the processing of the recvmsg operation, the cipher request is
 * allocated and prepared. As part of the recvmsg operation, the processed
 * TX buffers are extracted from the TX SGL into a separate SGL.
 *
 * After the completion of the crypto operation, the RX SGL and the cipher
 * request is released. The extracted TX SGL parts are released together with
 * the RX SGL release.
 */

#include <crypto/scatterwalk.h>
#include <crypto/skcipher.h>
#include <crypto/if_alg.h>
#include <linux/init.h>
#include <linux/list.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/net.h>
#include <net/sock.h>

static int skcipher_sendmsg(struct socket *sock, struct msghdr *msg,
			    size_t size)
{
	struct sock *sk = sock->sk;
	struct alg_sock *ask = alg_sk(sk);
	struct sock *psk = ask->parent;
	struct alg_sock *pask = alg_sk(psk);
	struct crypto_skcipher *tfm = pask->private;
	unsigned ivsize = crypto_skcipher_ivsize(tfm);

	return af_alg_sendmsg(sock, msg, size, ivsize);
}

static int _skcipher_recvmsg(struct socket *sock, struct msghdr *msg,
			     size_t ignored, int flags)
{
	struct sock *sk = sock->sk;
	struct alg_sock *ask = alg_sk(sk);
	struct sock *psk = ask->parent;
	struct alg_sock *pask = alg_sk(psk);
	struct af_alg_ctx *ctx = ask->private;
	struct crypto_skcipher *tfm = pask->private;
	unsigned int bs = crypto_skcipher_chunksize(tfm);
	struct af_alg_async_req *areq;
	int err = 0;
	size_t len = 0;

	if (!ctx->init || (ctx->more && ctx->used < bs)) {
		err = af_alg_wait_for_data(sk, flags, bs);
		if (err)
			return err;
	}

	/* Allocate cipher request for current operation. */
	areq = af_alg_alloc_areq(sk, sizeof(struct af_alg_async_req) +
				     crypto_skcipher_reqsize(tfm));
	if (IS_ERR(areq))
		return PTR_ERR(areq);

	/* convert iovecs of output buffers into RX SGL */
	err = af_alg_get_rsgl(sk, msg, flags, areq, ctx->used, &len);
	if (err)
		goto free;

	/*
	 * If more buffers are to be expected to be processed, process only
	 * full block size buffers.
	 */
	if (ctx->more || len < ctx->used)
		len -= len % bs;

	/*
	 * Create a per request TX SGL for this request which tracks the
	 * SG entries from the global TX SGL.
	 */
	areq->tsgl_entries = af_alg_count_tsgl(sk, len, 0);
	if (!areq->tsgl_entries)
		areq->tsgl_entries = 1;
	areq->tsgl = sock_kmalloc(sk, array_size(sizeof(*areq->tsgl),
						 areq->tsgl_entries),
				  GFP_KERNEL);
	if (!areq->tsgl) {
		err = -ENOMEM;
		goto free;
	}
	sg_init_table(areq->tsgl, areq->tsgl_entries);
	af_alg_pull_tsgl(sk, len, areq->tsgl, 0);

	/* Initialize the crypto operation */
	skcipher_request_set_tfm(&areq->cra_u.skcipher_req, tfm);
	skcipher_request_set_crypt(&areq->cra_u.skcipher_req, areq->tsgl,
				   areq->first_rsgl.sgl.sg, len, ctx->iv);

	if (msg->msg_iocb && !is_sync_kiocb(msg->msg_iocb)) {
		/* AIO operation */
		sock_hold(sk);
		areq->iocb = msg->msg_iocb;

		/* Remember output size that will be generated. */
		areq->outlen = len;

		skcipher_request_set_callback(&areq->cra_u.skcipher_req,
					      CRYPTO_TFM_REQ_MAY_SLEEP,
					      af_alg_async_cb, areq);
		err = ctx->enc ?
			crypto_skcipher_encrypt(&areq->cra_u.skcipher_req) :
			crypto_skcipher_decrypt(&areq->cra_u.skcipher_req);

		/* AIO operation in progress */
		if (err == -EINPROGRESS || err == -EBUSY)
			return -EIOCBQUEUED;

		sock_put(sk);
	} else {
		/* Synchronous operation */
		skcipher_request_set_callback(&areq->cra_u.skcipher_req,
					      CRYPTO_TFM_REQ_MAY_SLEEP |
					      CRYPTO_TFM_REQ_MAY_BACKLOG,
					      crypto_req_done, &ctx->wait);
		err = crypto_wait_req(ctx->enc ?
			crypto_skcipher_encrypt(&areq->cra_u.skcipher_req) :
			crypto_skcipher_decrypt(&areq->cra_u.skcipher_req),
						 &ctx->wait);
	}


free:
	af_alg_free_resources(areq);

	return err ? err : len;
}

static int skcipher_recvmsg(struct socket *sock, struct msghdr *msg,
			    size_t ignored, int flags)
{
	struct sock *sk = sock->sk;
	int ret = 0;

	lock_sock(sk);
	while (msg_data_left(msg)) {
		int err = _skcipher_recvmsg(sock, msg, ignored, flags);

		/*
		 * This error covers -EIOCBQUEUED which implies that we can
		 * only handle one AIO request. If the caller wants to have
		 * multiple AIO requests in parallel, he must make multiple
		 * separate AIO calls.
		 *
		 * Also return the error if no data has been processed so far.
		 */
		if (err <= 0) {
			if (err == -EIOCBQUEUED || !ret)
				ret = err;
			goto out;
		}

		ret += err;
	}

out:
	af_alg_wmem_wakeup(sk);
	release_sock(sk);
	return ret;
}

static struct proto_ops algif_skcipher_ops = {
	.family		=	PF_ALG,

	.connect	=	sock_no_connect,
	.socketpair	=	sock_no_socketpair,
	.getname	=	sock_no_getname,
	.ioctl		=	sock_no_ioctl,
	.listen		=	sock_no_listen,
	.shutdown	=	sock_no_shutdown,
	.getsockopt	=	sock_no_getsockopt,
	.mmap		=	sock_no_mmap,
	.bind		=	sock_no_bind,
	.accept		=	sock_no_accept,
	.setsockopt	=	sock_no_setsockopt,

	.release	=	af_alg_release,
	.sendmsg	=	skcipher_sendmsg,
	.sendpage	=	af_alg_sendpage,
	.recvmsg	=	skcipher_recvmsg,
	.poll		=	af_alg_poll,
};

static int skcipher_check_key(struct socket *sock)
{
	int err = 0;
	struct sock *psk;
	struct alg_sock *pask;
	struct crypto_skcipher *tfm;
	struct sock *sk = sock->sk;
	struct alg_sock *ask = alg_sk(sk);

	lock_sock(sk);
	if (!atomic_read(&ask->nokey_refcnt))
		goto unlock_child;

	psk = ask->parent;
	pask = alg_sk(ask->parent);
	tfm = pask->private;

	err = -ENOKEY;
	lock_sock_nested(psk, SINGLE_DEPTH_NESTING);
	if (crypto_skcipher_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
		goto unlock;

	atomic_dec(&pask->nokey_refcnt);
	atomic_set(&ask->nokey_refcnt, 0);

	err = 0;

unlock:
	release_sock(psk);
unlock_child:
	release_sock(sk);

	return err;
}

static int skcipher_sendmsg_nokey(struct socket *sock, struct msghdr *msg,
				  size_t size)
{
	int err;

	err = skcipher_check_key(sock);
	if (err)
		return err;

	return skcipher_sendmsg(sock, msg, size);
}

static ssize_t skcipher_sendpage_nokey(struct socket *sock, struct page *page,
				       int offset, size_t size, int flags)
{
	int err;

	err = skcipher_check_key(sock);
	if (err)
		return err;

	return af_alg_sendpage(sock, page, offset, size, flags);
}

static int skcipher_recvmsg_nokey(struct socket *sock, struct msghdr *msg,
				  size_t ignored, int flags)
{
	int err;

	err = skcipher_check_key(sock);
	if (err)
		return err;

	return skcipher_recvmsg(sock, msg, ignored, flags);
}

static struct proto_ops algif_skcipher_ops_nokey = {
	.family		=	PF_ALG,

	.connect	=	sock_no_connect,
	.socketpair	=	sock_no_socketpair,
	.getname	=	sock_no_getname,
	.ioctl		=	sock_no_ioctl,
	.listen		=	sock_no_listen,
	.shutdown	=	sock_no_shutdown,
	.getsockopt	=	sock_no_getsockopt,
	.mmap		=	sock_no_mmap,
	.bind		=	sock_no_bind,
	.accept		=	sock_no_accept,
	.setsockopt	=	sock_no_setsockopt,

	.release	=	af_alg_release,
	.sendmsg	=	skcipher_sendmsg_nokey,
	.sendpage	=	skcipher_sendpage_nokey,
	.recvmsg	=	skcipher_recvmsg_nokey,
	.poll		=	af_alg_poll,
};

static void *skcipher_bind(const char *name, u32 type, u32 mask)
{
	return crypto_alloc_skcipher(name, type, mask);
}

static void skcipher_release(void *private)
{
	crypto_free_skcipher(private);
}

static int skcipher_setkey(void *private, const u8 *key, unsigned int keylen)
{
	return crypto_skcipher_setkey(private, key, keylen);
}

static void skcipher_sock_destruct(struct sock *sk)
{
	struct alg_sock *ask = alg_sk(sk);
	struct af_alg_ctx *ctx = ask->private;
	struct sock *psk = ask->parent;
	struct alg_sock *pask = alg_sk(psk);
	struct crypto_skcipher *tfm = pask->private;

	af_alg_pull_tsgl(sk, ctx->used, NULL, 0);
	sock_kzfree_s(sk, ctx->iv, crypto_skcipher_ivsize(tfm));
	sock_kfree_s(sk, ctx, ctx->len);
	af_alg_release_parent(sk);
}

static int skcipher_accept_parent_nokey(void *private, struct sock *sk)
{
	struct af_alg_ctx *ctx;
	struct alg_sock *ask = alg_sk(sk);
	struct crypto_skcipher *tfm = private;
	unsigned int len = sizeof(*ctx);

	ctx = sock_kmalloc(sk, len, GFP_KERNEL);
	if (!ctx)
		return -ENOMEM;

	ctx->iv = sock_kmalloc(sk, crypto_skcipher_ivsize(tfm),
			       GFP_KERNEL);
	if (!ctx->iv) {
		sock_kfree_s(sk, ctx, len);
		return -ENOMEM;
	}

	memset(ctx->iv, 0, crypto_skcipher_ivsize(tfm));

	INIT_LIST_HEAD(&ctx->tsgl_list);
	ctx->len = len;
	ctx->used = 0;
	atomic_set(&ctx->rcvused, 0);
	ctx->more = 0;
	ctx->merge = 0;
	ctx->enc = 0;
	crypto_init_wait(&ctx->wait);

	ask->private = ctx;

	sk->sk_destruct = skcipher_sock_destruct;

	return 0;
}

static int skcipher_accept_parent(void *private, struct sock *sk)
{
	struct crypto_skcipher *tfm = private;

	if (crypto_skcipher_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
		return -ENOKEY;

	return skcipher_accept_parent_nokey(private, sk);
}

static const struct af_alg_type algif_type_skcipher = {
	.bind		=	skcipher_bind,
	.release	=	skcipher_release,
	.setkey		=	skcipher_setkey,
	.accept		=	skcipher_accept_parent,
	.accept_nokey	=	skcipher_accept_parent_nokey,
	.ops		=	&algif_skcipher_ops,
	.ops_nokey	=	&algif_skcipher_ops_nokey,
	.name		=	"skcipher",
	.owner		=	THIS_MODULE
};

static int __init algif_skcipher_init(void)
{
	return af_alg_register_type(&algif_type_skcipher);
}

static void __exit algif_skcipher_exit(void)
{
	int err = af_alg_unregister_type(&algif_type_skcipher);
	BUG_ON(err);
}

module_init(algif_skcipher_init);
module_exit(algif_skcipher_exit);
MODULE_LICENSE("GPL");